301 lines
10 KiB
C++
301 lines
10 KiB
C++
#ifndef KISSFFT_CLASS_HH
|
|
#define KISSFFT_CLASS_HH
|
|
#include <complex>
|
|
#include <vector>
|
|
|
|
namespace kissfft_utils {
|
|
|
|
template <typename T_scalar>
|
|
struct traits
|
|
{
|
|
typedef T_scalar scalar_type;
|
|
typedef std::complex<scalar_type> cpx_type;
|
|
void fill_twiddles( std::complex<T_scalar> * dst ,int nfft,bool inverse)
|
|
{
|
|
T_scalar phinc = (inverse?2:-2)* acos( (T_scalar) -1) / nfft;
|
|
for (int i=0;i<nfft;++i)
|
|
dst[i] = exp( std::complex<T_scalar>(0,i*phinc) );
|
|
}
|
|
|
|
void prepare(
|
|
std::vector< std::complex<T_scalar> > & dst,
|
|
int nfft,bool inverse,
|
|
std::vector<int> & stageRadix,
|
|
std::vector<int> & stageRemainder )
|
|
{
|
|
_twiddles.resize(nfft);
|
|
fill_twiddles( &_twiddles[0],nfft,inverse);
|
|
dst = _twiddles;
|
|
|
|
//factorize
|
|
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
|
int n= nfft;
|
|
int p=4;
|
|
do {
|
|
while (n % p) {
|
|
switch (p) {
|
|
case 4: p = 2; break;
|
|
case 2: p = 3; break;
|
|
default: p += 2; break;
|
|
}
|
|
if (p*p>n)
|
|
p=n;// no more factors
|
|
}
|
|
n /= p;
|
|
stageRadix.push_back(p);
|
|
stageRemainder.push_back(n);
|
|
}while(n>1);
|
|
}
|
|
std::vector<cpx_type> _twiddles;
|
|
|
|
|
|
const cpx_type twiddle(int i) { return _twiddles[i]; }
|
|
};
|
|
|
|
}
|
|
|
|
template <typename T_Scalar,
|
|
typename T_traits=kissfft_utils::traits<T_Scalar>
|
|
>
|
|
class kissfft
|
|
{
|
|
public:
|
|
typedef T_traits traits_type;
|
|
typedef typename traits_type::scalar_type scalar_type;
|
|
typedef typename traits_type::cpx_type cpx_type;
|
|
|
|
kissfft(int nfft,bool inverse,const traits_type & traits=traits_type() )
|
|
:_nfft(nfft),_inverse(inverse),_traits(traits)
|
|
{
|
|
_traits.prepare(_twiddles, _nfft,_inverse ,_stageRadix, _stageRemainder);
|
|
}
|
|
|
|
void transform(const cpx_type * src , cpx_type * dst)
|
|
{
|
|
kf_work(0, dst, src, 1,1);
|
|
}
|
|
|
|
private:
|
|
void kf_work( int stage,cpx_type * Fout, const cpx_type * f, size_t fstride,size_t in_stride)
|
|
{
|
|
int p = _stageRadix[stage];
|
|
int m = _stageRemainder[stage];
|
|
cpx_type * Fout_beg = Fout;
|
|
cpx_type * Fout_end = Fout + p*m;
|
|
|
|
if (m==1) {
|
|
do{
|
|
*Fout = *f;
|
|
f += fstride*in_stride;
|
|
}while(++Fout != Fout_end );
|
|
}else{
|
|
do{
|
|
// recursive call:
|
|
// DFT of size m*p performed by doing
|
|
// p instances of smaller DFTs of size m,
|
|
// each one takes a decimated version of the input
|
|
kf_work(stage+1, Fout , f, fstride*p,in_stride);
|
|
f += fstride*in_stride;
|
|
}while( (Fout += m) != Fout_end );
|
|
}
|
|
|
|
Fout=Fout_beg;
|
|
|
|
// recombine the p smaller DFTs
|
|
switch (p) {
|
|
case 2: kf_bfly2(Fout,fstride,m); break;
|
|
case 3: kf_bfly3(Fout,fstride,m); break;
|
|
case 4: kf_bfly4(Fout,fstride,m); break;
|
|
case 5: kf_bfly5(Fout,fstride,m); break;
|
|
default: kf_bfly_generic(Fout,fstride,m,p); break;
|
|
}
|
|
}
|
|
|
|
// these were #define macros in the original kiss_fft
|
|
void C_ADD( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a+b;}
|
|
void C_MUL( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a*b;}
|
|
void C_SUB( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a-b;}
|
|
void C_ADDTO( cpx_type & c,const cpx_type & a) { c+=a;}
|
|
void C_FIXDIV( cpx_type & ,int ) {} // NO-OP for float types
|
|
scalar_type S_MUL( const scalar_type & a,const scalar_type & b) { return a*b;}
|
|
scalar_type HALF_OF( const scalar_type & a) { return a*.5;}
|
|
void C_MULBYSCALAR(cpx_type & c,const scalar_type & a) {c*=a;}
|
|
|
|
void kf_bfly2( cpx_type * Fout, const size_t fstride, int m)
|
|
{
|
|
for (int k=0;k<m;++k) {
|
|
cpx_type t = Fout[m+k] * _traits.twiddle(k*fstride);
|
|
Fout[m+k] = Fout[k] - t;
|
|
Fout[k] += t;
|
|
}
|
|
}
|
|
|
|
void kf_bfly4( cpx_type * Fout, const size_t fstride, const size_t m)
|
|
{
|
|
cpx_type scratch[7];
|
|
int negative_if_inverse = _inverse * -2 +1;
|
|
for (size_t k=0;k<m;++k) {
|
|
scratch[0] = Fout[k+m] * _traits.twiddle(k*fstride);
|
|
scratch[1] = Fout[k+2*m] * _traits.twiddle(k*fstride*2);
|
|
scratch[2] = Fout[k+3*m] * _traits.twiddle(k*fstride*3);
|
|
scratch[5] = Fout[k] - scratch[1];
|
|
|
|
Fout[k] += scratch[1];
|
|
scratch[3] = scratch[0] + scratch[2];
|
|
scratch[4] = scratch[0] - scratch[2];
|
|
scratch[4] = cpx_type( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
|
|
|
|
Fout[k+2*m] = Fout[k] - scratch[3];
|
|
Fout[k] += scratch[3];
|
|
Fout[k+m] = scratch[5] + scratch[4];
|
|
Fout[k+3*m] = scratch[5] - scratch[4];
|
|
}
|
|
}
|
|
|
|
void kf_bfly3( cpx_type * Fout, const size_t fstride, const size_t m)
|
|
{
|
|
size_t k=m;
|
|
const size_t m2 = 2*m;
|
|
cpx_type *tw1,*tw2;
|
|
cpx_type scratch[5];
|
|
cpx_type epi3;
|
|
epi3 = _twiddles[fstride*m];
|
|
|
|
tw1=tw2=&_twiddles[0];
|
|
|
|
do{
|
|
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
|
|
|
|
C_MUL(scratch[1],Fout[m] , *tw1);
|
|
C_MUL(scratch[2],Fout[m2] , *tw2);
|
|
|
|
C_ADD(scratch[3],scratch[1],scratch[2]);
|
|
C_SUB(scratch[0],scratch[1],scratch[2]);
|
|
tw1 += fstride;
|
|
tw2 += fstride*2;
|
|
|
|
Fout[m] = cpx_type( Fout->real() - HALF_OF(scratch[3].real() ) , Fout->imag() - HALF_OF(scratch[3].imag() ) );
|
|
|
|
C_MULBYSCALAR( scratch[0] , epi3.imag() );
|
|
|
|
C_ADDTO(*Fout,scratch[3]);
|
|
|
|
Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
|
|
|
C_ADDTO( Fout[m] , cpx_type( -scratch[0].imag(),scratch[0].real() ) );
|
|
++Fout;
|
|
}while(--k);
|
|
}
|
|
|
|
void kf_bfly5( cpx_type * Fout, const size_t fstride, const size_t m)
|
|
{
|
|
cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
|
size_t u;
|
|
cpx_type scratch[13];
|
|
cpx_type * twiddles = &_twiddles[0];
|
|
cpx_type *tw;
|
|
cpx_type ya,yb;
|
|
ya = twiddles[fstride*m];
|
|
yb = twiddles[fstride*2*m];
|
|
|
|
Fout0=Fout;
|
|
Fout1=Fout0+m;
|
|
Fout2=Fout0+2*m;
|
|
Fout3=Fout0+3*m;
|
|
Fout4=Fout0+4*m;
|
|
|
|
tw=twiddles;
|
|
for ( u=0; u<m; ++u ) {
|
|
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
|
|
scratch[0] = *Fout0;
|
|
|
|
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
|
|
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
|
|
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
|
|
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
|
|
|
|
C_ADD( scratch[7],scratch[1],scratch[4]);
|
|
C_SUB( scratch[10],scratch[1],scratch[4]);
|
|
C_ADD( scratch[8],scratch[2],scratch[3]);
|
|
C_SUB( scratch[9],scratch[2],scratch[3]);
|
|
|
|
C_ADDTO( *Fout0, scratch[7]);
|
|
C_ADDTO( *Fout0, scratch[8]);
|
|
|
|
scratch[5] = scratch[0] + cpx_type(
|
|
S_MUL(scratch[7].real(),ya.real() ) + S_MUL(scratch[8].real() ,yb.real() ),
|
|
S_MUL(scratch[7].imag(),ya.real()) + S_MUL(scratch[8].imag(),yb.real())
|
|
);
|
|
|
|
scratch[6] = cpx_type(
|
|
S_MUL(scratch[10].imag(),ya.imag()) + S_MUL(scratch[9].imag(),yb.imag()),
|
|
-S_MUL(scratch[10].real(),ya.imag()) - S_MUL(scratch[9].real(),yb.imag())
|
|
);
|
|
|
|
C_SUB(*Fout1,scratch[5],scratch[6]);
|
|
C_ADD(*Fout4,scratch[5],scratch[6]);
|
|
|
|
scratch[11] = scratch[0] +
|
|
cpx_type(
|
|
S_MUL(scratch[7].real(),yb.real()) + S_MUL(scratch[8].real(),ya.real()),
|
|
S_MUL(scratch[7].imag(),yb.real()) + S_MUL(scratch[8].imag(),ya.real())
|
|
);
|
|
|
|
scratch[12] = cpx_type(
|
|
-S_MUL(scratch[10].imag(),yb.imag()) + S_MUL(scratch[9].imag(),ya.imag()),
|
|
S_MUL(scratch[10].real(),yb.imag()) - S_MUL(scratch[9].real(),ya.imag())
|
|
);
|
|
|
|
C_ADD(*Fout2,scratch[11],scratch[12]);
|
|
C_SUB(*Fout3,scratch[11],scratch[12]);
|
|
|
|
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
|
}
|
|
}
|
|
|
|
/* perform the butterfly for one stage of a mixed radix FFT */
|
|
void kf_bfly_generic(
|
|
cpx_type * Fout,
|
|
const size_t fstride,
|
|
int m,
|
|
int p
|
|
)
|
|
{
|
|
int u,k,q1,q;
|
|
cpx_type * twiddles = &_twiddles[0];
|
|
cpx_type t;
|
|
int Norig = _nfft;
|
|
cpx_type scratchbuf[p];
|
|
|
|
for ( u=0; u<m; ++u ) {
|
|
k=u;
|
|
for ( q1=0 ; q1<p ; ++q1 ) {
|
|
scratchbuf[q1] = Fout[ k ];
|
|
C_FIXDIV(scratchbuf[q1],p);
|
|
k += m;
|
|
}
|
|
|
|
k=u;
|
|
for ( q1=0 ; q1<p ; ++q1 ) {
|
|
int twidx=0;
|
|
Fout[ k ] = scratchbuf[0];
|
|
for (q=1;q<p;++q ) {
|
|
twidx += fstride * k;
|
|
if (twidx>=Norig) twidx-=Norig;
|
|
C_MUL(t,scratchbuf[q] , twiddles[twidx] );
|
|
C_ADDTO( Fout[ k ] ,t);
|
|
}
|
|
k += m;
|
|
}
|
|
}
|
|
}
|
|
|
|
int _nfft;
|
|
bool _inverse;
|
|
std::vector<cpx_type> _twiddles;
|
|
std::vector<int> _stageRadix;
|
|
std::vector<int> _stageRemainder;
|
|
traits_type _traits;
|
|
};
|
|
#endif
|