13
0
livetrax/libs/surfaces/push2/push2.cc

1643 lines
39 KiB
C++

/*
* Copyright (C) 2016-2018 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2017-2018 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <algorithm>
#include <bitset>
#include <stdlib.h>
#include <pthread.h>
#include "pbd/compose.h"
#include "pbd/convert.h"
#include "pbd/debug.h"
#include "pbd/failed_constructor.h"
#include "pbd/file_utils.h"
#include "pbd/search_path.h"
#include "pbd/enumwriter.h"
#include "midi++/parser.h"
#include "temporal/time.h"
#include "temporal/bbt_time.h"
#include "ardour/amp.h"
#include "ardour/async_midi_port.h"
#include "ardour/audioengine.h"
#include "ardour/debug.h"
#include "ardour/midiport_manager.h"
#include "ardour/midi_track.h"
#include "ardour/midi_port.h"
#include "ardour/session.h"
#include "ardour/tempo.h"
#include "ardour/types_convert.h"
#include "gtkmm2ext/gui_thread.h"
#include "gtkmm2ext/rgb_macros.h"
#include "gtkmm2ext/colors.h"
#include "canvas.h"
#include "cues.h"
#include "gui.h"
#include "layout.h"
#include "mix.h"
#include "push2.h"
#include "scale.h"
#include "splash.h"
#include "track_mix.h"
#include "pbd/i18n.h"
#ifdef PLATFORM_WINDOWS
#define random() rand()
#endif
using namespace ARDOUR;
using namespace PBD;
using namespace Glib;
using namespace ArdourSurface;
using namespace Gtkmm2ext;
#include "pbd/abstract_ui.cc" // instantiate template
#define ABLETON 0x2982
#define PUSH2 0x1967
static int
row_interval_semitones (const Push2::RowInterval row_interval, const bool inkey)
{
switch (row_interval) {
case Push2::Third:
return 4;
case Push2::Fourth:
return 5;
case Push2::Fifth:
return 7;
case Push2::Sequential:
return inkey ? 12 : 8;
}
return 5;
}
bool
Push2::available ()
{
bool rv = LIBUSB_SUCCESS == libusb_init (0);
if (rv) {
libusb_exit (0);
}
return rv;
}
bool
Push2::match_usb (uint16_t vendor, uint16_t device)
{
return vendor == ABLETON && device == PUSH2;
}
bool
Push2::probe (std::string& i, std::string& o)
{
vector<string> midi_inputs;
vector<string> midi_outputs;
AudioEngine::instance()->get_ports ("", DataType::MIDI, PortFlags (IsOutput|IsTerminal), midi_inputs);
AudioEngine::instance()->get_ports ("", DataType::MIDI, PortFlags (IsInput|IsTerminal), midi_outputs);
auto has_fp8 = [](string const& s) {
std::string pn = AudioEngine::instance()->get_hardware_port_name_by_name (s);
return pn.find ("Ableton Push 2 MIDI 1") != string::npos;
};
auto pi = std::find_if (midi_inputs.begin (), midi_inputs.end (), has_fp8);
auto po = std::find_if (midi_outputs.begin (), midi_outputs.end (), has_fp8);
if (pi == midi_inputs.end () || po == midi_outputs.end ()) {
return false;
}
i = *pi;
o = *po;
return true;
}
Push2::Push2 (ARDOUR::Session& s)
: MIDISurface (s, X_("Ableton Push 2"), X_("Push 2"), true)
, _handle (0)
, _modifier_state (None)
, _splash_start (0)
, _current_layout (0)
, _previous_layout (0)
, _gui (0)
, _mode (MusicalMode::IonianMajor)
, _row_interval (Fourth)
, _scale_root (0)
, _root_octave (3)
, _in_key (true)
, _octave_shift (0)
, _percussion (false)
, _pressure_mode (AfterTouch)
, _selection_color (LED::Green)
, _contrast_color (LED::Green)
, _in_range_select (false)
, _stop_down (false)
{
/* we're going to need this */
libusb_init (NULL);
build_maps ();
build_color_map ();
fill_color_table ();
/* master cannot be removed, so no need to connect to going-away signal */
_master = session->master_out ();
/* allocate graphics layouts, even though we're not using them yet */
_canvas = new Push2Canvas (*this, 960, 160);
_mix_layout = new MixLayout (*this, *session, "globalmix");
_scale_layout = new ScaleLayout (*this, *session, "scale");
_track_mix_layout = new TrackMixLayout (*this, *session, "trackmix");
_cue_layout = new CueLayout (*this, *session, "cues");
_splash_layout = new SplashLayout (*this, *session, "splash");
run_event_loop ();
port_setup ();
std::string pn_in, pn_out;
if (probe (pn_in, pn_out)) {
_async_in->connect (pn_in);
_async_out->connect (pn_out);
}
}
Push2::~Push2 ()
{
DEBUG_TRACE (DEBUG::Push2, "push2 control surface object being destroyed\n");
stop_event_loop ();
MIDISurface::drop ();
if (_current_layout) {
_canvas->root()->remove (_current_layout);
_current_layout = 0;
}
delete _mix_layout;
_mix_layout = 0;
delete _scale_layout;
_scale_layout = 0;
delete _splash_layout;
_splash_layout = 0;
delete _track_mix_layout;
_track_mix_layout = 0;
delete _cue_layout;
_cue_layout = 0;
}
void
Push2::run_event_loop ()
{
DEBUG_TRACE (DEBUG::Push2, "start event loop\n");
BaseUI::run ();
}
void
Push2::stop_event_loop ()
{
DEBUG_TRACE (DEBUG::Push2, "stop event loop\n");
BaseUI::quit ();
}
int
Push2::begin_using_device ()
{
DEBUG_TRACE (DEBUG::Push2, "begin using device\n");
/* set up periodic task used to push a frame buffer to the
* device (25fps). The device can handle 60fps, but we don't
* need that frame rate.
*/
Glib::RefPtr<Glib::TimeoutSource> vblank_timeout = Glib::TimeoutSource::create (40); // milliseconds
_vblank_connection = vblank_timeout->connect (sigc::mem_fun (*this, &Push2::vblank));
vblank_timeout->attach (main_loop()->get_context());
init_buttons (true);
init_touch_strip (false);
reset_pad_colors ();
splash ();
/* catch current selection, if any so that we can wire up the pads if appropriate */
stripable_selection_changed ();
request_pressure_mode ();
return MIDISurface::begin_using_device ();
}
int
Push2::stop_using_device ()
{
DEBUG_TRACE (DEBUG::Push2, "stop using device\n");
if (!_in_use) {
DEBUG_TRACE (DEBUG::Push2, "nothing to do, device not in use\n");
return 0;
}
init_buttons (false);
strip_buttons_off ();
for (auto & pad : _xy_pad_map) {
pad->set_color (LED::Black);
pad->set_state (LED::NoTransition);
write (pad->state_msg());
}
_vblank_connection.disconnect ();
return MIDISurface::stop_using_device ();
}
int
Push2::device_acquire ()
{
int err;
DEBUG_TRACE (DEBUG::Push2, "acquiring device\n");
if (_handle) {
DEBUG_TRACE (DEBUG::Push2, "open() called with handle already set\n");
/* already open */
return 0;
}
if ((_handle = libusb_open_device_with_vid_pid (NULL, ABLETON, PUSH2)) == 0) {
DEBUG_TRACE (DEBUG::Push2, "failed to open USB handle\n");
return -1;
}
if ((err = libusb_claim_interface (_handle, 0x00))) {
DEBUG_TRACE (DEBUG::Push2, "failed to claim USB device\n");
libusb_close (_handle);
_handle = 0;
return -1;
}
return 0;
}
void
Push2::device_release ()
{
DEBUG_TRACE (DEBUG::Push2, "releasing device\n");
if (_handle) {
libusb_release_interface (_handle, 0x00);
libusb_close (_handle);
_handle = 0;
}
}
void
Push2::strip_buttons_off ()
{
ButtonID strip_buttons[] = { Upper1, Upper2, Upper3, Upper4, Upper5, Upper6, Upper7, Upper8,
Lower1, Lower2, Lower3, Lower4, Lower5, Lower6, Lower7, Lower8, };
for (size_t n = 0; n < sizeof (strip_buttons) / sizeof (strip_buttons[0]); ++n) {
std::shared_ptr<Button> b = _id_button_map[strip_buttons[n]];
b->set_color (LED::Black);
b->set_state (LED::OneShot24th);
write (b->state_msg());
}
}
void
Push2::init_buttons (bool startup)
{
/* This is a list of buttons that we want lit because they do something
in ardour related (loosely, sometimes) to their illuminated label.
*/
if (startup) {
ButtonID buttons[] = { Mute, Solo, Master, Up, Right, Left, Down, Note, Session, Mix, AddTrack, Delete, Undo,
Metronome, Shift, Select, Play, RecordEnable, Automate, Repeat, Note, Session,
Quantize, Duplicate, Browse, PageRight, PageLeft, OctaveUp, OctaveDown, Layout, Scale,
Stop
};
for (size_t n = 0; n < sizeof (buttons) / sizeof (buttons[0]); ++n) {
std::shared_ptr<Button> b = _id_button_map[buttons[n]];
b->set_color (LED::White);
b->set_state (LED::NoTransition);
write (b->state_msg());
}
/* all other buttons are off (black) */
ButtonID off_buttons[] = { TapTempo, Setup, User, Convert, New, FixedLength, Clip,
Fwd32ndT, Fwd32nd, Fwd16thT, Fwd16th, Fwd8thT, Fwd8th, Fwd4trT, Fwd4tr,
Accent, Note };
for (size_t n = 0; n < sizeof (off_buttons) / sizeof (off_buttons[0]); ++n) {
std::shared_ptr<Button> b = _id_button_map[off_buttons[n]];
b->set_color (LED::Black);
b->set_state (LED::OneShot24th);
write (b->state_msg());
}
} else {
if (_current_layout) {
_current_layout->hide ();
}
for (auto & b : _id_button_map) {
b.second->set_color (LED::Black);
b.second->set_state (LED::NoTransition);
write (b.second->state_msg());
}
}
}
void
Push2::splash ()
{
set_current_layout (_splash_layout);
_splash_start = get_microseconds ();
}
bool
Push2::vblank ()
{
if (_splash_start) {
/* display splash for 2 seconds */
if (get_microseconds() - _splash_start > 2000000) {
_splash_start = 0;
DEBUG_TRACE (DEBUG::Push2, "splash interval ended, switch to mix layout\n");
set_current_layout (_mix_layout);
}
}
if (_current_layout) {
_current_layout->update_meters ();
_current_layout->update_clocks ();
}
_canvas->vblank();
return true;
}
int
Push2::set_active (bool yn)
{
DEBUG_TRACE (DEBUG::Push2, string_compose("Push2Protocol::set_active init with yn: '%1'\n", yn));
if (yn == active()) {
return 0;
}
if (yn) {
if (device_acquire ()) {
return -1;
}
if ((_connection_state & (InputConnected|OutputConnected)) == (InputConnected|OutputConnected)) {
begin_using_device ();
} else {
/* begin_using_device () will get called once we're connected */
}
} else {
/* Control Protocol Manager never calls us with false, but
* insteads destroys us.
*/
}
ControlProtocol::set_active (yn);
DEBUG_TRACE (DEBUG::Push2, string_compose("Push2Protocol::set_active done with yn: '%1'\n", yn));
return 0;
}
void
Push2::init_touch_strip (bool shift)
{
const int bits = (shift ? 0xc : 0x68);
const MidiByteArray msg (9, 0xf0, 0x00, 0x21, 0x1d, 0x01, 0x01, 0x17, bits, 0xf7);
write (msg);
}
void
Push2::handle_midi_sysex (MIDI::Parser&, MIDI::byte* raw_bytes, size_t sz)
{
DEBUG_TRACE (DEBUG::Push2, string_compose ("Sysex, %1 bytes\n", sz));
if (sz < 8) {
return;
}
MidiByteArray msg (sz, raw_bytes);
MidiByteArray push2_sysex_header (6, 0xF0, 0x00, 0x21, 0x1D, 0x01, 0x01);
if (!push2_sysex_header.compare_n (msg, 6)) {
return;
}
switch (msg[6]) {
case 0x1f: /* pressure mode */
if (msg[7] == 0x0) {
_pressure_mode = AfterTouch;
PressureModeChange (AfterTouch);
} else {
_pressure_mode = PolyPressure;
PressureModeChange (PolyPressure);
}
break;
}
}
void
Push2::handle_midi_controller_message (MIDI::Parser&, MIDI::EventTwoBytes* ev)
{
DEBUG_TRACE (DEBUG::Push2, string_compose ("CC %1 (value %2)\n", (int) ev->controller_number, (int) ev->value));
CCButtonMap::iterator b = _cc_button_map.find (ev->controller_number);
if (ev->value) {
/* any press cancels any pending long press timeouts */
for (std::set<ButtonID>::iterator x = _buttons_down.begin(); x != _buttons_down.end(); ++x) {
std::shared_ptr<Button> bb = _id_button_map[*x];
bb->timeout_connection.disconnect ();
}
}
if (b != _cc_button_map.end()) {
std::shared_ptr<Button> button = b->second;
if (ev->value) {
_buttons_down.insert (button->id);
start_press_timeout (button, button->id);
} else {
_buttons_down.erase (button->id);
button->timeout_connection.disconnect ();
}
std::set<ButtonID>::iterator c = _consumed.find (button->id);
if (c == _consumed.end()) {
if (ev->value == 0) {
(this->*button->release_method)();
} else {
(this->*button->press_method)();
}
} else {
DEBUG_TRACE (DEBUG::Push2, "button was consumed, ignored\n");
_consumed.erase (c);
}
} else {
/* encoder/vpot */
int delta = ev->value;
if (delta > 63) {
delta = -(128 - delta);
}
switch (ev->controller_number) {
case 71:
_current_layout->strip_vpot (0, delta);
break;
case 72:
_current_layout->strip_vpot (1, delta);
break;
case 73:
_current_layout->strip_vpot (2, delta);
break;
case 74:
_current_layout->strip_vpot (3, delta);
break;
case 75:
_current_layout->strip_vpot (4, delta);
break;
case 76:
_current_layout->strip_vpot (5, delta);
break;
case 77:
_current_layout->strip_vpot (6, delta);
break;
case 78:
_current_layout->strip_vpot (7, delta);
break;
/* left side pair */
case 14:
other_vpot (8, delta);
break;
case 15:
other_vpot (1, delta);
break;
/* right side */
case 79:
other_vpot (2, delta);
break;
}
}
}
void
Push2::handle_midi_note_on_message (MIDI::Parser& parser, MIDI::EventTwoBytes* ev)
{
// DEBUG_TRACE (DEBUG::Push2, string_compose ("Note On %1 (velocity %2)\n", (int) ev->note_number, (int) ev->velocity));
if (ev->velocity == 0) {
handle_midi_note_off_message (parser, ev);
return;
}
switch (ev->note_number) {
case 0:
_current_layout->strip_vpot_touch (0, ev->velocity > 64);
break;
case 1:
_current_layout->strip_vpot_touch (1, ev->velocity > 64);
break;
case 2:
_current_layout->strip_vpot_touch (2, ev->velocity > 64);
break;
case 3:
_current_layout->strip_vpot_touch (3, ev->velocity > 64);
break;
case 4:
_current_layout->strip_vpot_touch (4, ev->velocity > 64);
break;
case 5:
_current_layout->strip_vpot_touch (5, ev->velocity > 64);
break;
case 6:
_current_layout->strip_vpot_touch (6, ev->velocity > 64);
break;
case 7:
_current_layout->strip_vpot_touch (7, ev->velocity > 64);
break;
/* left side */
case 10:
other_vpot_touch (0, ev->velocity > 64);
break;
case 9:
other_vpot_touch (1, ev->velocity > 64);
break;
/* right side */
case 8:
other_vpot_touch (3, ev->velocity > 64);
break;
/* touch strip */
case 12:
if (ev->velocity < 64) {
transport_stop ();
}
break;
}
if (ev->note_number < 11) {
return;
}
/* Pad illuminations */
PadMap::const_iterator pm = _nn_pad_map.find (ev->note_number);
if (pm == _nn_pad_map.end()) {
return;
}
std::shared_ptr<const Pad> pad_pressed = pm->second;
if (_current_layout == _cue_layout) {
_current_layout->pad_press (pad_pressed->x, pad_pressed->y);
return;
}
pair<FNPadMap::iterator,FNPadMap::iterator> pads_with_note = _fn_pad_map.equal_range (pad_pressed->filtered);
if (pads_with_note.first == _fn_pad_map.end()) {
return;
}
for (FNPadMap::iterator pi = pads_with_note.first; pi != pads_with_note.second; ++pi) {
std::shared_ptr<Pad> pad = pi->second;
if (pad->do_when_pressed == Pad::FlashOn) {
pad->set_color (_contrast_color);
pad->set_state (LED::NoTransition);
} else if (pad->do_when_pressed == Pad::FlashOff) {
pad->set_color (LED::Black);
pad->set_state (LED::NoTransition);
}
write (pad->state_msg());
}
}
void
Push2::handle_midi_note_off_message (MIDI::Parser&, MIDI::EventTwoBytes* ev)
{
// DEBUG_TRACE (DEBUG::Push2, string_compose ("Note Off %1 (velocity %2)\n", (int) ev->note_number, (int) ev->velocity));
if (ev->note_number < 11) {
/* theoretically related to encoder touch start/end, but
* actually they send note on with two different velocity
* values (127 & 64).
*/
return;
}
/* Pad illuminations */
PadMap::const_iterator pm = _nn_pad_map.find (ev->note_number);
if (pm == _nn_pad_map.end()) {
return;
}
std::shared_ptr<const Pad> const pad_pressed = pm->second;
if (_current_layout == _cue_layout) {
_current_layout->pad_release (pad_pressed->x, pad_pressed->y);
return;
}
pair<FNPadMap::iterator,FNPadMap::iterator> pads_with_note = _fn_pad_map.equal_range (pad_pressed->filtered);
if (pads_with_note.first == _fn_pad_map.end()) {
return;
}
for (FNPadMap::iterator pi = pads_with_note.first; pi != pads_with_note.second; ++pi) {
std::shared_ptr<Pad> pad = pi->second;
pad->set_color (pad->perma_color);
pad->set_state (LED::NoTransition);
write (pad->state_msg());
}
}
void
Push2::handle_midi_pitchbend_message (MIDI::Parser&, MIDI::pitchbend_t pb)
{
}
void
Push2::notify_record_state_changed ()
{
IDButtonMap::iterator b = _id_button_map.find (RecordEnable);
if (b == _id_button_map.end()) {
return;
}
switch (session->record_status ()) {
case Session::Disabled:
b->second->set_color (LED::White);
b->second->set_state (LED::NoTransition);
break;
case Session::Enabled:
b->second->set_color (LED::Red);
b->second->set_state (LED::Blinking4th);
break;
case Session::Recording:
b->second->set_color (LED::Red);
b->second->set_state (LED::OneShot24th);
break;
}
write (b->second->state_msg());
}
void
Push2::notify_transport_state_changed ()
{
std::shared_ptr<Button> b = _id_button_map[Play];
if (session->transport_rolling()) {
b->set_state (LED::OneShot24th);
b->set_color (LED::Green);
} else {
/* disable any blink on FixedLength from pending edit range op */
std::shared_ptr<Button> fl = _id_button_map[FixedLength];
fl->set_color (LED::Black);
fl->set_state (LED::NoTransition);
write (fl->state_msg());
b->set_color (LED::White);
b->set_state (LED::NoTransition);
}
write (b->state_msg());
}
void
Push2::notify_loop_state_changed ()
{
}
void
Push2::notify_parameter_changed (std::string param)
{
IDButtonMap::iterator b;
if (param == "clicking") {
if ((b = _id_button_map.find (Metronome)) == _id_button_map.end()) {
return;
}
if (Config->get_clicking()) {
b->second->set_state (LED::Blinking4th);
b->second->set_color (LED::White);
} else {
b->second->set_color (LED::White);
b->second->set_state (LED::NoTransition);
}
write (b->second->state_msg ());
}
}
void
Push2::notify_solo_active_changed (bool yn)
{
IDButtonMap::iterator b = _id_button_map.find (Solo);
if (b == _id_button_map.end()) {
return;
}
if (yn) {
b->second->set_state (LED::Blinking4th);
b->second->set_color (LED::Red);
} else {
b->second->set_state (LED::NoTransition);
b->second->set_color (LED::White);
}
write (b->second->state_msg());
}
XMLNode&
Push2::get_state() const
{
XMLNode& node (MIDISurface::get_state());
node.set_property (X_("root"), _scale_root);
node.set_property (X_("root-octave"), _root_octave);
node.set_property (X_("in-key"), _in_key);
node.set_property (X_("mode"), _mode);
return node;
}
int
Push2::set_state (const XMLNode & node, int version)
{
DEBUG_TRACE (DEBUG::Push2, string_compose ("Push2::set_state: active %1\n", active()));
int retval = 0;
if (MIDISurface::set_state (node, version)) {
return -1;
}
node.get_property (X_("root"), _scale_root);
node.get_property (X_("root-octave"), _root_octave);
node.get_property (X_("in-key"), _in_key);
node.get_property (X_("mode"), _mode);
return retval;
}
void
Push2::other_vpot (int n, int delta)
{
std::shared_ptr<Amp> click_gain;
switch (n) {
case 0:
/* tempo control */
break;
case 1:
/* metronome gain control */
click_gain = session->click_gain();
if (click_gain) {
std::shared_ptr<AutomationControl> ac = click_gain->gain_control();
if (ac) {
ac->set_value (ac->interface_to_internal (
min (ac->upper(), max (ac->lower(), ac->internal_to_interface (ac->get_value()) + (delta/256.0)))),
PBD::Controllable::UseGroup);
}
}
break;
case 2:
/* master gain control */
if (_master) {
std::shared_ptr<AutomationControl> ac = _master->gain_control();
if (ac) {
ac->set_value (ac->interface_to_internal (
min (ac->upper(), max (ac->lower(), ac->internal_to_interface (ac->get_value()) + (delta/256.0)))),
PBD::Controllable::UseGroup);
}
}
break;
}
}
void
Push2::other_vpot_touch (int n, bool touching)
{
switch (n) {
case 0:
break;
case 1:
break;
case 2:
if (_master) {
std::shared_ptr<AutomationControl> ac = _master->gain_control();
if (ac) {
const timepos_t now (session->audible_sample());
if (touching) {
ac->start_touch (now);
} else {
ac->stop_touch (now);
}
}
}
}
}
void
Push2::start_shift ()
{
_modifier_state = ModifierState (_modifier_state | ModShift);
std::shared_ptr<Button> b = _id_button_map[Shift];
b->set_color (LED::White);
b->set_state (LED::Blinking16th);
write (b->state_msg());
init_touch_strip (true);
}
void
Push2::end_shift ()
{
if (_modifier_state & ModShift) {
_modifier_state = ModifierState (_modifier_state & ~(ModShift));
std::shared_ptr<Button> b = _id_button_map[Shift];
b->timeout_connection.disconnect ();
b->set_color (LED::White);
b->set_state (LED::OneShot24th);
write (b->state_msg());
init_touch_strip (false);
}
}
bool
Push2::pad_filter (MidiBuffer& in, MidiBuffer& out) const
{
/* This filter is called asynchronously from a realtime process
context. It must use atomics to check state, and must not block.
*/
if (_current_layout == _cue_layout) {
return false;
}
bool matched = false;
for (MidiBuffer::iterator ev = in.begin(); ev != in.end(); ++ev) {
if ((*ev).is_note_on() || (*ev).is_note_off()) {
/* encoder touch start/touch end use note
* 0-10. touchstrip uses note 12
*/
if ((*ev).note() > 10 && (*ev).note() != 12) {
const int n = (*ev).note ();
PadMap::const_iterator nni = _nn_pad_map.find (n);
if (nni != _nn_pad_map.end()) {
std::shared_ptr<const Pad> pad = nni->second;
/* shift for output to the shadow port */
if (pad->filtered >= 0) {
(*ev).set_note (pad->filtered + (_octave_shift * 12));
out.push_back (*ev);
/* shift back so that the pads light correctly */
(*ev).set_note (n);
} else {
/* no mapping, don't send event */
}
} else {
out.push_back (*ev);
}
matched = true;
}
} else if ((*ev).is_pitch_bender() || (*ev).is_poly_pressure() || (*ev).is_channel_pressure()) {
out.push_back (*ev);
}
}
return matched;
}
std::string
Push2::input_port_name () const
{
#ifdef __APPLE__
/* the origin of the numeric magic identifiers is known only to Ableton
and may change in time. This is part of how CoreMIDI works.
*/
return X_("system:midi_capture_1319078870");
#else
return X_("Ableton Push 2 MIDI 1 in");
#endif
}
std::string
Push2::output_port_name () const
{
#ifdef __APPLE__
/* the origin of the numeric magic identifiers is known only to Ableton
and may change in time. This is part of how CoreMIDI works.
*/
return X_("system:midi_playback_3409210341");
#else
return X_("Ableton Push 2 MIDI 1 out");
#endif
}
int
Push2::pad_note (int row, int col) const
{
PadMap::const_iterator nni = _nn_pad_map.find (36+(row*8)+col);
if (nni != _nn_pad_map.end()) {
return nni->second->filtered;
}
return 0;
}
void
Push2::update_selection_color ()
{
std::shared_ptr<MidiTrack> current_midi_track = _current_pad_target.lock();
if (!current_midi_track) {
return;
}
_selection_color = get_color_index (current_midi_track->presentation_info().color());
_contrast_color = get_color_index (Gtkmm2ext::HSV (current_midi_track->presentation_info().color()).opposite().color());
reset_pad_colors ();
}
void
Push2::reset_pad_colors ()
{
set_pad_scale (_scale_root, _root_octave, _mode, _note_grid_origin, _row_interval, _in_key);
}
void
Push2::set_pad_note_kind (Pad& pad, const PadNoteKind kind)
{
switch (kind) {
case RootNote:
pad.set_color (_selection_color);
pad.perma_color = _selection_color;
pad.do_when_pressed = Pad::FlashOff;
break;
case InScaleNote:
pad.set_color (LED::White);
pad.perma_color = LED::White;
pad.do_when_pressed = Pad::FlashOff;
break;
case OutOfScaleNote:
pad.set_color (LED::Black);
pad.do_when_pressed = Pad::FlashOn;
break;
}
pad.set_state (LED::NoTransition);
}
/** Return a bitset of notes in a musical mode.
*
* The returned bitset has a bit for every possible MIDI note number, which is
* set if the note is in the mode in any octave.
*/
static std::bitset<128>
mode_notes_bitset (const int scale_root,
const int octave,
const MusicalMode::Type mode)
{
std::bitset<128> notes_bitset;
const std::vector<float> mode_steps = MusicalMode (mode).steps;
int root = scale_root - 12;
// Repeatedly loop through the intervals in an octave
for (std::vector<float>::const_iterator i = mode_steps.begin ();;) {
if (i == mode_steps.end ()) {
// Reached the end of the scale, continue with the next octave
root += 12;
if (root > 127) {
break;
}
notes_bitset.set (root);
i = mode_steps.begin ();
} else {
const int note = (int)floor (root + (2.0 * (*i)));
if (note > 127) {
break;
}
if (note > 0) {
notes_bitset.set (note);
}
++i;
}
}
return notes_bitset;
}
/** Return a sorted vector of all notes in a musical mode.
*
* The returned vector has every possible MIDI note number (0 through 127
* inclusive) that is in the mode in any octave.
*/
static std::vector<int>
mode_notes_vector (const int scale_root,
const int octave,
const MusicalMode::Type mode)
{
std::vector<int> notes_vector;
const std::vector<float> mode_steps = MusicalMode (mode).steps;
int root = scale_root - 12;
// Repeatedly loop through the intervals in an octave
for (std::vector<float>::const_iterator i = mode_steps.begin ();;) {
if (i == mode_steps.end ()) {
// Reached the end of the scale, continue with the next octave
root += 12;
if (root > 127) {
break;
}
notes_vector.push_back (root);
i = mode_steps.begin ();
} else {
const int note = (int)floor (root + (2.0 * (*i)));
if (note > 127) {
break;
}
if (note > 0) {
notes_vector.push_back (note);
}
++i;
}
}
return notes_vector;
}
void
Push2::set_pad_scale_in_key (const int scale_root,
const int octave,
const MusicalMode::Type mode,
const NoteGridOrigin origin,
const int ideal_vertical_semitones)
{
const std::vector<int> notes = mode_notes_vector (scale_root, octave, mode);
const int ideal_first_note = origin == Fixed ? 36 : scale_root + (12 * octave);
for (int row = 0; row < 8; ++row) {
// The ideal leftmost note in a row is based only on the "tuning"
const int ideal_leftmost_note =
ideal_first_note + (ideal_vertical_semitones * row);
// If that's in the scale, use it, otherwise use the closest higher note
std::vector<int>::const_iterator n =
std::lower_bound (notes.begin (), notes.end (), ideal_leftmost_note);
// Set up the the following columns in the row using the scale
for (int col = 0; col < 8 && n != notes.end (); ++col) {
const int note = *n++;
const int index = 36 + (row * 8) + col;
const std::shared_ptr<Pad>& pad = _nn_pad_map[index];
pad->filtered = note; // Generated note number
_fn_pad_map.insert (std::make_pair (note, pad));
if ((note % 12) == scale_root) {
set_pad_note_kind (*pad, RootNote);
} else {
set_pad_note_kind (*pad, InScaleNote);
}
}
}
}
void
Push2::restore_pad_scale ()
{
set_pad_scale (_scale_root, _root_octave, _mode, _note_grid_origin, _row_interval, _in_key);
}
void
Push2::set_pad_scale_chromatic (const int scale_root,
const int octave,
const MusicalMode::Type mode,
const NoteGridOrigin origin,
const int vertical_semitones)
{
const std::bitset<128> notes = mode_notes_bitset (scale_root, octave, mode);
const int first_note = origin == Fixed ? 36 : scale_root + (12 * octave);
for (int row = 0; row < 8; ++row) {
// The leftmost note in a row is just based only on the "tuning"
const int leftmost_note = first_note + (vertical_semitones * row);
// Set up the the following columns in the row using the scale
for (int col = 0; col < 8; ++col) {
const int note = leftmost_note + col;
const int index = 36 + (row * 8) + col;
const std::shared_ptr<Pad>& pad = _nn_pad_map[index];
pad->filtered = note; // Generated note number
_fn_pad_map.insert (std::make_pair (note, pad));
if (!notes.test (note)) {
set_pad_note_kind (*pad, OutOfScaleNote);
} else if ((note % 12) == scale_root) {
set_pad_note_kind (*pad, RootNote);
} else {
set_pad_note_kind (*pad, InScaleNote);
}
}
}
}
void
Push2::set_pad_scale (const int scale_root,
const int octave,
const MusicalMode::Type mode,
const NoteGridOrigin origin,
const RowInterval row_interval,
const bool inkey)
{
// Clear the pad map and reset all pad state (in memory, not on the device yet)
_fn_pad_map.clear ();
for (auto & p : _nn_pad_map) {
p.second->set_color (LED::Black);
p.second->set_state (LED::NoTransition);
p.second->perma_color = LED::Black;
p.second->filtered = -1;
p.second->do_when_pressed = Pad::FlashOn;
}
// Call the appropriate method to set up active pads
const int vertical_semitones = row_interval_semitones(row_interval, inkey);
if (inkey) {
set_pad_scale_in_key (scale_root, octave, mode, origin, vertical_semitones);
} else {
set_pad_scale_chromatic (scale_root, octave, mode, origin, vertical_semitones);
}
// Write the state message for every pad
for (auto const & p : _nn_pad_map) {
write (p.second->state_msg ());
}
// Store state
bool changed = false;
if (_scale_root != scale_root) {
_scale_root = scale_root;
changed = true;
}
if (_root_octave != octave) {
_root_octave = octave;
changed = true;
}
if (_in_key != inkey) {
_in_key = inkey;
changed = true;
}
if (_mode != mode) {
_mode = mode;
changed = true;
}
if (_note_grid_origin != origin) {
_note_grid_origin = origin;
changed = true;
}
if (_row_interval != row_interval) {
_row_interval = row_interval;
changed = true;
}
if (changed) {
ScaleChange (); /* EMIT SIGNAL */
}
}
void
Push2::set_percussive_mode (bool yn)
{
if (!yn) {
set_pad_scale (_scale_root,
_root_octave,
_mode,
_note_grid_origin,
_row_interval,
_in_key);
_percussion = false;
return;
}
int drum_note = 36;
_fn_pad_map.clear ();
for (int row = 0; row < 8; ++row) {
for (int col = 0; col < 4; ++col) {
int index = 36 + (row*8) + col;
std::shared_ptr<Pad> pad = _nn_pad_map[index];
pad->filtered = drum_note;
drum_note++;
}
}
for (int row = 0; row < 8; ++row) {
for (int col = 4; col < 8; ++col) {
int index = 36 + (row*8) + col;
std::shared_ptr<Pad> pad = _nn_pad_map[index];
pad->filtered = drum_note;
drum_note++;
}
}
_percussion = true;
}
Push2Layout*
Push2::current_layout () const
{
Glib::Threads::Mutex::Lock lm (layout_lock);
return _current_layout;
}
void
Push2::stripable_selection_changed ()
{
std::shared_ptr<MidiPort> pad_port = std::dynamic_pointer_cast<AsyncMIDIPort>(_async_in)->shadow_port();
std::shared_ptr<MidiTrack> current_midi_track = _current_pad_target.lock();
std::shared_ptr<MidiTrack> new_pad_target;
StripableNotificationList const & selected (last_selected());
/* See if there's a MIDI track selected */
for (StripableNotificationList::const_iterator si = selected.begin(); si != selected.end(); ++si) {
new_pad_target = std::dynamic_pointer_cast<MidiTrack> ((*si).lock());
if (new_pad_target) {
break;
}
}
if (current_midi_track != new_pad_target) {
/* disconnect from pad port, if appropriate */
if (current_midi_track && pad_port) {
/* XXX this could possibly leave dangling MIDI notes.
*
* A general libardour fix is required. It isn't obvious
* how note resolution can be done unless disconnecting
* becomes "slow" (i.e. deferred for as long as it takes
* to resolve notes).
*/
current_midi_track->input()->disconnect (current_midi_track->input()->nth(0), pad_port->name(), this);
}
/* now connect the pad port to this (newly) selected midi
* track, if indeed there is one.
*/
if (new_pad_target && pad_port) {
new_pad_target->input()->connect (new_pad_target->input()->nth (0), pad_port->name(), this);
_current_pad_target = new_pad_target;
_selection_color = get_color_index (new_pad_target->presentation_info().color());
_contrast_color = get_color_index (Gtkmm2ext::HSV (new_pad_target->presentation_info().color()).opposite().color());
} else {
_current_pad_target.reset ();
_selection_color = LED::Green;
_contrast_color = LED::Green;
}
reset_pad_colors ();
}
TrackMixLayout* tml = dynamic_cast<TrackMixLayout*> (_track_mix_layout);
assert (tml);
tml->set_stripable (first_selected_stripable());
}
std::shared_ptr<Push2::Button>
Push2::button_by_id (ButtonID bid)
{
return _id_button_map[bid];
}
uint8_t
Push2::get_color_index (Color rgba)
{
ColorMap::iterator i = _color_map.find (rgba);
if (i != _color_map.end()) {
return i->second;
}
double dr, dg, db, da;
int r, g, b;
color_to_rgba (rgba, dr, dg, db, da);
int w = 126; /* not sure where/when we should get this value */
r = (int) floor (255.0 * dr);
g = (int) floor (255.0 * dg);
b = (int) floor (255.0 * db);
/* get a free index */
uint8_t index;
if (_color_map_free_list.empty()) {
/* random replacement of any entry above zero and below 122 (where the
* Ableton standard colors live)
*/
index = 1 + (random() % 121);
} else {
index = _color_map_free_list.top();
_color_map_free_list.pop();
}
MidiByteArray palette_msg (17,
0xf0,
0x00 , 0x21, 0x1d, 0x01, 0x01, 0x03, /* reset palette header */
0x00, /* index = 7 */
0x00, 0x00, /* r = 8 & 9 */
0x00, 0x00, /* g = 10 & 11 */
0x00, 0x00, /* b = 12 & 13 */
0x00, 0x00, /* w (a?) = 14 & 15*/
0xf7);
palette_msg[7] = index;
palette_msg[8] = r & 0x7f;
palette_msg[9] = (r & 0x80) >> 7;
palette_msg[10] = g & 0x7f;
palette_msg[11] = (g & 0x80) >> 7;
palette_msg[12] = b & 0x7f;
palette_msg[13] = (b & 0x80) >> 7;
palette_msg[14] = w & 0x7f;
palette_msg[15] = w & 0x80;
write (palette_msg);
MidiByteArray update_pallette_msg (8, 0xf0, 0x00, 0x21, 0x1d, 0x01, 0x01, 0x05, 0xF7);
write (update_pallette_msg);
_color_map[rgba] = index;
return index;
}
void
Push2::build_color_map ()
{
/* These are "standard" colors that Ableton docs suggest will always be
there. Put them in our color map so that when we look up these
colors, we will use the Ableton indices for them.
*/
_color_map.insert (make_pair (RGB_TO_UINT (0,0,0), 0));
_color_map.insert (make_pair (RGB_TO_UINT (204,204,204), 122));
_color_map.insert (make_pair (RGB_TO_UINT (64,64,64), 123));
_color_map.insert (make_pair (RGB_TO_UINT (20,20,20), 124));
_color_map.insert (make_pair (RGB_TO_UINT (0,0,255), 125));
_color_map.insert (make_pair (RGB_TO_UINT (0,255,0), 126));
_color_map.insert (make_pair (RGB_TO_UINT (255,0,0), 127));
for (uint8_t n = 1; n < 122; ++n) {
_color_map_free_list.push (n);
}
}
void
Push2::fill_color_table ()
{
_colors.insert (make_pair (DarkBackground, Gtkmm2ext::rgba_to_color (0, 0, 0, 1)));
_colors.insert (make_pair (LightBackground, Gtkmm2ext::rgba_to_color (0.98, 0.98, 0.98, 1)));
_colors.insert (make_pair (ParameterName, Gtkmm2ext::rgba_to_color (0.98, 0.98, 0.98, 1)));
_colors.insert (make_pair (KnobArcBackground, Gtkmm2ext::rgba_to_color (0.3, 0.3, 0.3, 1.0)));
_colors.insert (make_pair (KnobArcStart, Gtkmm2ext::rgba_to_color (1.0, 0.0, 0.0, 1.0)));
_colors.insert (make_pair (KnobArcEnd, Gtkmm2ext::rgba_to_color (0.0, 1.0, 0.0, 1.0)));
_colors.insert (make_pair (KnobLineShadow, Gtkmm2ext::rgba_to_color (0, 0, 0, 0.3)));
_colors.insert (make_pair (KnobLine, Gtkmm2ext::rgba_to_color (1, 1, 1, 1)));
_colors.insert (make_pair (KnobForeground, Gtkmm2ext::rgba_to_color (0.2, 0.2, 0.2, 1)));
_colors.insert (make_pair (KnobBackground, Gtkmm2ext::rgba_to_color (0.2, 0.2, 0.2, 1)));
_colors.insert (make_pair (KnobShadow, Gtkmm2ext::rgba_to_color (0, 0, 0, 0.1)));
_colors.insert (make_pair (KnobBorder, Gtkmm2ext::rgba_to_color (0, 0, 0, 1)));
}
Gtkmm2ext::Color
Push2::get_color (ColorName name)
{
Colors::iterator c = _colors.find (name);
if (c != _colors.end()) {
return c->second;
}
return random();
}
void
Push2::set_current_layout (Push2Layout* layout)
{
if (layout && layout == _current_layout) {
_current_layout->show ();
} else {
if (_current_layout) {
_current_layout->hide ();
_canvas->root()->remove (_current_layout);
_previous_layout = _current_layout;
}
_current_layout = layout;
if (_current_layout) {
_canvas->root()->add (_current_layout);
_current_layout->show ();
}
_canvas->request_redraw ();
}
}
void
Push2::use_previous_layout ()
{
if (_previous_layout) {
set_current_layout (_previous_layout);
}
}
void
Push2::request_pressure_mode ()
{
MidiByteArray msg (8, 0xF0, 0x00, 0x21, 0x1D, 0x01, 0x01, 0x1F, 0xF7);
write (msg);
}
void
Push2::set_pressure_mode (PressureMode pm)
{
MidiByteArray msg (9, 0xF0, 0x00, 0x21, 0x1D, 0x01, 0x01, 0x1E, 0x0, 0xF7);
switch (pm) {
case AfterTouch:
/* nothing to do, message is correct */
break;
case PolyPressure:
msg[7] = 0x1;
break;
default:
return;
}
write (msg);
}
std::shared_ptr<Push2::Pad>
Push2::pad_by_xy (int x, int y)
{
vector<std::shared_ptr<Pad> >::size_type index = (x * 8) + y;
if (index >= _xy_pad_map.size()) {
return std::shared_ptr<Pad>();
}
return _xy_pad_map[index];
}
std::shared_ptr<Push2::Button>
Push2::lower_button_by_column (uint32_t col)
{
assert (col < 8);
switch (col) {
case 0:
return button_by_id (Push2::Lower1);
break;
case 1:
return button_by_id (Push2::Lower2);
break;
case 2:
return button_by_id (Push2::Lower3);
break;
case 3:
return button_by_id (Push2::Lower4);
break;
case 4:
return button_by_id (Push2::Lower5);
break;
case 5:
return button_by_id (Push2::Lower6);
break;
case 6:
return button_by_id (Push2::Lower7);
break;
case 7:
return button_by_id (Push2::Lower8);
break;
}
/*NOTREACHED*/
return std::shared_ptr<Push2::Button>();
}