13
0
livetrax/libs/backends/pulseaudio/pulseaudio_backend.cc

1285 lines
31 KiB
C++

/*
* Copyright (C) 2019 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <math.h>
#include <regex.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <glibmm.h>
#include "pbd/compose.h"
#include "pbd/error.h"
#include "pbd/file_utils.h"
#include "pbd/pthread_utils.h"
#include "ardour/port_manager.h"
#include "pulseaudio_backend.h"
#include "pbd/i18n.h"
using namespace ARDOUR;
static std::string s_instance_name;
const size_t PulseAudioBackend::_max_buffer_size = 8192;
#define N_CHANNELS (2)
PulseAudioBackend::PulseAudioBackend (AudioEngine& e, AudioBackendInfo& info)
: AudioBackend (e, info)
, PortEngineSharedImpl (e, s_instance_name)
, p_stream (0)
, p_context (0)
, p_mainloop (0)
, _run (false)
, _active (false)
, _freewheel (false)
, _freewheeling (false)
, _last_process_start (0)
, _samplerate (48000)
, _samples_per_period (1024)
, _systemic_audio_output_latency (0)
, _dsp_load (0)
, _processed_samples (0)
{
_instance_name = s_instance_name;
}
PulseAudioBackend::~PulseAudioBackend ()
{
clear_ports ();
}
/* PulseAudio */
void
PulseAudioBackend::close_pulse (bool unlock)
{
if (p_mainloop) {
if (unlock) {
pa_threaded_mainloop_unlock (p_mainloop);
}
pa_threaded_mainloop_stop (p_mainloop);
}
if (p_stream) {
pa_stream_disconnect (p_stream);
pa_stream_unref (p_stream);
p_stream = NULL;
}
if (p_context) {
pa_context_disconnect (p_context);
pa_context_unref (p_context);
p_context = NULL;
}
if (p_mainloop) {
pa_threaded_mainloop_free (p_mainloop);
p_mainloop = NULL;
}
}
int
PulseAudioBackend::sync_pulse (pa_operation* op)
{
/* wait for async operation to complete */
if (!op) {
pa_threaded_mainloop_unlock (p_mainloop);
return 0;
}
pa_operation_state_t state = pa_operation_get_state (op);
while (PA_OPERATION_RUNNING == state) {
pa_threaded_mainloop_wait (p_mainloop);
state = pa_operation_get_state (op);
}
pa_operation_unref (op);
pa_threaded_mainloop_unlock (p_mainloop);
return PA_OPERATION_DONE == state;
}
bool
PulseAudioBackend::cork_pulse (bool pause)
{
pa_threaded_mainloop_lock (p_mainloop);
_operation_succeeded = false;
return sync_pulse (pa_stream_cork (p_stream, pause ? 1 : 0, stream_operation_cb, this)) && _operation_succeeded;
}
void
PulseAudioBackend::context_state_cb (pa_context* c, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
switch (pa_context_get_state (c)) {
case PA_CONTEXT_READY:
case PA_CONTEXT_TERMINATED:
case PA_CONTEXT_FAILED:
pa_threaded_mainloop_signal (d->p_mainloop, 0);
break;
case PA_CONTEXT_UNCONNECTED:
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT_SETTING_NAME:
break;
}
}
void
PulseAudioBackend::stream_state_cb (pa_stream* s, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
switch (pa_stream_get_state (s)) {
case PA_STREAM_READY:
case PA_STREAM_FAILED:
case PA_STREAM_TERMINATED:
pa_threaded_mainloop_signal (d->p_mainloop, 0);
break;
case PA_STREAM_UNCONNECTED:
case PA_STREAM_CREATING:
break;
}
}
void
PulseAudioBackend::stream_operation_cb (pa_stream*, int ok, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
d->_operation_succeeded = ok;
pa_threaded_mainloop_signal (d->p_mainloop, 0);
}
void
PulseAudioBackend::stream_request_cb (pa_stream*, size_t length, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
pa_threaded_mainloop_signal (d->p_mainloop, 0);
// XXX perhaps do processing here instead of waking up main callback thread.
// compare to coreaudio backend
}
void
PulseAudioBackend::stream_latency_update_cb (pa_stream* s, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
pa_usec_t latency;
int negative;
// XXX this needs PA_STREAM_AUTO_TIMING_UPDATE
if (0 == pa_stream_get_latency (s, &latency, &negative)) {
if (negative) {
d->_systemic_audio_output_latency = 0;
} else {
d->_systemic_audio_output_latency = floorf (latency * d->_samplerate / 1000000.f);
}
// XXX garbage value
printf ("Pulse latency update %d\n", d->_systemic_audio_output_latency);
d->update_latencies ();
}
pa_threaded_mainloop_signal (d->p_mainloop, 0);
}
void
PulseAudioBackend::stream_xrun_cb (pa_stream*, void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
d->engine.Xrun ();
}
int
PulseAudioBackend::init_pulse ()
{
pa_sample_spec ss;
ss.channels = N_CHANNELS;
ss.rate = _samplerate;
ss.format = PA_SAMPLE_FLOAT32LE;
if (!pa_sample_spec_valid (&ss)) {
PBD::error << _("PulseAudioBackend: Default sample spec not valid") << endmsg;
return AudioDeviceInvalidError;
}
if (!(p_mainloop = pa_threaded_mainloop_new ())) {
PBD::error << _("PulseAudioBackend: Failed to allocate main loop") << endmsg;
close_pulse ();
return BackendInitializationError;
}
/* see https://freedesktop.org/software/pulseaudio/doxygen/proplist_8h.html */
pa_proplist* proplist = pa_proplist_new ();
pa_proplist_sets (proplist, PA_PROP_MEDIA_SOFTWARE, PROGRAM_NAME);
pa_proplist_sets (proplist, PA_PROP_MEDIA_ROLE, "production");
#if 0 // TODO
/* in tools/linux_packaging/stage2.run.in uses xdg
* ICON_NAME="${PGM_VENDOR}-${PGM_NAME}_${PGM_VERSION}"
* e.g. "Harrison-Mixbus32C_3.7.24" "Ardour-Ardour_5.12.0"
*
* gtk2_ardour/wscript $ARDOUR_ICON is used in .desktop.in
* 'ardour<major>'
*/
pa_proplist_sets (proplist, PA_PROP_APPLICATION_ICON_NAME, "Ardour-Ardour_5.12.0");
#endif
if (!(p_context = pa_context_new_with_proplist (pa_threaded_mainloop_get_api (p_mainloop), PROGRAM_NAME, proplist))) {
PBD::error << _("PulseAudioBackend: Failed to allocate context") << endmsg;
close_pulse ();
pa_proplist_free (proplist);
return BackendInitializationError;
}
pa_proplist_free (proplist);
pa_context_set_state_callback (p_context, PulseAudioBackend::context_state_cb, this);
if (pa_context_connect (p_context, NULL, PA_CONTEXT_NOFLAGS, NULL) < 0) {
PBD::error << _("PulseAudioBackend: Failed to allocate context") << endmsg;
close_pulse ();
return AudioDeviceOpenError;
}
pa_threaded_mainloop_lock (p_mainloop);
if (pa_threaded_mainloop_start (p_mainloop) < 0) {
PBD::error << _("PulseAudioBackend: Failed to start main loop") << endmsg;
close_pulse (true);
return AudioDeviceOpenError;
}
/* Wait until the context is ready, context_state_cb will trigger this */
pa_threaded_mainloop_wait (p_mainloop);
if (pa_context_get_state (p_context) != PA_CONTEXT_READY) {
PBD::error << _("PulseAudioBackend: Failed to create context") << endmsg;
close_pulse (true);
return AudioDeviceOpenError;
}
if (!(p_stream = pa_stream_new (p_context, "master", &ss, NULL))) {
PBD::error << _("PulseAudioBackend: Failed to create new stream") << endmsg;
close_pulse (true);
return AudioDeviceOpenError;
}
pa_stream_set_state_callback (p_stream, PulseAudioBackend::stream_state_cb, this);
pa_stream_set_write_callback (p_stream, PulseAudioBackend::stream_request_cb, this);
pa_stream_set_latency_update_callback (p_stream, stream_latency_update_cb, this);
pa_stream_set_underflow_callback (p_stream, PulseAudioBackend::stream_xrun_cb, this);
pa_stream_set_overflow_callback (p_stream, PulseAudioBackend::stream_xrun_cb, this);
/* PulseAudio buffer strategy: Be explicit for small latency and avoid using PA auto tuning.
* The user specified a buffer size (_samples_per_period).
* Specify the PA buffer to be twice as big so it can use double buffering (maxlength).
* Aim for keeping the buffer full (tlength).
* Fill up the buffer before starting playback (prebuf).
* Immediately ask for more data when there is room for the buffer size (minreq because PA_STREAM_EARLY_REQUESTS).
*/
pa_buffer_attr ba;
/* https://freedesktop.org/software/pulseaudio/doxygen/structpa__buffer__attr.html */
ba.minreq = _samples_per_period * N_CHANNELS * sizeof (float);
ba.maxlength = 2 * ba.minreq;
ba.tlength = ba.maxlength;
ba.prebuf = ba.tlength;
ba.fragsize = 0; // capture only
/* https://freedesktop.org/software/pulseaudio/doxygen/def_8h.html#a6966d809483170bc6d2e6c16188850fc */
pa_stream_flags_t sf = (pa_stream_flags_t) (
(int)PA_STREAM_NO_REMAP_CHANNELS
| (int)PA_STREAM_NO_REMIX_CHANNELS
| (int)PA_STREAM_EARLY_REQUESTS // request more data as soon as minreq is reached
);
if (pa_stream_connect_playback (p_stream, NULL, &ba, sf, NULL, NULL) < 0) {
PBD::error << _("PulseAudioBackend: Failed to connect playback stream") << endmsg;
close_pulse (true);
return AudioDeviceOpenError;
}
/* Wait until the stream is ready */
pa_threaded_mainloop_wait (p_mainloop);
if (pa_stream_get_state (p_stream) != PA_STREAM_READY) {
PBD::error << _("PulseAudioBackend: Failed to start stream") << endmsg;
close_pulse (true);
return AudioDeviceOpenError;
}
pa_threaded_mainloop_unlock (p_mainloop);
return 0;
}
/* AUDIOBACKEND API */
std::string
PulseAudioBackend::name () const
{
return X_("PulseAudio");
}
bool
PulseAudioBackend::is_realtime () const
{
return true;
}
std::vector<AudioBackend::DeviceStatus>
PulseAudioBackend::enumerate_devices () const
{
std::vector<AudioBackend::DeviceStatus> devices;
devices.push_back (DeviceStatus (_("Default Playback"), true));
return devices;
}
std::vector<float>
PulseAudioBackend::available_sample_rates (const std::string&) const
{
std::vector<float> sr;
sr.push_back (8000.0);
sr.push_back (22050.0);
sr.push_back (24000.0);
sr.push_back (44100.0);
sr.push_back (48000.0);
sr.push_back (88200.0);
sr.push_back (96000.0);
sr.push_back (176400.0);
sr.push_back (192000.0);
return sr;
}
std::vector<uint32_t>
PulseAudioBackend::available_buffer_sizes (const std::string&) const
{
std::vector<uint32_t> bs;
bs.push_back (64);
bs.push_back (128);
bs.push_back (256);
bs.push_back (512);
bs.push_back (1024);
bs.push_back (2048);
bs.push_back (4096);
bs.push_back (8192);
return bs;
}
uint32_t
PulseAudioBackend::available_input_channel_count (const std::string&) const
{
return 0;
}
uint32_t
PulseAudioBackend::available_output_channel_count (const std::string&) const
{
return N_CHANNELS;
}
bool
PulseAudioBackend::can_change_sample_rate_when_running () const
{
return false;
}
bool
PulseAudioBackend::can_change_buffer_size_when_running () const
{
return false;
}
int
PulseAudioBackend::set_device_name (const std::string& d)
{
return 0;
}
int
PulseAudioBackend::set_sample_rate (float sr)
{
if (sr <= 0) {
return -1;
}
_samplerate = sr;
engine.sample_rate_change (sr);
return 0;
}
int
PulseAudioBackend::set_buffer_size (uint32_t bs)
{
if (bs <= 0 || bs > _max_buffer_size) {
return -1;
}
_samples_per_period = bs;
engine.buffer_size_change (bs);
return 0;
}
int
PulseAudioBackend::set_interleaved (bool yn)
{
if (!yn) {
return 0;
}
return -1;
}
int
PulseAudioBackend::set_input_channels (uint32_t cc)
{
return 0;
}
int
PulseAudioBackend::set_output_channels (uint32_t cc)
{
return 0;
}
int
PulseAudioBackend::set_systemic_input_latency (uint32_t sl)
{
return 0;
}
int
PulseAudioBackend::set_systemic_output_latency (uint32_t sl)
{
return 0;
}
/* Retrieving parameters */
std::string
PulseAudioBackend::device_name () const
{
return _("Default Playback");
}
float
PulseAudioBackend::sample_rate () const
{
return _samplerate;
}
uint32_t
PulseAudioBackend::buffer_size () const
{
return _samples_per_period;
}
bool
PulseAudioBackend::interleaved () const
{
return false;
}
uint32_t
PulseAudioBackend::input_channels () const
{
return 0;
}
uint32_t
PulseAudioBackend::output_channels () const
{
return N_CHANNELS;
}
uint32_t
PulseAudioBackend::systemic_input_latency () const
{
return 0;
}
uint32_t
PulseAudioBackend::systemic_output_latency () const
{
return _systemic_audio_output_latency;
}
/* MIDI */
std::vector<std::string>
PulseAudioBackend::enumerate_midi_options () const
{
std::vector<std::string> midi_options;
midi_options.push_back (get_standard_device_name (DeviceNone));
return midi_options;
}
std::vector<AudioBackend::DeviceStatus>
PulseAudioBackend::enumerate_midi_devices () const
{
return std::vector<AudioBackend::DeviceStatus> ();
}
int
PulseAudioBackend::set_midi_option (const std::string& opt)
{
return 0;
}
std::string
PulseAudioBackend::midi_option () const
{
return get_standard_device_name (DeviceNone);
}
/* External control app */
std::string
PulseAudioBackend::control_app_name () const
{
std::string ignored;
if (PBD::find_file (PBD::Searchpath (Glib::getenv("PATH")), X_("pavucontrol"), ignored)) {
return "pavucontrol";
}
return "";
}
void
PulseAudioBackend::launch_control_app ()
{
if (::vfork () == 0) {
::execlp ("pavucontrol", "pavucontrol", (char*)NULL);
_exit (EXIT_SUCCESS);
}
}
/* State Control */
static void*
pthread_process (void* arg)
{
PulseAudioBackend* d = static_cast<PulseAudioBackend*> (arg);
d->main_process_thread ();
pthread_exit (0);
return 0;
}
int
PulseAudioBackend::_start (bool /*for_latency_measurement*/)
{
if (!_active && _run) {
PBD::error << _("PulseAudioBackend: restarting.") << endmsg;
/* recover from 'halted', reap threads */
stop ();
}
if (_active || _run) {
PBD::info << _("PulseAudioBackend: already active.") << endmsg;
return BackendReinitializationError;
}
clear_ports ();
/* reset internal state */
_dsp_load = 0;
_freewheeling = false;
_freewheel = false;
_last_process_start = 0;
_systemic_audio_output_latency = 0;
/* connect to pulse-server and prepare stream */
int err = init_pulse ();
if (err) {
return err;
}
if (register_system_ports ()) {
PBD::error << _("PulseAudioBackend: failed to register system ports.") << endmsg;
close_pulse ();
return PortRegistrationError;
}
engine.sample_rate_change (_samplerate);
engine.buffer_size_change (_samples_per_period);
if (engine.reestablish_ports ()) {
PBD::error << _("PulseAudioBackend: Could not re-establish ports.") << endmsg;
close_pulse ();
return PortReconnectError;
}
engine.reconnect_ports ();
_run = true;
_port_change_flag.store (0);
if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_MAIN, PBD_RT_STACKSIZE_PROC,
&_main_thread, pthread_process, this)) {
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &_main_thread, pthread_process, this)) {
PBD::error << _("PulseAudioBackend: failed to create process thread.") << endmsg;
stop ();
return ProcessThreadStartError;
} else {
PBD::warning << _("PulseAudioBackend: cannot acquire realtime permissions.") << endmsg;
}
}
int timeout = 5000;
while (!_active && --timeout > 0) {
Glib::usleep (1000);
}
if (timeout == 0 || !_active) {
PBD::error << _("PulseAudioBackend: failed to start process thread.") << endmsg;
_run = false;
close_pulse ();
return ProcessThreadStartError;
}
return NoError;
}
int
PulseAudioBackend::stop ()
{
void* status;
if (!_run) {
return 0;
}
_run = false;
if (pa_stream_is_corked (p_stream) == 0) {
cork_pulse (true);
}
pa_threaded_mainloop_lock (p_mainloop);
sync_pulse (pa_stream_flush (p_stream, stream_operation_cb, this));
if (pthread_join (_main_thread, &status)) {
PBD::error << _("PulseAudioBackend: failed to terminate.") << endmsg;
return -1;
}
unregister_ports ();
close_pulse ();
return (_active == false) ? 0 : -1;
}
int
PulseAudioBackend::freewheel (bool onoff)
{
_freewheeling = onoff;
return 0;
}
float
PulseAudioBackend::dsp_load () const
{
return 100.f * _dsp_load;
}
size_t
PulseAudioBackend::raw_buffer_size (DataType t)
{
switch (t) {
case DataType::AUDIO:
return _samples_per_period * sizeof (Sample);
case DataType::MIDI:
return _max_buffer_size;
}
return 0;
}
/* Process time */
samplepos_t
PulseAudioBackend::sample_time ()
{
return _processed_samples;
}
samplepos_t
PulseAudioBackend::sample_time_at_cycle_start ()
{
return _processed_samples;
}
pframes_t
PulseAudioBackend::samples_since_cycle_start ()
{
if (!_active || !_run || _freewheeling || _freewheel) {
return 0;
}
if (_last_process_start == 0) {
return 0;
}
const int64_t elapsed_time_us = g_get_monotonic_time () - _last_process_start;
return std::max ((pframes_t)0, (pframes_t)rint (1e-6 * elapsed_time_us * _samplerate));
}
void*
PulseAudioBackend::pulse_process_thread (void* arg)
{
ThreadData* td = reinterpret_cast<ThreadData*> (arg);
boost::function<void()> f = td->f;
delete td;
f ();
return 0;
}
int
PulseAudioBackend::create_process_thread (boost::function<void()> func)
{
pthread_t thread_id;
ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC);
if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_PROC, PBD_RT_STACKSIZE_PROC,
&thread_id, pulse_process_thread, td)) {
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, pulse_process_thread, td)) {
PBD::error << _("AudioEngine: cannot create process thread.") << endmsg;
return -1;
}
}
_threads.push_back (thread_id);
return 0;
}
int
PulseAudioBackend::join_process_threads ()
{
int rv = 0;
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i) {
void* status;
if (pthread_join (*i, &status)) {
PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg;
rv -= 1;
}
}
_threads.clear ();
return rv;
}
bool
PulseAudioBackend::in_process_thread ()
{
if (pthread_equal (_main_thread, pthread_self ()) != 0) {
return true;
}
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i) {
if (pthread_equal (*i, pthread_self ()) != 0) {
return true;
}
}
return false;
}
uint32_t
PulseAudioBackend::process_thread_count ()
{
return _threads.size ();
}
void
PulseAudioBackend::update_latencies ()
{
/* trigger latency callback in RT thread (locked graph) */
port_connect_add_remove_callback ();
}
/* PORTENGINE API */
void*
PulseAudioBackend::private_handle () const
{
return NULL;
}
const std::string&
PulseAudioBackend::my_name () const
{
return _instance_name;
}
int
PulseAudioBackend::register_system_ports ()
{
LatencyRange lr;
/* audio ports */
lr.min = lr.max = _systemic_audio_output_latency;
for (int i = 1; i <= N_CHANNELS; ++i) {
char tmp[64];
snprintf (tmp, sizeof (tmp), "system:playback_%d", i);
BackendPortPtr p = add_port (std::string (tmp), DataType::AUDIO, static_cast<PortFlags> (IsInput | IsPhysical | IsTerminal));
if (!p) {
return -1;
}
set_latency_range (p, true, lr);
//p->set_hw_port_name ("")
_system_outputs.push_back (p);
}
return 0;
}
BackendPort*
PulseAudioBackend::port_factory (std::string const & name, ARDOUR::DataType type, ARDOUR::PortFlags flags)
{
BackendPort* port = 0;
switch (type) {
case DataType::AUDIO:
port = new PulseAudioPort (*this, name, flags);
break;
case DataType::MIDI:
port = new PulseMidiPort (*this, name, flags);
break;
default:
PBD::error << string_compose (_("%1::port_factory: Invalid Data Type."), _instance_name) << endmsg;
return 0;
}
return port;
}
/* MIDI */
int
PulseAudioBackend::midi_event_get (
pframes_t& timestamp,
size_t& size, uint8_t const** buf, void* port_buffer,
uint32_t event_index)
{
assert (buf && port_buffer);
PulseMidiBuffer& source = *static_cast<PulseMidiBuffer*> (port_buffer);
if (event_index >= source.size ()) {
return -1;
}
PulseMidiEvent* const event = source[event_index].get ();
timestamp = event->timestamp ();
size = event->size ();
*buf = event->data ();
return 0;
}
int
PulseAudioBackend::midi_event_put (
void* port_buffer,
pframes_t timestamp,
const uint8_t* buffer, size_t size)
{
assert (buffer && port_buffer);
PulseMidiBuffer& dst = *static_cast<PulseMidiBuffer*> (port_buffer);
dst.push_back (std::shared_ptr<PulseMidiEvent> (new PulseMidiEvent (timestamp, buffer, size)));
return 0;
}
uint32_t
PulseAudioBackend::get_midi_event_count (void* port_buffer)
{
assert (port_buffer);
return static_cast<PulseMidiBuffer*> (port_buffer)->size ();
}
void
PulseAudioBackend::midi_clear (void* port_buffer)
{
assert (port_buffer);
PulseMidiBuffer* buf = static_cast<PulseMidiBuffer*> (port_buffer);
assert (buf);
buf->clear ();
}
/* Monitoring */
bool
PulseAudioBackend::can_monitor_input () const
{
return false;
}
int
PulseAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
int
PulseAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
bool
PulseAudioBackend::monitoring_input (PortEngine::PortHandle)
{
return false;
}
/* Latency management */
void
PulseAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range)
{
BackendPortPtr port = std::dynamic_pointer_cast<BackendPort> (port_handle);
if (!valid_port (port)) {
PBD::error << _("PulsePort::set_latency_range (): invalid port.") << endmsg;
}
port->set_latency_range (latency_range, for_playback);
}
LatencyRange
PulseAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback)
{
BackendPortPtr port = std::dynamic_pointer_cast<BackendPort> (port_handle);
LatencyRange r;
if (!valid_port (port)) {
PBD::error << _("PulsePort::get_latency_range (): invalid port.") << endmsg;
r.min = 0;
r.max = 0;
return r;
}
r = port->latency_range (for_playback);
if (port->is_physical () && port->is_terminal ()) {
if (port->is_input () && for_playback) {
r.min += _samples_per_period + _systemic_audio_output_latency;
r.max += _samples_per_period + _systemic_audio_output_latency;
}
if (port->is_output () && !for_playback) {
r.min += _samples_per_period;
r.max += _samples_per_period;
}
}
return r;
}
/* Getting access to the data buffer for a port */
void*
PulseAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes)
{
BackendPortPtr port = std::dynamic_pointer_cast<BackendPort> (port_handle);
assert (port);
return port->get_buffer (nframes);
}
/* Engine Process */
void*
PulseAudioBackend::main_process_thread ()
{
AudioEngine::thread_init_callback (this);
_active = true;
_processed_samples = 0;
manager.registration_callback ();
manager.graph_order_callback ();
_dsp_load_calc.reset ();
stream_latency_update_cb (p_stream, this);
while (_run) {
if (_freewheeling != _freewheel) {
_freewheel = _freewheeling;
engine.freewheel_callback (_freewheel);
if (_freewheel) {
/* when transitioning to freewheeling, cork it and stop writing */
assert (!pa_stream_is_corked (p_stream));
if (!cork_pulse (true)) {
PBD::error << _("PulseAudioBackend::main_process_thread failed to cork for freewheeling.") << endmsg;
break;
}
}
/* flush corked stream before and after freewheeling */
assert (pa_stream_is_corked (p_stream));
pa_threaded_mainloop_lock (p_mainloop);
_operation_succeeded = false;
if (!sync_pulse (pa_stream_flush (p_stream, stream_operation_cb, this)) || !_operation_succeeded) {
PBD::error << _("PulseAudioBackend::main_process_thread failed to flush.") << endmsg;
break;
}
if (!_freewheel) {
/* when transitioning from freewheeling, uncork after flushing and start writing */
if (!cork_pulse (false)) {
PBD::error << _("PulseAudioBackend::main_process_thread failed to uncork after freewheeling.") << endmsg;
break;
}
_dsp_load_calc.reset ();
}
}
if (!_freewheel) {
pa_threaded_mainloop_lock (p_mainloop);
size_t bytes_to_write = sizeof (float) * _samples_per_period * N_CHANNELS;
while (pa_stream_writable_size (p_stream) < bytes_to_write) {
/* wait until stream_request_cb triggers */
pa_threaded_mainloop_wait (p_mainloop);
}
if (pa_stream_get_state (p_stream) != PA_STREAM_READY) {
pa_threaded_mainloop_unlock (p_mainloop);
PBD::error << _("PulseAudioBackend::main_process_thread not ready when writing.") << endmsg;
break;
}
int64_t clock1 = g_get_monotonic_time ();
/* call engine process callback */
_last_process_start = g_get_monotonic_time ();
if (engine.process_callback (_samples_per_period)) {
pa_threaded_mainloop_unlock (p_mainloop);
_active = false;
PBD::error << _("PulseAudioBackend::main_process_thread engine.process_callback failed.") << endmsg;
return 0;
}
/* write back audio */
uint32_t i = 0;
float buf[_max_buffer_size * N_CHANNELS];
assert (_system_outputs.size () == N_CHANNELS);
/* interleave */
for (std::vector<BackendPortPtr>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it, ++i) {
const float* src = (const float*) (*it)->get_buffer (_samples_per_period);
for (size_t n = 0; n < _samples_per_period; ++n) {
buf[N_CHANNELS * n + i] = src[n];
}
}
if (pa_stream_write (p_stream, buf, bytes_to_write, NULL, 0, PA_SEEK_RELATIVE) < 0) {
pa_threaded_mainloop_unlock (p_mainloop);
PBD::error << _("PulseAudioBackend::main_process_thread pa_stream_write failed.") << endmsg;
break;
}
pa_threaded_mainloop_unlock (p_mainloop);
_processed_samples += _samples_per_period;
_dsp_load_calc.set_max_time (_samplerate, _samples_per_period);
_dsp_load_calc.set_start_timestamp_us (clock1);
_dsp_load_calc.set_stop_timestamp_us (g_get_monotonic_time ());
_dsp_load = _dsp_load_calc.get_dsp_load ();
} else {
/* Freewheelin' */
_last_process_start = 0;
if (engine.process_callback (_samples_per_period)) {
_active = false;
PBD::error << _("PulseAudioBackend::main_process_thread freewheeling engine.process_callback failed.") << endmsg;
return 0;
}
_dsp_load = 1.0f;
Glib::usleep (100); // don't hog cpu
}
bool connections_changed = false;
bool ports_changed = false;
if (!pthread_mutex_trylock (&_port_callback_mutex)) {
int canderef (1);
if (_port_change_flag.compare_exchange_strong (canderef, 0)) {
ports_changed = true;
}
if (!_port_connection_queue.empty ()) {
connections_changed = true;
}
while (!_port_connection_queue.empty ()) {
PortConnectData* c = _port_connection_queue.back ();
manager.connect_callback (c->a, c->b, c->c);
_port_connection_queue.pop_back ();
delete c;
}
pthread_mutex_unlock (&_port_callback_mutex);
}
if (ports_changed) {
manager.registration_callback ();
}
if (connections_changed) {
manager.graph_order_callback ();
}
if (connections_changed || ports_changed) {
update_system_port_latencies ();
engine.latency_callback (false);
engine.latency_callback (true);
}
}
_active = false;
if (_run) {
engine.halted_callback ("PulseAudio I/O error.");
}
return 0;
}
/******************************************************************************/
static std::shared_ptr<PulseAudioBackend> _instance;
static std::shared_ptr<AudioBackend> backend_factory (AudioEngine& e);
static int instantiate (const std::string& arg1, const std::string& /* arg2 */);
static int deinstantiate ();
static bool already_configured ();
static bool available ();
static ARDOUR::AudioBackendInfo _descriptor = {
_("PulseAudio"),
instantiate,
deinstantiate,
backend_factory,
already_configured,
available
};
static std::shared_ptr<AudioBackend>
backend_factory (AudioEngine& e)
{
if (!_instance) {
_instance.reset (new PulseAudioBackend (e, _descriptor));
}
return _instance;
}
static int
instantiate (const std::string& arg1, const std::string& /* arg2 */)
{
s_instance_name = arg1;
return 0;
}
static int
deinstantiate ()
{
_instance.reset ();
return 0;
}
static bool
already_configured ()
{
return false;
}
static bool
available ()
{
return true;
}
extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo*
descriptor ()
{
return &_descriptor;
}
/******************************************************************************/
PulseAudioPort::PulseAudioPort (PulseAudioBackend& b, const std::string& name, PortFlags flags)
: BackendPort (b, name, flags)
{
memset (_buffer, 0, sizeof (_buffer));
mlock (_buffer, sizeof (_buffer));
}
PulseAudioPort::~PulseAudioPort ()
{
}
void*
PulseAudioPort::get_buffer (pframes_t n_samples)
{
if (is_input ()) {
const std::set<BackendPortPtr>& connections = get_connections ();
std::set<BackendPortPtr>::const_iterator it = connections.begin ();
if (it == connections.end ()) {
memset (_buffer, 0, n_samples * sizeof (Sample));
} else {
std::shared_ptr<PulseAudioPort> source = std::dynamic_pointer_cast<PulseAudioPort> (*it);
assert (source && source->is_output ());
memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample));
while (++it != connections.end ()) {
source = std::dynamic_pointer_cast<PulseAudioPort> (*it);
assert (source && source->is_output ());
Sample* dst = _buffer;
const Sample* src = source->const_buffer ();
for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) {
*dst += *src;
}
}
}
}
return _buffer;
}
PulseMidiPort::PulseMidiPort (PulseAudioBackend& b, const std::string& name, PortFlags flags)
: BackendPort (b, name, flags)
{
_buffer.clear ();
_buffer.reserve (256);
}
PulseMidiPort::~PulseMidiPort ()
{
}
struct MidiEventSorter {
bool
operator() (const std::shared_ptr<PulseMidiEvent>& a, const std::shared_ptr<PulseMidiEvent>& b)
{
return *a < *b;
}
};
void* PulseMidiPort::get_buffer (pframes_t /*n_samples*/)
{
if (is_input ()) {
_buffer.clear ();
const std::set<BackendPortPtr>& connections = get_connections ();
for (std::set<BackendPortPtr>::const_iterator i = connections.begin ();
i != connections.end ();
++i) {
const PulseMidiBuffer* src = std::dynamic_pointer_cast<PulseMidiPort> (*i)->const_buffer ();
for (PulseMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
_buffer.push_back (*it);
}
}
std::stable_sort (_buffer.begin (), _buffer.end (), MidiEventSorter ());
}
return &_buffer;
}
PulseMidiEvent::PulseMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size)
: _size (size)
, _timestamp (timestamp)
{
if (size > 0 && size < MaxPulseMidiEventSize) {
memcpy (_data, data, size);
}
}
PulseMidiEvent::PulseMidiEvent (const PulseMidiEvent& other)
: _size (other.size ())
, _timestamp (other.timestamp ())
{
if (other.size () && other.const_data ()) {
assert (other._size < MaxPulseMidiEventSize);
memcpy (_data, other._data, other._size);
}
};