13
0
livetrax/libs/plugins/a-delay.lv2/a-delay.c

551 lines
12 KiB
C

/*
* Copyright (C) 2016-2017 Robin Gareus <robin@gareus.org>
* Copyright (C) 2016 Damien Zammit <damien@zamaudio.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "lv2/lv2plug.in/ns/lv2core/lv2.h"
#include "lv2/lv2plug.in/ns/ext/atom/atom.h"
#include "lv2/lv2plug.in/ns/ext/time/time.h"
#include "lv2/lv2plug.in/ns/ext/atom/forge.h"
#include "lv2/lv2plug.in/ns/ext/urid/urid.h"
#define ADELAY_URI "urn:ardour:a-delay"
// 8 seconds of delay at 96kHz
#define MAX_DELAY 768000
#ifndef M_PI
# define M_PI 3.1415926
#endif
#ifdef COMPILER_MSVC
#include <float.h>
#define isfinite_local(val) (bool)_finite((double)val)
#else
#define isfinite_local isfinite
#endif
typedef enum {
ADELAY_INPUT = 0,
ADELAY_OUTPUT,
ADELAY_BPM,
ADELAY_INV,
ADELAY_SYNC,
ADELAY_TIME,
ADELAY_DIVISOR,
ADELAY_WETDRY,
ADELAY_FEEDBACK,
ADELAY_LPF,
ADELAY_GAIN,
ADELAY_DELAYTIME,
ADELAY_ENABLE,
ADELAY_DOTTED,
} PortIndex;
typedef struct {
LV2_URID atom_Blank;
LV2_URID atom_Object;
LV2_URID atom_Sequence;
LV2_URID atom_Long;
LV2_URID atom_Int;
LV2_URID atom_Float;
LV2_URID atom_Double;
LV2_URID time_beatUnit;
LV2_URID time_beatsPerMinute;
LV2_URID time_Position;
} DelayURIs;
typedef struct {
float* input;
float* output;
const LV2_Atom_Sequence* atombpm;
float* inv;
float* dotted;
float* sync;
float* time;
float* divisor;
float* wetdry;
float* feedback;
float* lpf;
float* gain;
float* delaytime;
float* enable;
float srate;
float bpm;
float beatunit;
int bpmvalid;
uint32_t posz;
float tap[2];
float z[MAX_DELAY];
int active;
int next;
float fbstate;
float lpfold;
float feedbackold;
float divisorold;
float gainold;
float dottedold;
float invertold;
float timeold;
float delaytimeold;
float syncold;
float wetdryold;
float delaysamplesold;
float tau;
float A0, A1, A2, A3, A4, A5;
float B0, B1, B2, B3, B4, B5;
float state[4];
DelayURIs uris;
LV2_Atom_Forge forge;
LV2_URID_Map* map;
} ADelay;
static inline void
map_uris(LV2_URID_Map* map, DelayURIs* uris)
{
uris->atom_Blank = map->map(map->handle, LV2_ATOM__Blank);
uris->atom_Object = map->map(map->handle, LV2_ATOM__Object);
uris->atom_Sequence = map->map(map->handle, LV2_ATOM__Sequence);
uris->atom_Long = map->map(map->handle, LV2_ATOM__Long);
uris->atom_Int = map->map(map->handle, LV2_ATOM__Int);
uris->atom_Float = map->map(map->handle, LV2_ATOM__Float);
uris->atom_Double = map->map(map->handle, LV2_ATOM__Double);
uris->time_beatUnit = map->map(map->handle, LV2_TIME__beatUnit);
uris->time_beatsPerMinute = map->map(map->handle, LV2_TIME__beatsPerMinute);
uris->time_Position = map->map(map->handle, LV2_TIME__Position);
}
static LV2_Handle
instantiate(const LV2_Descriptor* descriptor,
double rate,
const char* bundle_path,
const LV2_Feature* const* features)
{
int i;
ADelay* adelay = (ADelay*)calloc(1, sizeof(ADelay));
if (!adelay) return NULL;
for (i = 0; features[i]; ++i) {
if (!strcmp(features[i]->URI, LV2_URID__map)) {
adelay->map = (LV2_URID_Map*)features[i]->data;
}
}
if (!adelay->map) {
fprintf(stderr, "a-delay.lv2 error: Host does not support urid:map\n");
free(adelay);
return NULL;
}
map_uris(adelay->map, &adelay->uris);
lv2_atom_forge_init(&adelay->forge, adelay->map);
adelay->srate = rate;
adelay->bpmvalid = 0;
adelay->tau = (1.0 - exp (-2.f * M_PI * 25.f / adelay->srate));
return (LV2_Handle)adelay;
}
static void
connect_port(LV2_Handle instance,
uint32_t port,
void* data)
{
ADelay* adelay = (ADelay*)instance;
switch ((PortIndex)port) {
case ADELAY_INPUT:
adelay->input = (float*)data;
break;
case ADELAY_OUTPUT:
adelay->output = (float*)data;
break;
case ADELAY_BPM:
adelay->atombpm = (const LV2_Atom_Sequence*)data;
break;
case ADELAY_INV:
adelay->inv = (float*)data;
break;
case ADELAY_SYNC:
adelay->sync = (float*)data;
break;
case ADELAY_TIME:
adelay->time = (float*)data;
break;
case ADELAY_DIVISOR:
adelay->divisor = (float*)data;
break;
case ADELAY_DOTTED:
adelay->dotted = (float*)data;
break;
case ADELAY_WETDRY:
adelay->wetdry = (float*)data;
break;
case ADELAY_FEEDBACK:
adelay->feedback = (float*)data;
break;
case ADELAY_LPF:
adelay->lpf = (float*)data;
break;
case ADELAY_GAIN:
adelay->gain = (float*)data;
break;
case ADELAY_DELAYTIME:
adelay->delaytime = (float*)data;
break;
case ADELAY_ENABLE:
adelay->enable = (float*)data;
break;
}
}
static inline float
sanitize_denormal(const float value) {
if (!isnormal(value)) {
return 0.f;
}
return value;
}
static inline float
sanitize_input(const float value) {
if (!isfinite_local (value)) {
return 0.f;
}
return value;
}
static inline float
from_dB(float gdb) {
return (exp(gdb/20.f*log(10.f)));
}
static inline float
to_dB(float g) {
return (20.f*log10(g));
}
static inline bool
is_eq(float a, float b, float small) {
return (fabsf(a - b) < small);
}
static void clearfilter(LV2_Handle instance)
{
ADelay* adelay = (ADelay*)instance;
adelay->state[0] = adelay->state[1] =
adelay->state[2] = adelay->state[3] = 0.f;
}
static void
activate(LV2_Handle instance)
{
ADelay* adelay = (ADelay*)instance;
int i;
for (i = 0; i < MAX_DELAY; i++) {
adelay->z[i] = 0.f;
}
adelay->posz = 0;
adelay->tap[0] = 0;
adelay->tap[1] = 0;
adelay->active = 0;
adelay->next = 1;
adelay->fbstate = 0.f;
clearfilter(adelay);
adelay->lpfold = 0.f;
adelay->divisorold = 0.f;
adelay->gainold = 0.f;
adelay->invertold = 0.f;
adelay->dottedold = 0.f;
adelay->timeold = 0.f;
adelay->delaytimeold = 0.f;
adelay->syncold = 0.f;
adelay->wetdryold = 0.f;
adelay->delaysamplesold = 1.f;
}
static void lpfRbj(LV2_Handle instance, float fc, float srate)
{
ADelay* adelay = (ADelay*)instance;
float w0, alpha, cw, sw, q;
q = 0.707;
w0 = (2. * M_PI * fc / srate);
sw = sin(w0);
cw = cos(w0);
alpha = sw / (2. * q);
adelay->A0 = 1. + alpha;
adelay->A1 = -2. * cw;
adelay->A2 = 1. - alpha;
adelay->B0 = (1. - cw) / 2.;
adelay->B1 = (1. - cw);
adelay->B2 = adelay->B0;
adelay->A3 = 1. + alpha;
adelay->A4 = -2. * cw;
adelay->A5 = 1. - alpha;
adelay->B3 = (1. - cw) / 2.;
adelay->B4 = (1. - cw);
adelay->B5 = adelay->B3;
}
static float runfilter(LV2_Handle instance, const float in)
{
ADelay* a = (ADelay*)instance;
float out;
out = a->B0/a->A0*in + a->B1/a->A0*a->state[0] + a->B2/a->A0*a->state[1]
-a->A1/a->A0*a->state[2] - a->A2/a->A0*a->state[3] + 1e-20;
a->state[1] = a->state[0];
a->state[0] = in;
a->state[3] = a->state[2];
a->state[2] = sanitize_input (out);
return out;
}
static bool
update_bpm(ADelay* self, const LV2_Atom_Object* obj)
{
bool changed = false;
const DelayURIs* uris = &self->uris;
// Received new transport bpm/beatunit
LV2_Atom *beatunit = NULL, *bpm = NULL;
lv2_atom_object_get(obj,
uris->time_beatUnit, &beatunit,
uris->time_beatsPerMinute, &bpm,
NULL);
// Tempo changed, update BPM
if (bpm && bpm->type == uris->atom_Float) {
float b = ((LV2_Atom_Float*)bpm)->body;
if (self->bpm != b) {
changed = true;
}
self->bpm = b;
}
// Time signature changed, update beatunit
if (beatunit && beatunit->type == uris->atom_Int) {
int b = ((LV2_Atom_Int*)beatunit)->body;
if (self->beatunit != b) {
changed = true;
}
self->beatunit = b;
}
self->bpmvalid = 1;
return changed;
}
static void
run(LV2_Handle instance, uint32_t n_samples)
{
ADelay* adelay = (ADelay*)instance;
const float* const input = adelay->input;
float* const output = adelay->output;
const float srate = adelay->srate;
const float tau = adelay->tau;
float wetdry_target = *adelay->wetdry / 100.f;
float gain_target = from_dB(*adelay->gain);
float wetdry = adelay->wetdryold;
float gain = adelay->gainold;
if (*adelay->enable <= 0) {
wetdry_target = 0.f;
gain_target = 1.0;
}
uint32_t i;
float in;
int delaysamples = 0;
unsigned int tmp;
float inv;
float xfade;
bool recalc = false;
// TODO LPF
if (*(adelay->inv) < 0.5) {
inv = -1.f;
} else {
inv = 1.f;
}
if (adelay->atombpm) {
LV2_Atom_Event* ev = lv2_atom_sequence_begin(&(adelay->atombpm)->body);
while(!lv2_atom_sequence_is_end(&(adelay->atombpm)->body, (adelay->atombpm)->atom.size, ev)) {
if (ev->body.type == adelay->uris.atom_Blank || ev->body.type == adelay->uris.atom_Object) {
const LV2_Atom_Object* obj = (LV2_Atom_Object*)&ev->body;
if (obj->body.otype == adelay->uris.time_Position) {
recalc = update_bpm(adelay, obj);
// TODO: split process on BPM change. (independent of buffer-size)
}
}
ev = lv2_atom_sequence_next(ev);
}
}
if (*(adelay->inv) != adelay->invertold) {
recalc = true;
}
if (*(adelay->dotted) != adelay->dottedold) {
recalc = true;
}
if (*(adelay->sync) != adelay->syncold) {
recalc = true;
}
if (*(adelay->time) != adelay->timeold) {
recalc = true;
}
if (*(adelay->feedback) != adelay->feedbackold) {
recalc = true;
}
if (*(adelay->divisor) != adelay->divisorold) {
recalc = true;
}
if (!is_eq(adelay->lpfold, *adelay->lpf, 0.1)) {
float tc = (1.0 - exp (-2.f * M_PI * n_samples * 25.f / adelay->srate));
adelay->lpfold += tc * (*adelay->lpf - adelay->lpfold);
recalc = true;
}
// rg says: in case the delay-time changes, oversampling/interpolate + LPF
// would me more appropriate.
if (recalc) {
lpfRbj(adelay, adelay->lpfold, srate);
if (*(adelay->sync) > 0.5f && adelay->bpmvalid) {
/* quarter notes / min : 4 qn * 1000 ms/s * 60 s/min = 24k */
*(adelay->delaytime) = 240000.f / (adelay->bpm * *(adelay->divisor));
if (*(adelay->dotted) > 0.5f) {
*(adelay->delaytime) *= 1.5;
}
} else {
*(adelay->delaytime) = *(adelay->time);
}
delaysamples = (int)(*(adelay->delaytime) * srate) / 1000;
adelay->tap[adelay->next] = delaysamples;
}
xfade = 0.f;
float fbstate = adelay->fbstate;
const float feedback = *adelay->feedback;
for (i = 0; i < n_samples; i++) {
in = sanitize_input (input[i]);
adelay->z[adelay->posz] = sanitize_denormal (in + feedback / 100.f * fbstate);
int p = adelay->posz - adelay->tap[adelay->active]; // active line
if (p<0) p += MAX_DELAY;
fbstate = adelay->z[p];
if (recalc) {
xfade += 1.0f / (float)n_samples;
fbstate *= (1.-xfade);
p = adelay->posz - adelay->tap[adelay->next]; // next line
if (p<0) p += MAX_DELAY;
fbstate += adelay->z[p] * xfade;
}
wetdry += tau * (wetdry_target - wetdry) + 1e-12;
gain += tau * (gain_target - gain) + 1e-12;
output[i] = (1.f - wetdry) * in;
output[i] += wetdry * -inv * runfilter(adelay, fbstate);
output[i] *= gain;
if (++(adelay->posz) >= MAX_DELAY) {
adelay->posz = 0;
}
}
adelay->fbstate = fbstate;
adelay->feedbackold = *(adelay->feedback);
adelay->divisorold = *(adelay->divisor);
adelay->invertold = *(adelay->inv);
adelay->dottedold = *(adelay->dotted);
adelay->timeold = *(adelay->time);
adelay->syncold = *(adelay->sync);
adelay->wetdryold = wetdry;
adelay->gainold = gain;
adelay->delaytimeold = *(adelay->delaytime);
adelay->delaysamplesold = delaysamples;
if (recalc) {
tmp = adelay->active;
adelay->active = adelay->next;
adelay->next = tmp;
}
}
static void
cleanup(LV2_Handle instance)
{
free(instance);
}
static const void*
extension_data(const char* uri)
{
return NULL;
}
static const LV2_Descriptor descriptor = {
ADELAY_URI,
instantiate,
connect_port,
activate,
run,
NULL,
cleanup,
extension_data
};
LV2_SYMBOL_EXPORT
const LV2_Descriptor*
lv2_descriptor(uint32_t index)
{
switch (index) {
case 0:
return &descriptor;
default:
return NULL;
}
}