13
0
livetrax/libs/backends/dummy/dummy_audiobackend.cc

1903 lines
50 KiB
C++

/*
* Copyright (C) 2014-2015 Tim Mayberry <mojofunk@gmail.com>
* Copyright (C) 2014-2018 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2014-2019 Robin Gareus <robin@gareus.org>
* Copyright (C) 2016-2017 John Emmas <john@creativepost.co.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <math.h>
#include <sys/time.h>
#include <regex.h>
#include <stdlib.h>
#include <glibmm.h>
#ifdef PLATFORM_WINDOWS
#include <windows.h>
#include <pbd/windows_timer_utils.h>
#endif
#include "dummy_audiobackend.h"
#include "dummy_midi_seq.h"
#include "pbd/error.h"
#include "pbd/compose.h"
#include "pbd/pthread_utils.h"
#include "ardour/port_manager.h"
#include "pbd/i18n.h"
using namespace ARDOUR;
static std::string s_instance_name;
size_t DummyAudioBackend::_max_buffer_size = 8192;
std::vector<std::string> DummyAudioBackend::_midi_options;
std::vector<AudioBackend::DeviceStatus> DummyAudioBackend::_device_status;
std::vector<DummyAudioBackend::DriverSpeed> DummyAudioBackend::_driver_speed;
static int64_t _x_get_monotonic_usec() {
#ifdef PLATFORM_WINDOWS
return PBD::get_microseconds();
#endif
return g_get_monotonic_time();
}
DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info)
: AudioBackend (e, info)
, PortEngineSharedImpl (e, s_instance_name)
, _running (false)
, _freewheel (false)
, _freewheeling (false)
, _speedup (1.0)
, _device ("")
, _samplerate (48000)
, _samples_per_period (1024)
, _dsp_load (0)
, _n_inputs (0)
, _n_outputs (0)
, _n_midi_inputs (0)
, _n_midi_outputs (0)
, _midi_mode (MidiNoEvents)
, _systemic_input_latency (0)
, _systemic_output_latency (0)
, _processed_samples (0)
{
_instance_name = s_instance_name;
_device = _("Silence");
if (_driver_speed.empty()) {
_driver_speed.push_back (DriverSpeed (_("Half Speed"), 2.0f));
_driver_speed.push_back (DriverSpeed (_("Normal Speed"), 1.0f));
_driver_speed.push_back (DriverSpeed (_("Double Speed"), 0.5f));
_driver_speed.push_back (DriverSpeed (_("5x Speed"), 0.2f));
_driver_speed.push_back (DriverSpeed (_("10x Speed"), 0.1f));
_driver_speed.push_back (DriverSpeed (_("15x Speed"), 0.06666f));
_driver_speed.push_back (DriverSpeed (_("20x Speed"), 0.05f));
_driver_speed.push_back (DriverSpeed (_("50x Speed"), 0.02f));
}
}
DummyAudioBackend::~DummyAudioBackend ()
{
clear_ports ();
}
/* AUDIOBACKEND API */
std::string
DummyAudioBackend::name () const
{
return X_("Dummy"); // internal name
}
bool
DummyAudioBackend::is_realtime () const
{
return false;
}
std::vector<AudioBackend::DeviceStatus>
DummyAudioBackend::enumerate_devices () const
{
if (_device_status.empty()) {
_device_status.push_back (DeviceStatus (_("Silence"), true));
_device_status.push_back (DeviceStatus (_("DC -6dBFS (+.5)"), true));
_device_status.push_back (DeviceStatus (_("Demolition"), true));
_device_status.push_back (DeviceStatus (_("Sine Wave"), true));
_device_status.push_back (DeviceStatus (_("Sine Wave 1K, 1/3 Oct"), true));
_device_status.push_back (DeviceStatus (_("Square Wave"), true));
_device_status.push_back (DeviceStatus (_("Impulses"), true));
_device_status.push_back (DeviceStatus (_("Uniform White Noise"), true));
_device_status.push_back (DeviceStatus (_("Gaussian White Noise"), true));
_device_status.push_back (DeviceStatus (_("Pink Noise"), true));
_device_status.push_back (DeviceStatus (_("Pink Noise (low CPU)"), true));
_device_status.push_back (DeviceStatus (_("Sine Sweep"), true));
_device_status.push_back (DeviceStatus (_("Sine Sweep Swell"), true));
_device_status.push_back (DeviceStatus (_("Square Sweep"), true));
_device_status.push_back (DeviceStatus (_("Square Sweep Swell"), true));
_device_status.push_back (DeviceStatus (_("Engine Pulse"), true));
_device_status.push_back (DeviceStatus (_("LTC"), true));
_device_status.push_back (DeviceStatus (_("Loopback"), true));
}
return _device_status;
}
std::vector<float>
DummyAudioBackend::available_sample_rates (const std::string&) const
{
std::vector<float> sr;
sr.push_back (8000.0);
sr.push_back (22050.0);
sr.push_back (24000.0);
sr.push_back (44100.0);
sr.push_back (48000.0);
sr.push_back (88200.0);
sr.push_back (96000.0);
sr.push_back (176400.0);
sr.push_back (192000.0);
return sr;
}
std::vector<uint32_t>
DummyAudioBackend::available_buffer_sizes (const std::string&) const
{
std::vector<uint32_t> bs;
bs.push_back (4);
bs.push_back (8);
bs.push_back (16);
bs.push_back (32);
bs.push_back (64);
bs.push_back (128);
bs.push_back (256);
bs.push_back (512);
bs.push_back (1024);
bs.push_back (2048);
bs.push_back (4096);
bs.push_back (8192);
return bs;
}
uint32_t
DummyAudioBackend::available_input_channel_count (const std::string&) const
{
return 128;
}
uint32_t
DummyAudioBackend::available_output_channel_count (const std::string&) const
{
return 128;
}
bool
DummyAudioBackend::can_change_sample_rate_when_running () const
{
return false;
}
bool
DummyAudioBackend::can_change_buffer_size_when_running () const
{
return true;
}
std::vector<std::string>
DummyAudioBackend::enumerate_drivers () const
{
std::vector<std::string> speed_drivers;
for (std::vector<DriverSpeed>::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) {
speed_drivers.push_back (it->name);
}
return speed_drivers;
}
std::string
DummyAudioBackend::driver_name () const
{
for (std::vector<DriverSpeed>::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) {
if (rintf (1e6f * _speedup) == rintf (1e6f * it->speedup)) {
return it->name;
}
}
assert (0);
return _("Normal Speed");
}
int
DummyAudioBackend::set_driver (const std::string& d)
{
for (std::vector<DriverSpeed>::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) {
if (d == it->name) {
_speedup = it->speedup;
return 0;
}
}
assert (0);
return -1;
}
int
DummyAudioBackend::set_device_name (const std::string& d)
{
_device = d;
return 0;
}
int
DummyAudioBackend::set_sample_rate (float sr)
{
if (sr <= 0) { return -1; }
_samplerate = sr;
engine.sample_rate_change (sr);
return 0;
}
int
DummyAudioBackend::set_buffer_size (uint32_t bs)
{
if (bs <= 0 || bs > _max_buffer_size) {
return -1;
}
_samples_per_period = bs;
/* update port latencies
* with 'Loopback' there is exactly once cycle latency,
* divide it between In + Out;
*/
LatencyRange lr;
lr.min = lr.max = _systemic_input_latency;
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
set_latency_range (*it, false, lr);
}
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) {
set_latency_range (*it, false, lr);
}
lr.min = lr.max = _systemic_output_latency;
for (std::vector<BackendPortPtr>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) {
set_latency_range (*it, true, lr);
}
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) {
set_latency_range (*it, true, lr);
}
engine.buffer_size_change (bs);
return 0;
}
int
DummyAudioBackend::set_interleaved (bool yn)
{
if (!yn) { return 0; }
return -1;
}
int
DummyAudioBackend::set_input_channels (uint32_t cc)
{
_n_inputs = cc;
return 0;
}
int
DummyAudioBackend::set_output_channels (uint32_t cc)
{
_n_outputs = cc;
return 0;
}
int
DummyAudioBackend::set_systemic_input_latency (uint32_t sl)
{
_systemic_input_latency = sl;
return 0;
}
int
DummyAudioBackend::set_systemic_output_latency (uint32_t sl)
{
_systemic_output_latency = sl;
return 0;
}
/* Retrieving parameters */
std::string
DummyAudioBackend::device_name () const
{
return _device;
}
float
DummyAudioBackend::sample_rate () const
{
return _samplerate;
}
uint32_t
DummyAudioBackend::buffer_size () const
{
return _samples_per_period;
}
bool
DummyAudioBackend::interleaved () const
{
return false;
}
uint32_t
DummyAudioBackend::input_channels () const
{
return _n_inputs;
}
uint32_t
DummyAudioBackend::output_channels () const
{
return _n_outputs;
}
uint32_t
DummyAudioBackend::systemic_input_latency () const
{
return _systemic_input_latency;
}
uint32_t
DummyAudioBackend::systemic_output_latency () const
{
return _systemic_output_latency;
}
/* MIDI */
std::vector<std::string>
DummyAudioBackend::enumerate_midi_options () const
{
if (_midi_options.empty()) {
_midi_options.push_back (_("1 in, 1 out, Silence"));
_midi_options.push_back (_("2 in, 2 out, Silence"));
_midi_options.push_back (_("8 in, 8 out, Silence"));
_midi_options.push_back (_("Midi Event Generators"));
_midi_options.push_back (_("Engine Pulse"));
_midi_options.push_back (_("8 in, 8 out, Loopback"));
_midi_options.push_back (_("MIDI to Audio, Loopback"));
_midi_options.push_back (_("No MIDI I/O"));
}
return _midi_options;
}
int
DummyAudioBackend::set_midi_option (const std::string& opt)
{
_midi_mode = MidiNoEvents;
if (opt == _("1 in, 1 out, Silence")) {
_n_midi_inputs = _n_midi_outputs = 1;
}
else if (opt == _("2 in, 2 out, Silence")) {
_n_midi_inputs = _n_midi_outputs = 2;
}
else if (opt == _("8 in, 8 out, Silence")) {
_n_midi_inputs = _n_midi_outputs = 8;
}
else if (opt == _("Engine Pulse")) {
_n_midi_inputs = _n_midi_outputs = 1;
_midi_mode = MidiOneHz;
}
else if (opt == _("Midi Event Generators")) {
_n_midi_inputs = _n_midi_outputs = NUM_MIDI_EVENT_GENERATORS;
_midi_mode = MidiGenerator;
}
else if (opt == _("8 in, 8 out, Loopback")) {
_n_midi_inputs = _n_midi_outputs = 8;
_midi_mode = MidiLoopback;
}
else if (opt == _("MIDI to Audio, Loopback")) {
_n_midi_inputs = _n_midi_outputs = UINT32_MAX;
_midi_mode = MidiToAudio;
}
else {
_n_midi_inputs = _n_midi_outputs = 0;
}
return 0;
}
std::string
DummyAudioBackend::midi_option () const
{
return ""; // TODO
}
/* State Control */
static void * pthread_process (void *arg)
{
DummyAudioBackend *d = static_cast<DummyAudioBackend *>(arg);
d->main_process_thread ();
pthread_exit (0);
return 0;
}
int
DummyAudioBackend::_start (bool /*for_latency_measurement*/)
{
if (_running) {
PBD::error << _("DummyAudioBackend: already active.") << endmsg;
return BackendReinitializationError;
}
clear_ports ();
if (register_system_ports()) {
PBD::error << _("DummyAudioBackend: failed to register system ports.") << endmsg;
return PortRegistrationError;
}
engine.sample_rate_change (_samplerate);
engine.buffer_size_change (_samples_per_period);
if (engine.reestablish_ports ()) {
PBD::error << _("DummyAudioBackend: Could not re-establish ports.") << endmsg;
stop ();
return PortReconnectError;
}
engine.reconnect_ports ();
_port_change_flag = false;
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &_main_thread, pthread_process, this)) {
PBD::error << _("DummyAudioBackend: cannot start.") << endmsg;
}
int timeout = 5000;
while (!_running && --timeout > 0) { Glib::usleep (1000); }
if (timeout == 0 || !_running) {
PBD::error << _("DummyAudioBackend: failed to start process thread.") << endmsg;
return ProcessThreadStartError;
}
return NoError;
}
int
DummyAudioBackend::stop ()
{
void *status;
if (!_running) {
return 0;
}
_running = false;
if (pthread_join (_main_thread, &status)) {
PBD::error << _("DummyAudioBackend: failed to terminate.") << endmsg;
return -1;
}
unregister_ports();
return 0;
}
int
DummyAudioBackend::freewheel (bool onoff)
{
_freewheeling = onoff;
return 0;
}
float
DummyAudioBackend::dsp_load () const
{
return 100.f * _dsp_load;
}
size_t
DummyAudioBackend::raw_buffer_size (DataType t)
{
switch (t) {
case DataType::AUDIO:
return _samples_per_period * sizeof(Sample);
case DataType::MIDI:
return _max_buffer_size; // XXX not really limited
}
return 0;
}
/* Process time */
samplepos_t
DummyAudioBackend::sample_time ()
{
return _processed_samples;
}
samplepos_t
DummyAudioBackend::sample_time_at_cycle_start ()
{
return _processed_samples;
}
pframes_t
DummyAudioBackend::samples_since_cycle_start ()
{
return 0;
}
void *
DummyAudioBackend::dummy_process_thread (void *arg)
{
ThreadData* td = reinterpret_cast<ThreadData*> (arg);
boost::function<void ()> f = td->f;
delete td;
f ();
return 0;
}
int
DummyAudioBackend::create_process_thread (boost::function<void()> func)
{
pthread_t thread_id;
ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC);
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, dummy_process_thread, td)) {
PBD::error << _("AudioEngine: cannot create process thread.") << endmsg;
return -1;
}
_threads.push_back (thread_id);
return 0;
}
int
DummyAudioBackend::join_process_threads ()
{
int rv = 0;
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
{
void *status;
if (pthread_join (*i, &status)) {
PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg;
rv -= 1;
}
}
_threads.clear ();
return rv;
}
bool
DummyAudioBackend::in_process_thread ()
{
if (pthread_equal (_main_thread, pthread_self()) != 0) {
return true;
}
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
{
if (pthread_equal (*i, pthread_self ()) != 0) {
return true;
}
}
return false;
}
uint32_t
DummyAudioBackend::process_thread_count ()
{
return _threads.size ();
}
void
DummyAudioBackend::update_latencies ()
{
// trigger latency callback in RT thread (locked graph)
port_connect_add_remove_callback();
}
/* PORTENGINE API */
void*
DummyAudioBackend::private_handle () const
{
return NULL;
}
const std::string&
DummyAudioBackend::my_name () const
{
return _instance_name;
}
int
DummyAudioBackend::register_system_ports()
{
LatencyRange lr;
enum DummyAudioPort::GeneratorType gt;
if (_device == _("Uniform White Noise")) {
gt = DummyAudioPort::UniformWhiteNoise;
} else if (_device == _("Gaussian White Noise")) {
gt = DummyAudioPort::GaussianWhiteNoise;
} else if (_device == _("Pink Noise")) {
gt = DummyAudioPort::PinkNoise;
} else if (_device == _("Pink Noise (low CPU)")) {
gt = DummyAudioPort::PonyNoise;
} else if (_device == _("Sine Wave")) {
gt = DummyAudioPort::SineWave;
} else if (_device == _("Sine Wave 1K, 1/3 Oct")) {
gt = DummyAudioPort::SineWaveOctaves;
} else if (_device == _("Square Wave")) {
gt = DummyAudioPort::SquareWave;
} else if (_device == _("Impulses")) {
gt = DummyAudioPort::KronekerDelta;
} else if (_device == _("Sine Sweep")) {
gt = DummyAudioPort::SineSweep;
} else if (_device == _("Sine Sweep Swell")) {
gt = DummyAudioPort::SineSweepSwell;
} else if (_device == _("Square Sweep")) {
gt = DummyAudioPort::SquareSweep;
} else if (_device == _("Square Sweep Swell")) {
gt = DummyAudioPort::SquareSweepSwell;
} else if (_device == _("Engine Pulse")) {
gt = DummyAudioPort::OneHz;
} else if (_device == _("LTC")) {
gt = DummyAudioPort::LTC;
} else if (_device == _("Loopback")) {
gt = DummyAudioPort::Loopback;
} else if (_device == _("Demolition")) {
gt = DummyAudioPort::Demolition;
} else if (_device == _("DC -6dBFS (+.5)")) {
gt = DummyAudioPort::DC05;
} else {
gt = DummyAudioPort::Silence;
}
if (_midi_mode == MidiToAudio) {
gt = DummyAudioPort::Loopback;
}
const int a_ins = _n_inputs > 0 ? _n_inputs : 8;
const int a_out = _n_outputs > 0 ? _n_outputs : 8;
const int m_ins = _n_midi_inputs == UINT_MAX ? 0 : _n_midi_inputs;
const int m_out = _n_midi_outputs == UINT_MAX ? a_ins : _n_midi_outputs;
/* audio ports */
lr.min = lr.max = _systemic_input_latency;
for (int i = 1; i <= a_ins; ++i) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "system:capture_%d", i);
PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, false, lr);
boost::shared_ptr<DummyAudioPort> dp = boost::dynamic_pointer_cast<DummyAudioPort>(p);
_system_inputs.push_back (dp);
std::string name = dp->setup_generator (gt, _samplerate, i - 1, a_ins);
if (!name.empty ()) {
dp->set_pretty_name (name);
}
}
lr.min = lr.max = _systemic_output_latency;
for (int i = 1; i <= a_out; ++i) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "system:playback_%d", i);
PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, true, lr);
_system_outputs.push_back (boost::dynamic_pointer_cast<BackendPort>(p));
}
/* midi ports */
lr.min = lr.max = _systemic_input_latency;
for (int i = 0; i < m_ins; ++i) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "system:midi_capture_dummy_%d", i+1);
PortPtr p = add_port(std::string(tmp), DataType::MIDI, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, false, lr);
boost::shared_ptr<DummyMidiPort> dp = boost::dynamic_pointer_cast<DummyMidiPort>(p);
_system_midi_in.push_back (dp);
if (_midi_mode == MidiGenerator) {
std::string name = dp->setup_generator (i % NUM_MIDI_EVENT_GENERATORS, _samplerate);
if (!name.empty ()) {
dp->set_pretty_name (name);
}
}
else if (_midi_mode == MidiOneHz) {
std::string name = dp->setup_generator (-1, _samplerate);
if (!name.empty ()) {
dp->set_pretty_name (name);
}
}
}
lr.min = lr.max = _systemic_output_latency;
for (int i = 1; i <= m_out; ++i) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "system:midi_playback_dummy_%d", i);
PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, true, lr);
boost::shared_ptr<DummyMidiPort> dp = boost::dynamic_pointer_cast<DummyMidiPort>(p);
_system_midi_out.push_back (dp);
if (_device == _("Loopback") && _midi_mode == MidiToAudio) {
std::stringstream ss;
ss << "Midi2Audio";
for (int apc = 0; apc < (int)_system_inputs.size(); ++apc) {
if ((apc % m_out) + 1 == i) {
ss << " >" << (apc + 1);
}
}
dp->set_pretty_name (ss.str());
}
}
return 0;
}
BackendPort*
DummyAudioBackend::port_factory (std::string const & name, ARDOUR::DataType type, ARDOUR::PortFlags flags)
{
BackendPort* port = 0;
switch (type) {
case DataType::AUDIO:
port = new DummyAudioPort (*this, name, flags);
break;
case DataType::MIDI:
port = new DummyMidiPort (*this, name, flags);
break;
default:
PBD::error << string_compose (_("%1::register_port: Invalid Data Type."), _instance_name) << endmsg;
return 0;
}
return port;
}
/* MIDI */
int
DummyAudioBackend::midi_event_get (
pframes_t& timestamp,
size_t& size, uint8_t const** buf, void* port_buffer,
uint32_t event_index)
{
assert (buf && port_buffer);
DummyMidiBuffer& source = * static_cast<DummyMidiBuffer*>(port_buffer);
if (event_index >= source.size ()) {
return -1;
}
DummyMidiEvent * const event = source[event_index].get ();
timestamp = event->timestamp ();
size = event->size ();
*buf = event->data ();
return 0;
}
int
DummyAudioBackend::midi_event_put (
void* port_buffer,
pframes_t timestamp,
const uint8_t* buffer, size_t size)
{
assert (buffer && port_buffer);
DummyMidiBuffer& dst = * static_cast<DummyMidiBuffer*>(port_buffer);
if (dst.size () && (pframes_t)dst.back ()->timestamp () > timestamp) {
// nevermind, ::get_buffer() sorts events, but always print warning
fprintf (stderr, "DummyMidiBuffer: it's too late for this event %d > %d.\n", (pframes_t)dst.back ()->timestamp (), timestamp);
}
dst.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (timestamp, buffer, size)));
#if 0 // DEBUG MIDI EVENTS
printf("DummyAudioBackend::midi_event_put %d, %zu: ", timestamp, size);
for (size_t xx = 0; xx < size; ++xx) {
printf(" %02x", buffer[xx]);
}
printf("\n");
#endif
return 0;
}
uint32_t
DummyAudioBackend::get_midi_event_count (void* port_buffer)
{
assert (port_buffer);
return static_cast<DummyMidiBuffer*>(port_buffer)->size ();
}
void
DummyAudioBackend::midi_clear (void* port_buffer)
{
assert (port_buffer);
DummyMidiBuffer * buf = static_cast<DummyMidiBuffer*>(port_buffer);
assert (buf);
buf->clear ();
}
/* Monitoring */
bool
DummyAudioBackend::can_monitor_input () const
{
return false;
}
int
DummyAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
int
DummyAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
bool
DummyAudioBackend::monitoring_input (PortEngine::PortHandle)
{
return false;
}
/* Latency management */
void
DummyAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range)
{
BackendPortPtr port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
if (!valid_port (port)) {
PBD::error << _("DummyPort::set_latency_range (): invalid port.") << endmsg;
}
port->set_latency_range (latency_range, for_playback);
}
LatencyRange
DummyAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback)
{
LatencyRange r;
BackendPortPtr port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
if (!valid_port (port)) {
PBD::error << _("DummyPort::get_latency_range (): invalid port.") << endmsg;
r.min = 0;
r.max = 0;
return r;
}
r = port->latency_range (for_playback);
#ifndef ZERO_LATENCY
if (port->is_physical() && port->is_terminal()) {
if (port->is_input() && for_playback) {
const size_t l_in = _samples_per_period * .25;
r.min += l_in;
r.max += l_in;
}
if (port->is_output() && !for_playback) {
/* with 'Loopback' there is exactly once cycle latency, divide it between In + Out; */
const size_t l_in = _samples_per_period * .25;
const size_t l_out = _samples_per_period - l_in;
r.min += l_out;
r.max += l_out;
}
}
#endif
return r;
}
/* Getting access to the data buffer for a port */
void*
DummyAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes)
{
BackendPortPtr port = boost::dynamic_pointer_cast<BackendPort> (port_handle);
assert (port);
assert (valid_port (port));
return port->get_buffer (nframes);
}
/* Engine Process */
void *
DummyAudioBackend::main_process_thread ()
{
AudioEngine::thread_init_callback (this);
_running = true;
_processed_samples = 0;
manager.registration_callback();
manager.graph_order_callback();
int64_t clock1;
clock1 = -1;
while (_running) {
const size_t samples_per_period = _samples_per_period;
if (_freewheeling != _freewheel) {
_freewheel = _freewheeling;
engine.freewheel_callback (_freewheel);
}
// re-set input buffers, generate on demand.
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
boost::dynamic_pointer_cast<DummyPort>(*it)->next_period ();
}
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) {
boost::dynamic_pointer_cast<DummyPort>(*it)->next_period ();
}
if (engine.process_callback (samples_per_period)) {
return 0;
}
_processed_samples += samples_per_period;
if (_device == _("Loopback") && _midi_mode != MidiToAudio) {
int opn = 0;
int opc = _system_outputs.size();
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) {
BackendPortPtr op = _system_outputs[(opn % opc)];
boost::dynamic_pointer_cast<DummyAudioPort>(*it)->fill_wavetable ((const float*)op->get_buffer (samples_per_period), samples_per_period);
}
}
if (_midi_mode == MidiLoopback) {
int opn = 0;
int opc = _system_midi_out.size();
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++opn) {
boost::shared_ptr<DummyMidiPort> op = boost::dynamic_pointer_cast<DummyMidiPort> (_system_midi_out[(opn % opc)]);
op->get_buffer(0); // mix-down
boost::dynamic_pointer_cast<DummyMidiPort>(*it)->set_loopback (op->const_buffer());
}
}
else if (_midi_mode == MidiToAudio) {
int opn = 0;
int opc = _system_midi_out.size();
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) {
boost::shared_ptr<DummyMidiPort> op = boost::dynamic_pointer_cast<DummyMidiPort> (_system_midi_out[(opn % opc)]);
op->get_buffer(0); // mix-down
boost::dynamic_pointer_cast<DummyAudioPort>(*it)->midi_to_wavetable (op->const_buffer(), samples_per_period);
}
}
if (!_freewheel) {
_dsp_load_calc.set_max_time (_samplerate, samples_per_period);
_dsp_load_calc.set_start_timestamp_us (clock1);
_dsp_load_calc.set_stop_timestamp_us (_x_get_monotonic_usec());
_dsp_load = _dsp_load_calc.get_dsp_load_unbound ();
const int64_t elapsed_time = _dsp_load_calc.elapsed_time_us ();
const int64_t nominal_time = _dsp_load_calc.get_max_time_us ();
if (elapsed_time < nominal_time) {
const int64_t sleepy = _speedup * (nominal_time - elapsed_time);
Glib::usleep (std::max ((int64_t) 100, sleepy));
} else {
Glib::usleep (100); // don't hog cpu
}
} else {
_dsp_load = 1.0f;
Glib::usleep (100); // don't hog cpu
}
/* beginning of next cycle */
clock1 = _x_get_monotonic_usec();
bool connections_changed = false;
bool ports_changed = false;
if (!pthread_mutex_trylock (&_port_callback_mutex)) {
if (_port_change_flag) {
ports_changed = true;
_port_change_flag = false;
}
if (!_port_connection_queue.empty ()) {
connections_changed = true;
}
while (!_port_connection_queue.empty ()) {
PortConnectData *c = _port_connection_queue.back ();
manager.connect_callback (c->a, c->b, c->c);
_port_connection_queue.pop_back ();
delete c;
}
pthread_mutex_unlock (&_port_callback_mutex);
}
if (ports_changed) {
manager.registration_callback();
}
if (connections_changed) {
manager.graph_order_callback();
}
if (connections_changed || ports_changed) {
update_system_port_latencies ();
engine.latency_callback(false);
engine.latency_callback(true);
}
}
_running = false;
return 0;
}
/******************************************************************************/
static boost::shared_ptr<DummyAudioBackend> _instance;
static boost::shared_ptr<AudioBackend> backend_factory (AudioEngine& e);
static int instantiate (const std::string& arg1, const std::string& /* arg2 */);
static int deinstantiate ();
static bool already_configured ();
static bool available ();
static ARDOUR::AudioBackendInfo _descriptor = {
_("None (Dummy)"),
instantiate,
deinstantiate,
backend_factory,
already_configured,
available
};
static boost::shared_ptr<AudioBackend>
backend_factory (AudioEngine& e)
{
if (!_instance) {
_instance.reset (new DummyAudioBackend (e, _descriptor));
}
return _instance;
}
static int
instantiate (const std::string& arg1, const std::string& /* arg2 */)
{
s_instance_name = arg1;
return 0;
}
static int
deinstantiate ()
{
_instance.reset ();
return 0;
}
static bool
already_configured ()
{
// special-case: unit-tests require backend to be pre-configured.
if (s_instance_name == "Unit-Test") {
return true;
}
return false;
}
static bool
available ()
{
return true;
}
extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor ()
{
return &_descriptor;
}
/******************************************************************************/
DummyPort::DummyPort (DummyAudioBackend &b, const std::string& name, PortFlags flags)
: BackendPort (b, name, flags)
, _rseed (0)
, _gen_cycle (false)
, _engine (b)
{
}
DummyPort::~DummyPort ()
{
}
void DummyPort::setup_random_number_generator ()
{
#ifdef PLATFORM_WINDOWS
LARGE_INTEGER Count;
if (QueryPerformanceCounter (&Count)) {
_rseed = Count.QuadPart;
} else
#endif
{
_rseed = g_get_monotonic_time();
}
_rseed = (_rseed + (uint64_t)this) % INT_MAX;
if (_rseed == 0) _rseed = 1;
}
inline uint32_t
DummyPort::randi ()
{
// 31bit Park-Miller-Carta Pseudo-Random Number Generator
// http://www.firstpr.com.au/dsp/rand31/
uint32_t hi, lo;
lo = 16807 * (_rseed & 0xffff);
hi = 16807 * (_rseed >> 16);
lo += (hi & 0x7fff) << 16;
lo += hi >> 15;
#if 1
lo = (lo & 0x7fffffff) + (lo >> 31);
#else
if (lo > 0x7fffffff) { lo -= 0x7fffffff; }
#endif
return (_rseed = lo);
}
inline float
DummyPort::randf ()
{
return (randi() / 1073741824.f) - 1.f;
}
pframes_t
DummyPort::pulse_position () const
{
samplecnt_t sr = _engine.sample_rate ();
samplepos_t st = _engine.sample_time_at_cycle_start();
return (sr - (st % sr)) % sr;
}
/******************************************************************************/
DummyAudioPort::DummyAudioPort (DummyAudioBackend &b, const std::string& name, PortFlags flags)
: DummyPort (b, name, flags)
, _gen_type (Silence)
, _b0 (0)
, _b1 (0)
, _b2 (0)
, _b3 (0)
, _b4 (0)
, _b5 (0)
, _b6 (0)
, _wavetable (0)
, _gen_period (0)
, _gen_offset (0)
, _gen_perio2 (0)
, _gen_count2 (0)
, _pass (false)
, _rn1 (0)
, _ltc (0)
, _ltcbuf (0)
{
memset (_buffer, 0, sizeof (_buffer));
}
DummyAudioPort::~DummyAudioPort () {
free(_wavetable);
ltc_encoder_free (_ltc);
delete _ltcbuf;
_wavetable = 0;
_ltc = 0;
_ltcbuf = 0;
}
static std::string format_hz (float freq) {
std::stringstream ss;
if (freq >= 10000) {
ss << std::setprecision (1) << std::fixed << freq / 1000 << "kHz";
} else if (freq >= 1000) {
ss << std::setprecision (2) << std::fixed << freq / 1000 << "kHz";
} else {
ss << std::setprecision (1) << std::fixed << freq << "Hz";
}
return ss.str ();
}
static size_t fit_wave (float freq, float rate, float precision = 0.001) {
const size_t max_mult = floor (freq * rate);
float minErr = 2;
size_t fact = 1;
for (size_t i = 1; i < max_mult; ++i) {
const float isc = rate * (float)i / freq; // ideal sample count
const float rsc = rintf (isc); // rounded sample count
const float err = fabsf (isc - rsc);
if (err < minErr) {
minErr = err;
fact = i;
}
if (err < precision) {
break;
}
}
//printf(" FIT %8.1f Hz / %8.1f Hz * %ld = %.0f (err: %e)\n", freq, rate, fact, fact * rate / freq, minErr);
return fact;
}
std::string
DummyAudioPort::setup_generator (GeneratorType const g, float const samplerate, int c, int total)
{
std::string name;
DummyPort::setup_random_number_generator();
_gen_type = g;
switch (_gen_type) {
case PinkNoise:
case PonyNoise:
case UniformWhiteNoise:
case GaussianWhiteNoise:
case DC05:
case Silence:
break;
case OneHz:
name = string_compose ("One Hz (%1)", 1 + c);
break;
case Demolition:
_gen_period = 3 * samplerate;
break;
case KronekerDelta:
_gen_period = (5 + randi() % (int)(samplerate / 20.f));
name = "Delta " + format_hz (samplerate / _gen_period);
break;
case SquareWave:
_gen_period = (5 + randi() % (int)(samplerate / 20.f)) & ~1;
name = "Square " + format_hz (samplerate / _gen_period);
break;
case SineWaveOctaves:
{
const int x = c - floor (((float)total / 2));
float f = powf (2.f, x / 3.f) * 1000.f;
f = std::max (10.f, std::min (samplerate *.5f, f));
const size_t mult = fit_wave (f, samplerate);
_gen_period = rintf ((float)mult * samplerate / f);
name = "Sine " + format_hz (samplerate * mult / (float)_gen_period);
_wavetable = (Sample*) malloc (_gen_period * sizeof(Sample));
for (uint32_t i = 0 ; i < _gen_period; ++i) {
_wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)mult * (float)i / (float)(_gen_period)); // -18dBFS
}
}
break;
case SineWave:
_gen_period = 5 + randi() % (int)(samplerate / 20.f);
name = "Sine " + format_hz (samplerate / _gen_period);
_wavetable = (Sample*) malloc (_gen_period * sizeof(Sample));
for (uint32_t i = 0 ; i < _gen_period; ++i) {
_wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)i / (float)_gen_period); // -18dBFS
}
break;
case SquareSweep:
case SquareSweepSwell:
case SineSweep:
case SineSweepSwell:
{
_gen_period = 5 * samplerate + randi() % (int)(samplerate * 10.f);
_gen_period &= ~1;
_gen_perio2 = 1 | (int)ceilf (_gen_period * .89f); // Volume Swell period
const double f_min = 20.;
const double f_max = samplerate * .5;
const double g_p2 = _gen_period * .5;
#ifdef LINEAR_SWEEP
const double b = (f_max - f_min) / (2. * samplerate * g_p2);
const double a = f_min / samplerate;
#else
const double b = log (f_max / f_min) / g_p2;
const double a = f_min / (b * samplerate);
#endif
const uint32_t g_p2i = rint(g_p2);
_wavetable = (Sample*) malloc (_gen_period * sizeof(Sample));
for (uint32_t i = 0 ; i < g_p2i; ++i) {
#ifdef LINEAR_SWEEP
const double phase = i * (a + b * i);
#else
const double phase = a * exp (b * i) - a;
#endif
_wavetable[i] = (float)sin (2. * M_PI * (phase - floor (phase)));
}
for (uint32_t i = g_p2i; i < _gen_period; ++i) {
const uint32_t j = _gen_period - i;
#ifdef LINEAR_SWEEP
const double phase = j * (a + b * j);
#else
const double phase = a * exp (b * j) - a;
#endif
_wavetable[i] = -(float)sin (2. * M_PI * (phase - floor (phase)));
}
if (_gen_type == SquareSweep) {
for (uint32_t i = 0 ; i < _gen_period; ++i) {
_wavetable[i] = _wavetable[i] < 0 ? -.40709f : .40709f;
}
}
else if (_gen_type == SquareSweepSwell) {
for (uint32_t i = 0 ; i < _gen_period; ++i) {
_wavetable[i] = _wavetable[i] < 0 ? -1 : 1;
}
}
}
break;
case LTC:
switch (c % 4) {
case 0:
_ltc = ltc_encoder_create (samplerate, 25, LTC_TV_625_50, 0);
name = "LTC25";
break;
case 1:
_ltc = ltc_encoder_create (samplerate, 30, LTC_TV_1125_60, 0);
name = "LTC30";
break;
case 2:
_ltc = ltc_encoder_create (samplerate, 30001.f / 1001.f, LTC_TV_525_60, 0);
name = "LTC29df";
break;
case 3:
_ltc = ltc_encoder_create (samplerate, 24, LTC_TV_FILM_24, 0);
name = "LTC24";
break;
}
_ltc_spd = 1.0;
_ltc_rand = floor((float)c / 4) * .001f;
if (c < 4) {
name += " (locked)";
} else {
name += " (varspd)";
}
SMPTETimecode tc;
tc.years = 0;
tc.months = 0;
tc.days = 0;
tc.hours = (3 * (c / 4)) % 24; // XXX
tc.mins = 0;
tc.secs = 0;
tc.frame = 0;
ltc_encoder_set_timecode (_ltc, &tc);
name += string_compose ("@%1h", (int)tc.hours);
_ltcbuf = new PBD::RingBuffer<Sample> (std::max (DummyAudioBackend::max_buffer_size() * 2.f, samplerate));
break;
case Loopback:
_wavetable = (Sample*) calloc (DummyAudioBackend::max_buffer_size(), sizeof(Sample));
break;
}
return name;
}
void DummyAudioPort::midi_to_wavetable (DummyMidiBuffer const * const src, size_t n_samples)
{
memset(_wavetable, 0, n_samples * sizeof(float));
/* generate an audio spike for every midi message
* to verify layency-compensation alignment
* (here: midi-out playback-latency + audio-in capture-latency)
*/
for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
const pframes_t t = (*it)->timestamp();
assert(t < n_samples);
// somewhat arbitrary mapping for quick visual feedback
float v = -.5f;
if ((*it)->size() == 3) {
const unsigned char *d = (*it)->const_data();
if ((d[0] & 0xf0) == 0x90) { // note on
v = .25f + d[2] / 512.f;
}
else if ((d[0] & 0xf0) == 0x80) { // note off
v = .3f - d[2] / 640.f;
}
else if ((d[0] & 0xf0) == 0xb0) { // CC
v = -.1f - d[2] / 256.f;
}
}
_wavetable[t] += v;
}
}
float DummyAudioPort::grandf ()
{
// Gaussian White Noise
// http://www.musicdsp.org/archive.php?classid=0#109
float x1, x2, r;
if (_pass) {
_pass = false;
return _rn1;
}
do {
x1 = randf ();
x2 = randf ();
r = x1 * x1 + x2 * x2;
} while ((r >= 1.0f) || (r < 1e-22f));
r = sqrtf (-2.f * logf (r) / r);
_pass = true;
_rn1 = r * x2;
return r * x1;
}
/* inspired by jack-demolition by Steve Harris */
static const float _demolition[] = {
0.0f, /* special case - 0dbFS white noise */
0.0f, /* zero, may cause denomrals following a signal */
0.73 / 1e45, /* very small - should be denormal when floated */
3.7f, /* arbitrary number > 0dBFS */
-4.3f, /* arbitrary negative number > 0dBFS */
4294967395.0f, /* 2^16 + 100 */
-4294967395.0f,
3.402823466e+38F, /* HUGE, HUGEVALF, non-inf number */
INFINITY, /* +inf */
-INFINITY, /* -inf */
-NAN, /* -nan */
NAN, /* nan */
0.0f, /* some silence to check for recovery */
};
void DummyAudioPort::generate (const pframes_t n_samples)
{
Glib::Threads::Mutex::Lock lm (generator_lock);
if (_gen_cycle) {
return;
}
switch (_gen_type) {
case Silence:
memset (_buffer, 0, n_samples * sizeof (Sample));
break;
case DC05:
for (pframes_t i = 0 ; i < n_samples; ++i) {
_buffer[i] = 0.5f;
}
break;
case Demolition:
switch (_gen_count2) {
case 0: // noise
for (pframes_t i = 0 ; i < n_samples; ++i) {
_buffer[i] = randf();
}
break;
default:
for (pframes_t i = 0 ; i < n_samples; ++i) {
_buffer[i] = _demolition [_gen_count2];
}
break;
}
_gen_offset += n_samples;
if (_gen_offset > _gen_period) {
_gen_offset = 0;
_gen_count2 = (_gen_count2 + 1) % (sizeof (_demolition) / sizeof (float));
}
break;
case SquareWave:
assert(_gen_period > 0);
for (pframes_t i = 0 ; i < n_samples; ++i) {
if (_gen_offset < _gen_period * .5f) {
_buffer[i] = .40709f; // -6dBFS
} else {
_buffer[i] = -.40709f;
}
_gen_offset = (_gen_offset + 1) % _gen_period;
}
break;
case KronekerDelta:
assert(_gen_period > 0);
memset (_buffer, 0, n_samples * sizeof (Sample));
for (pframes_t i = 0; i < n_samples; ++i) {
if (_gen_offset == 0) {
_buffer[i] = 1.0f;
}
_gen_offset = (_gen_offset + 1) % _gen_period;
}
break;
case OneHz:
memset (_buffer, 0, n_samples * sizeof (Sample));
{
pframes_t pp = pulse_position ();
/* MIDI Pulse needs 2 samples: Note on + off */
if (pp < n_samples - 1) {
_buffer[pp] = 1.0f;
_buffer[pp + 1] = -1.0f;
}
}
break;
case SineSweepSwell:
case SquareSweepSwell:
assert(_wavetable && _gen_period > 0);
{
const float vols = 2.f / (float)_gen_perio2;
for (pframes_t i = 0; i < n_samples; ++i) {
const float g = fabsf (_gen_count2 * vols - 1.f);
_buffer[i] = g * _wavetable[_gen_offset];
_gen_offset = (_gen_offset + 1) % _gen_period;
_gen_count2 = (_gen_count2 + 1) % _gen_perio2;
}
}
break;
case Loopback:
memcpy((void*)_buffer, (void*)_wavetable, n_samples * sizeof(Sample));
break;
case SineWave:
case SineWaveOctaves:
case SineSweep:
case SquareSweep:
assert(_wavetable && _gen_period > 0);
{
pframes_t written = 0;
while (written < n_samples) {
const uint32_t remain = n_samples - written;
const uint32_t to_copy = std::min(remain, _gen_period - _gen_offset);
memcpy((void*)&_buffer[written],
(void*)&_wavetable[_gen_offset],
to_copy * sizeof(Sample));
written += to_copy;
_gen_offset = (_gen_offset + to_copy) % _gen_period;
}
}
break;
case UniformWhiteNoise:
for (pframes_t i = 0 ; i < n_samples; ++i) {
_buffer[i] = .158489f * randf();
}
break;
case GaussianWhiteNoise:
for (pframes_t i = 0 ; i < n_samples; ++i) {
_buffer[i] = .089125f * grandf();
}
break;
case PinkNoise:
for (pframes_t i = 0 ; i < n_samples; ++i) {
// Paul Kellet's refined method
// http://www.musicdsp.org/files/pink.txt
// NB. If 'white' consists of uniform random numbers,
// the pink noise will have an almost gaussian distribution.
const float white = .0498f * randf ();
_b0 = .99886f * _b0 + white * .0555179f;
_b1 = .99332f * _b1 + white * .0750759f;
_b2 = .96900f * _b2 + white * .1538520f;
_b3 = .86650f * _b3 + white * .3104856f;
_b4 = .55000f * _b4 + white * .5329522f;
_b5 = -.7616f * _b5 - white * .0168980f;
_buffer[i] = _b0 + _b1 + _b2 + _b3 + _b4 + _b5 + _b6 + white * 0.5362f;
_b6 = white * 0.115926f;
}
break;
case PonyNoise:
for (pframes_t i = 0 ; i < n_samples; ++i) {
const float white = 0.0498f * randf ();
// Paul Kellet's economy method
// http://www.musicdsp.org/files/pink.txt
_b0 = 0.99765f * _b0 + white * 0.0990460f;
_b1 = 0.96300f * _b1 + white * 0.2965164f;
_b2 = 0.57000f * _b2 + white * 1.0526913f;
_buffer[i] = _b0 + _b1 + _b2 + white * 0.1848f;
}
break;
case LTC:
while (_ltcbuf->read_space () < n_samples) {
// we should pre-allocate (or add a zero-copy libltc API), whatever.
ltcsnd_sample_t* enc_buf = (ltcsnd_sample_t*) malloc (ltc_encoder_get_buffersize (_ltc) * sizeof (ltcsnd_sample_t));
for (int byteCnt = 0; byteCnt < 10; byteCnt++) {
if (_ltc_rand != 0.f) {
_ltc_spd += randf () * _ltc_rand;
_ltc_spd = std::min (1.5f, std::max (0.5f, _ltc_spd));
}
ltc_encoder_encode_byte (_ltc, byteCnt, _ltc_spd);
const int len = ltc_encoder_get_buffer (_ltc, enc_buf);
for (int i = 0; i < len; ++i) {
const float v1 = enc_buf[i] - 128;
Sample v = v1 * 0.002;
_ltcbuf->write (&v, 1);
}
}
ltc_encoder_inc_timecode (_ltc);
free (enc_buf);
}
_ltcbuf->read (_buffer, n_samples);
break;
}
_gen_cycle = true;
}
void*
DummyAudioPort::get_buffer (pframes_t n_samples)
{
if (is_input ()) {
const std::set<BackendPortPtr>& connections = get_connections ();
std::set<BackendPortPtr>::const_iterator it = connections.begin ();
if (it == connections.end ()) {
memset (_buffer, 0, n_samples * sizeof (Sample));
} else {
boost::shared_ptr<DummyAudioPort> source = boost::dynamic_pointer_cast<DummyAudioPort>(*it);
assert (source && source->is_output ());
if (source->is_physical() && source->is_terminal()) {
source->get_buffer(n_samples); // generate signal.
}
memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample));
while (++it != connections.end ()) {
source = boost::dynamic_pointer_cast<DummyAudioPort>(*it);
assert (source && source->is_output ());
Sample* dst = buffer ();
if (source->is_physical() && source->is_terminal()) {
source->get_buffer(n_samples); // generate signal.
}
const Sample* src = source->const_buffer ();
for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) {
*dst += *src;
}
}
}
} else if (is_output () && is_physical () && is_terminal()) {
if (!_gen_cycle) {
generate(n_samples);
}
}
return _buffer;
}
DummyMidiPort::DummyMidiPort (DummyAudioBackend &b, const std::string& name, PortFlags flags)
: DummyPort (b, name, flags)
, _midi_seq_spb (0)
, _midi_seq_time (0)
, _midi_seq_pos (0)
, _midi_seq_dat (0)
{
_buffer.clear ();
_loopback.clear ();
}
DummyMidiPort::~DummyMidiPort () {
_buffer.clear ();
_loopback.clear ();
}
struct MidiEventSorter {
bool operator() (const boost::shared_ptr<DummyMidiEvent>& a, const boost::shared_ptr<DummyMidiEvent>& b) {
return *a < *b;
}
};
void DummyMidiPort::set_loopback (DummyMidiBuffer const * const src)
{
_loopback.clear ();
for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
_loopback.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (**it)));
}
}
std::string
DummyMidiPort::setup_generator (int seq_id, const float sr)
{
DummyPort::setup_random_number_generator();
if (seq_id < 0) {
_midi_seq_spb = sr;
return "One Hz";
}
_midi_seq_dat = DummyMidiData::sequences[seq_id % NUM_MIDI_EVENT_GENERATORS];
_midi_seq_spb = sr * .5f; // 120 BPM, beat_time 1.0 per beat.
_midi_seq_pos = 0;
_midi_seq_time = 0;
if (_midi_seq_dat && _midi_seq_dat[0].beat_time < -1) {
_midi_seq_spb = sr / 25; // 25fps MTC
} else if (_midi_seq_dat && _midi_seq_dat[0].beat_time < 0) {
/* MIDI Clock 120 BPM */
const double bpm = 120;
double quarter_notes_per_beat = 1.0;
const double samples_per_beat = sr * 60.0 / bpm;
const double samples_per_quarter_note = samples_per_beat / quarter_notes_per_beat;
const double clock_tick_interval = samples_per_quarter_note / 24.0;
_midi_seq_spb = clock_tick_interval;
}
return DummyMidiData::sequence_names[seq_id];
}
void DummyMidiPort::midi_generate (const pframes_t n_samples)
{
Glib::Threads::Mutex::Lock lm (generator_lock);
if (_gen_cycle) {
return;
}
_buffer.clear ();
_gen_cycle = true;
if (_midi_seq_spb != 0 && !_midi_seq_dat) {
/* 1 Hz Note Events */
pframes_t pp = pulse_position ();
if (pp < n_samples - 1) {
uint8_t md[3] = {0x90, 0x3c, 0x7f};
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (pp, md, 3)));
md[0] = 0x80;
md[2] = 0;
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (pp + 1, md, 3)));
}
return;
}
if (_midi_seq_spb == 0 || !_midi_seq_dat) {
for (DummyMidiBuffer::const_iterator it = _loopback.begin (); it != _loopback.end (); ++it) {
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (**it)));
}
return;
}
if (_midi_seq_dat[0].beat_time < -1) {
/* MTC generator */
const int audio_samples_per_video_frame = _midi_seq_spb; // sample-rate / 25
const int audio_samples_per_qf = audio_samples_per_video_frame / 4;
samplepos_t tc_frame = _midi_seq_time / audio_samples_per_video_frame;
samplepos_t tc_sample = tc_frame * audio_samples_per_video_frame;
int qf = (tc_frame & 1) ? 4 : 0;
while (tc_sample < _midi_seq_time + n_samples) {
if (tc_sample >= _midi_seq_time) {
uint8_t buf[2];
buf[0] = 0xf1;
int frame = tc_frame % 25;
int second = (tc_frame / 25) % 60;
int minute = ((tc_frame / 25) / 60) % 60;
int hour = (((tc_frame / 25) / 60) / 60);
switch(qf & 7) {
case 0: buf[1] = 0x00 | (frame & 0x0f); break;
case 1: buf[1] = 0x10 | ((frame & 0xf0) >> 4); break;
case 2: buf[1] = 0x20 | (second & 0x0f); break;
case 3: buf[1] = 0x30 | ((second & 0xf0) >> 4); break;
case 4: buf[1] = 0x40 | (minute & 0x0f); break;
case 5: buf[1] = 0x50 | ((minute & 0xf0) >> 4); break;
case 6: buf[1] = 0x60 | ((/* 25fps*/ 0x20 | hour) & 0x0f); break;
case 7: buf[1] = 0x70 | (((/* 25fps*/ 0x20 | hour) & 0xf0)>>4); break;
}
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (tc_sample - _midi_seq_time, buf, 2)));
}
tc_sample += audio_samples_per_qf;
if (++qf == 8) {
++tc_frame;
qf = 0;
}
}
_midi_seq_time += n_samples;
if (_midi_seq_time >= /* 24 * 3600 * 25 */ 2160000LL * audio_samples_per_video_frame) {
_midi_seq_time -= 2160000LL * audio_samples_per_video_frame; // 24h @ 25fps
}
return;
} else if (_midi_seq_dat[0].beat_time < 0) {
/* MClk generator */
uint8_t buf[3];
if (_midi_seq_time == 0) {
/* Position Message */
int64_t bcnt = 0; // beat count
buf[0] = 0xf2;
buf[1] = bcnt & 0x7f; // LSB
buf[2] = (bcnt >> 7) & 0x7f; // MSB
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (0, buf, 3)));
}
/* MIDI System Real-Time Messages */
#define MIDI_RT_CLOCK (0xF8)
#define MIDI_RT_START (0xFA)
#define MIDI_RT_CONTINUE (0xFB)
#define MIDI_RT_STOP (0xFC)
if (_midi_seq_time == 0) {
/* start */
buf[0] = MIDI_RT_START;
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (0, buf, 1)));
}
const int clock_tick_interval = _midi_seq_spb; // samples per clock-tick
samplepos_t clk_tick = _midi_seq_time / clock_tick_interval;
samplepos_t clk_sample = clk_tick * clock_tick_interval;
while (clk_sample < _midi_seq_time + n_samples) {
if (clk_sample >= _midi_seq_time) {
buf[0] = MIDI_RT_CLOCK;
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (clk_sample - _midi_seq_time, buf, 1)));
}
clk_sample += clock_tick_interval;
}
_midi_seq_time += n_samples;
if (_midi_seq_time >= 16384 * 24 * clock_tick_interval) {
_midi_seq_time -= 16384 * 24 * clock_tick_interval;
}
return;
}
while (1) {
const int32_t ev_beat_time = _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb - _midi_seq_time;
if (ev_beat_time < 0) {
break;
}
if ((pframes_t) ev_beat_time >= n_samples) {
break;
}
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (
ev_beat_time,
_midi_seq_dat[_midi_seq_pos].event,
_midi_seq_dat[_midi_seq_pos].size
)));
++_midi_seq_pos;
if (_midi_seq_dat[_midi_seq_pos].event[0] == 0xff && _midi_seq_dat[_midi_seq_pos].event[1] == 0xff) {
_midi_seq_time -= _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb;
_midi_seq_pos = 0;
}
}
_midi_seq_time += n_samples;
}
void* DummyMidiPort::get_buffer (pframes_t n_samples)
{
if (is_input ()) {
_buffer.clear ();
const std::set<BackendPortPtr>& connections = get_connections ();
for (std::set<BackendPortPtr>::const_iterator i = connections.begin ();
i != connections.end ();
++i) {
boost::shared_ptr<DummyMidiPort> source = boost::dynamic_pointer_cast<DummyMidiPort>(*i);
if (source->is_physical() && source->is_terminal()) {
source->get_buffer(n_samples); // generate signal.
}
const DummyMidiBuffer *src = source->const_buffer ();
for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
_buffer.push_back (boost::shared_ptr<DummyMidiEvent>(new DummyMidiEvent (**it)));
}
}
std::stable_sort (_buffer.begin (), _buffer.end (), MidiEventSorter());
} else if (is_output () && is_physical () && is_terminal()) {
if (!_gen_cycle) {
midi_generate(n_samples);
}
}
return &_buffer;
}
DummyMidiEvent::DummyMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size)
: _size (size)
, _timestamp (timestamp)
, _data (0)
{
if (size > 0) {
_data = (uint8_t*) malloc (size);
memcpy (_data, data, size);
}
}
DummyMidiEvent::DummyMidiEvent (const DummyMidiEvent& other)
: _size (other.size ())
, _timestamp (other.timestamp ())
, _data (0)
{
if (other.size () && other.const_data ()) {
_data = (uint8_t*) malloc (other.size ());
memcpy (_data, other.const_data (), other.size ());
}
};
DummyMidiEvent::~DummyMidiEvent () {
free (_data);
};