13
0
livetrax/libs/backends/portaudio/portaudio_backend.cc

2006 lines
49 KiB
C++

/*
* Copyright (C) 2015-2016 Tim Mayberry <mojofunk@gmail.com>
* Copyright (C) 2015-2018 Robin Gareus <robin@gareus.org>
* Copyright (C) 2016-2018 Paul Davis <paul@linuxaudiosystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <regex.h>
#ifndef PLATFORM_WINDOWS
#include <sys/mman.h>
#include <sys/time.h>
#endif
#ifdef COMPILER_MINGW
#include <sys/time.h>
#endif
#include <glibmm.h>
#include "portaudio_backend.h"
#include "pbd/compose.h"
#include "pbd/error.h"
#include "pbd/file_utils.h"
#include "pbd/pthread_utils.h"
#include "pbd/microseconds.h"
#include "pbd/windows_timer_utils.h"
#include "pbd/windows_mmcss.h"
#include "ardour/filesystem_paths.h"
#include "ardour/port_manager.h"
#include "pbd/i18n.h"
#include "audio_utils.h"
#include "debug.h"
using namespace ARDOUR;
namespace {
const char * const winmme_driver_name = X_("WinMME");
}
static std::string s_instance_name;
size_t PortAudioBackend::_max_buffer_size = 8192;
std::vector<std::string> PortAudioBackend::_midi_options;
std::vector<AudioBackend::DeviceStatus> PortAudioBackend::_input_audio_device_status;
std::vector<AudioBackend::DeviceStatus> PortAudioBackend::_output_audio_device_status;
PortAudioBackend::PortAudioBackend (AudioEngine& e, AudioBackendInfo& info)
: AudioBackend (e, info)
, PortEngineSharedImpl (e, s_instance_name)
, _pcmio (0)
, _run (false)
, _active (false)
, _use_blocking_api(false)
, _freewheel (false)
, _freewheeling (false)
, _freewheel_ack (false)
, _reinit_thread_callback (false)
, _measure_latency (false)
, _freewheel_processed (0)
, _cycle_count(0)
, _total_deviation_us(0)
, _max_deviation_us(0)
, _input_audio_device("")
, _output_audio_device("")
, _midi_driver_option(winmme_driver_name)
, _samplerate (48000)
, _samples_per_period (1024)
, _n_inputs (0)
, _n_outputs (0)
, _systemic_audio_input_latency (0)
, _systemic_audio_output_latency (0)
, _dsp_load (0)
, _processed_samples (0)
{
_instance_name = s_instance_name;
pthread_mutex_init (&_freewheel_mutex, 0);
pthread_cond_init (&_freewheel_signal, 0);
_port_connection_queue.reserve (128);
_pcmio = new PortAudioIO ();
_midiio = new WinMMEMidiIO ();
}
PortAudioBackend::~PortAudioBackend ()
{
delete _pcmio; _pcmio = 0;
delete _midiio; _midiio = 0;
clear_ports ();
pthread_mutex_destroy (&_freewheel_mutex);
pthread_cond_destroy (&_freewheel_signal);
}
/* AUDIOBACKEND API */
std::string
PortAudioBackend::name () const
{
return X_("PortAudio");
}
bool
PortAudioBackend::is_realtime () const
{
return true;
}
bool
PortAudioBackend::requires_driver_selection() const
{
// we could do this but implementation would need changing
/*
if (enumerate_drivers().size() == 1) {
return false;
}
*/
return true;
}
std::vector<std::string>
PortAudioBackend::enumerate_drivers () const
{
DEBUG_AUDIO ("Portaudio: enumerate_drivers\n");
std::vector<std::string> currently_available;
_pcmio->host_api_list (currently_available);
return currently_available;
}
int
PortAudioBackend::set_driver (const std::string& name)
{
DEBUG_AUDIO (string_compose ("Portaudio: set_driver %1 \n", name));
if (!_pcmio->set_host_api (name)) {
DEBUG_AUDIO (string_compose ("Portaudio: Unable to set_driver %1 \n", name));
return -1;
}
_pcmio->update_devices();
return 0;
}
bool
PortAudioBackend::update_devices ()
{
// update midi device info?
return _pcmio->update_devices();
}
void
PortAudioBackend::set_use_buffered_io (bool use_buffered_io)
{
DEBUG_AUDIO (string_compose ("Portaudio: use_buffered_io %1 \n", use_buffered_io));
if (running()) {
return;
}
_use_blocking_api = use_buffered_io;
}
std::string
PortAudioBackend::driver_name () const
{
std::string driver_name = _pcmio->get_host_api ();
DEBUG_AUDIO (string_compose ("Portaudio: driver_name %1 \n", driver_name));
return driver_name;
}
bool
PortAudioBackend::use_separate_input_and_output_devices () const
{
return true;
}
std::vector<AudioBackend::DeviceStatus>
PortAudioBackend::enumerate_devices () const
{
DEBUG_AUDIO ("Portaudio: ERROR enumerate devices should not be called \n");
return std::vector<AudioBackend::DeviceStatus>();
}
std::vector<AudioBackend::DeviceStatus>
PortAudioBackend::enumerate_input_devices () const
{
_input_audio_device_status.clear();
std::map<int, std::string> input_devices;
_pcmio->input_device_list(input_devices);
for (std::map<int, std::string>::const_iterator i = input_devices.begin (); i != input_devices.end(); ++i) {
if (_input_audio_device == "") _input_audio_device = i->second;
_input_audio_device_status.push_back (DeviceStatus (i->second, true));
}
return _input_audio_device_status;
}
std::vector<AudioBackend::DeviceStatus>
PortAudioBackend::enumerate_output_devices () const
{
_output_audio_device_status.clear();
std::map<int, std::string> output_devices;
_pcmio->output_device_list(output_devices);
for (std::map<int, std::string>::const_iterator i = output_devices.begin (); i != output_devices.end(); ++i) {
if (_output_audio_device == "") _output_audio_device = i->second;
_output_audio_device_status.push_back (DeviceStatus (i->second, true));
}
return _output_audio_device_status;
}
std::vector<float>
PortAudioBackend::available_sample_rates (const std::string&) const
{
DEBUG_AUDIO ("Portaudio: available_sample_rates\n");
std::vector<float> sr;
_pcmio->available_sample_rates(name_to_id(_input_audio_device), sr);
return sr;
}
std::vector<uint32_t>
PortAudioBackend::available_buffer_sizes (const std::string&) const
{
DEBUG_AUDIO ("Portaudio: available_buffer_sizes\n");
std::vector<uint32_t> bs;
_pcmio->available_buffer_sizes(name_to_id(_input_audio_device), bs);
return bs;
}
uint32_t
PortAudioBackend::available_input_channel_count (const std::string&) const
{
return 128; // TODO query current device
}
uint32_t
PortAudioBackend::available_output_channel_count (const std::string&) const
{
return 128; // TODO query current device
}
bool
PortAudioBackend::can_change_sample_rate_when_running () const
{
return false;
}
bool
PortAudioBackend::can_change_buffer_size_when_running () const
{
return false; // TODO
}
int
PortAudioBackend::set_device_name (const std::string& d)
{
DEBUG_AUDIO ("Portaudio: set_device_name should not be called\n");
return 0;
}
int
PortAudioBackend::set_input_device_name (const std::string& d)
{
DEBUG_AUDIO (string_compose ("Portaudio: set_input_device_name %1\n", d));
_input_audio_device = d;
return 0;
}
int
PortAudioBackend::set_output_device_name (const std::string& d)
{
DEBUG_AUDIO (string_compose ("Portaudio: set_output_device_name %1\n", d));
_output_audio_device = d;
return 0;
}
int
PortAudioBackend::set_sample_rate (float sr)
{
if (sr <= 0) { return -1; }
// TODO check if it's in the list of valid SR
_samplerate = sr;
engine.sample_rate_change (sr);
return 0;
}
int
PortAudioBackend::set_buffer_size (uint32_t bs)
{
if (bs <= 0 || bs >= _max_buffer_size) {
return -1;
}
_samples_per_period = bs;
engine.buffer_size_change (bs);
return 0;
}
int
PortAudioBackend::set_interleaved (bool yn)
{
if (!yn) { return 0; }
return -1;
}
int
PortAudioBackend::set_input_channels (uint32_t cc)
{
_n_inputs = cc;
return 0;
}
int
PortAudioBackend::set_output_channels (uint32_t cc)
{
_n_outputs = cc;
return 0;
}
int
PortAudioBackend::set_systemic_input_latency (uint32_t sl)
{
_systemic_audio_input_latency = sl;
return 0;
}
int
PortAudioBackend::set_systemic_output_latency (uint32_t sl)
{
_systemic_audio_output_latency = sl;
return 0;
}
int
PortAudioBackend::set_systemic_midi_input_latency (std::string const device, uint32_t sl)
{
MidiDeviceInfo* nfo = midi_device_info (device);
if (!nfo) return -1;
nfo->systemic_input_latency = sl;
if (_run && nfo->enable) {
update_systemic_midi_latencies ();
}
return 0;
}
int
PortAudioBackend::set_systemic_midi_output_latency (std::string const device, uint32_t sl)
{
MidiDeviceInfo* nfo = midi_device_info (device);
if (!nfo) return -1;
nfo->systemic_output_latency = sl;
if (_run && nfo->enable) {
update_systemic_midi_latencies ();
}
return 0;
}
/* Retrieving parameters */
std::string
PortAudioBackend::device_name () const
{
return "Unused";
}
std::string
PortAudioBackend::input_device_name () const
{
return _input_audio_device;
}
std::string
PortAudioBackend::output_device_name () const
{
return _output_audio_device;
}
float
PortAudioBackend::sample_rate () const
{
return _samplerate;
}
uint32_t
PortAudioBackend::buffer_size () const
{
return _samples_per_period;
}
bool
PortAudioBackend::interleaved () const
{
return false;
}
uint32_t
PortAudioBackend::input_channels () const
{
return _n_inputs;
}
uint32_t
PortAudioBackend::output_channels () const
{
return _n_outputs;
}
uint32_t
PortAudioBackend::systemic_input_latency () const
{
return _systemic_audio_input_latency;
}
uint32_t
PortAudioBackend::systemic_output_latency () const
{
return _systemic_audio_output_latency;
}
uint32_t
PortAudioBackend::systemic_midi_input_latency (std::string const device) const
{
MidiDeviceInfo* nfo = midi_device_info (device);
if (!nfo) return 0;
return nfo->systemic_input_latency;
}
uint32_t
PortAudioBackend::systemic_midi_output_latency (std::string const device) const
{
MidiDeviceInfo* nfo = midi_device_info (device);
if (!nfo) return 0;
return nfo->systemic_output_latency;
}
std::string
PortAudioBackend::control_app_name () const
{
return _pcmio->control_app_name (name_to_id (_input_audio_device));
}
void
PortAudioBackend::launch_control_app ()
{
return _pcmio->launch_control_app (name_to_id(_input_audio_device));
}
/* MIDI */
std::vector<std::string>
PortAudioBackend::enumerate_midi_options () const
{
if (_midi_options.empty()) {
_midi_options.push_back (winmme_driver_name);
_midi_options.push_back (get_standard_device_name(DeviceNone));
}
return _midi_options;
}
int
PortAudioBackend::set_midi_option (const std::string& opt)
{
if (opt != get_standard_device_name(DeviceNone) && opt != winmme_driver_name) {
return -1;
}
DEBUG_MIDI (string_compose ("Setting midi option to %1\n", opt));
_midi_driver_option = opt;
return 0;
}
std::string
PortAudioBackend::midi_option () const
{
return _midi_driver_option;
}
std::vector<AudioBackend::DeviceStatus>
PortAudioBackend::enumerate_midi_devices () const
{
std::vector<AudioBackend::DeviceStatus> midi_device_status;
std::vector<MidiDeviceInfo*> device_info;
if (_midi_driver_option == winmme_driver_name) {
_midiio->update_device_info ();
device_info = _midiio->get_device_info ();
}
for (std::vector<MidiDeviceInfo*>::const_iterator i = device_info.begin();
i != device_info.end();
++i) {
midi_device_status.push_back(DeviceStatus((*i)->device_name, true));
}
return midi_device_status;
}
MidiDeviceInfo*
PortAudioBackend::midi_device_info (const std::string& device_name) const
{
std::vector<MidiDeviceInfo*> dev_info;
if (_midi_driver_option == winmme_driver_name) {
dev_info = _midiio->get_device_info();
for (std::vector<MidiDeviceInfo*>::const_iterator i = dev_info.begin();
i != dev_info.end();
++i) {
if ((*i)->device_name == device_name) {
return *i;
}
}
}
return 0;
}
int
PortAudioBackend::set_midi_device_enabled (std::string const device, bool enable)
{
MidiDeviceInfo* nfo = midi_device_info(device);
if (!nfo) {
return -1;
}
const bool was_enabled = nfo->enable;
nfo->enable = enable;
if (_run && was_enabled != enable) {
if (enable) {
/* add ports for the given device */
register_system_midi_ports (device);
} else {
/* remove all ports for the given device */
for (std::vector<BackendPortPtr>::iterator it = _system_midi_out.begin (); it != _system_midi_out.end ();) {
if ((*it)->hw_port_name () != device) {
++it;
continue;
}
unregister_port (*it);
it = _system_midi_out.erase (it);
}
for (std::vector<BackendPortPtr>::iterator it = _system_midi_in.begin (); it != _system_midi_in.end ();) {
if ((*it)->hw_port_name () != device) {
++it;
continue;
}
unregister_port (*it);
it = _system_midi_in.erase (it);
}
}
update_systemic_midi_latencies ();
}
return 0;
}
bool
PortAudioBackend::midi_device_enabled (std::string const device) const
{
MidiDeviceInfo* nfo = midi_device_info(device);
if (!nfo) return false;
return nfo->enable;
}
/* State Control */
static void * blocking_thread_func (void *arg)
{
PortAudioBackend *d = static_cast<PortAudioBackend *>(arg);
d->blocking_process_thread ();
pthread_exit (0);
return 0;
}
bool
PortAudioBackend::engine_halted ()
{
return !_active && _run;
}
bool
PortAudioBackend::running ()
{
return _active || _run;
}
int
PortAudioBackend::_start (bool for_latency_measurement)
{
if (engine_halted()) {
stop();
}
if (running()) {
DEBUG_AUDIO("Already started.\n");
return BackendReinitializationError;
}
clear_ports ();
/* reset internal state */
assert (_run == false);
_run = false;
_dsp_load = 0;
_freewheeling = false;
_freewheel = false;
PaErrorCode err = paNoError;
if (_use_blocking_api) {
DEBUG_AUDIO("Opening blocking audio stream\n");
err = _pcmio->open_blocking_stream(name_to_id(_input_audio_device),
name_to_id(_output_audio_device),
_samplerate,
_samples_per_period);
} else {
DEBUG_AUDIO("Opening callback audio stream\n");
err = _pcmio->open_callback_stream(name_to_id(_input_audio_device),
name_to_id(_output_audio_device),
_samplerate,
_samples_per_period,
portaudio_callback,
this);
}
// reintepret Portaudio error messages
switch (err) {
case paNoError:
break;
case paBadIODeviceCombination:
return DeviceConfigurationNotSupportedError;
case paInvalidChannelCount:
return ChannelCountNotSupportedError;
case paInvalidSampleRate:
return SampleRateNotSupportedError;
default:
return AudioDeviceOpenError;
}
if (_n_outputs != _pcmio->n_playback_channels ()) {
_n_outputs = _pcmio->n_playback_channels ();
PBD::info << get_error_string(OutputChannelCountNotSupportedError) << endmsg;
}
if (_n_inputs != _pcmio->n_capture_channels ()) {
_n_inputs = _pcmio->n_capture_channels ();
PBD::info << get_error_string(InputChannelCountNotSupportedError) << endmsg;
}
#if 0
if (_pcmio->samples_per_period() != _samples_per_period) {
_samples_per_period = _pcmio->samples_per_period();
PBD::warning << _("PortAudioBackend: samples per period does not match.") << endmsg;
}
#endif
if (_pcmio->sample_rate() != _samplerate) {
_samplerate = _pcmio->sample_rate();
engine.sample_rate_change (_samplerate);
PBD::warning << get_error_string(SampleRateNotSupportedError) << endmsg;
}
_measure_latency = for_latency_measurement;
if (_midi_driver_option == winmme_driver_name) {
_midiio->set_enabled(true);
//_midiio->set_port_changed_callback(midi_port_change, this);
_midiio->start(); // triggers port discovery, callback coremidi_rediscover()
}
_cycle_timer.set_samplerate(_samplerate);
_cycle_timer.set_samples_per_cycle(_samples_per_period);
_dsp_calc.set_max_time_us (_cycle_timer.get_length_us());
DEBUG_MIDI ("Registering MIDI ports\n");
if (register_system_midi_ports () != 0) {
DEBUG_PORTS("Failed to register system midi ports.\n")
return PortRegistrationError;
}
DEBUG_AUDIO ("Registering Audio ports\n");
if (register_system_audio_ports()) {
DEBUG_PORTS("Failed to register system audio ports.\n");
return PortRegistrationError;
}
engine.sample_rate_change (_samplerate);
engine.buffer_size_change (_samples_per_period);
if (engine.reestablish_ports ()) {
DEBUG_PORTS("Could not re-establish ports.\n");
return PortReconnectError;
}
_run = true;
engine.reconnect_ports ();
_port_change_flag.store (0);
_dsp_calc.reset ();
if (_use_blocking_api) {
if (!start_blocking_process_thread()) {
return ProcessThreadStartError;
}
PBD::MMTIMERS::set_min_resolution();
} else {
if (_pcmio->start_stream() != paNoError) {
DEBUG_AUDIO("Unable to start stream\n");
return AudioDeviceOpenError;
}
PBD::MMTIMERS::set_min_resolution();
if (!start_freewheel_process_thread()) {
DEBUG_AUDIO("Unable to start freewheel thread\n");
stop();
return ProcessThreadStartError;
}
/* wait for backend to become active */
int timeout = 5000;
while (!_active && --timeout > 0) { Glib::usleep (1000); }
if (timeout == 0 || !_active) {
PBD::error << _("PortAudio:: failed to start device.") << endmsg;
stop ();
return ProcessThreadStartError;
}
_port_change_flag.store (1);
}
return NoError;
}
int
PortAudioBackend::portaudio_callback(const void* input,
void* output,
unsigned long sample_count,
const PaStreamCallbackTimeInfo* time_info,
PaStreamCallbackFlags status_flags,
void* user_data)
{
PortAudioBackend* pa_backend = static_cast<PortAudioBackend*>(user_data);
if (!pa_backend->process_callback((const float*)input,
(float*)output,
sample_count,
time_info,
status_flags)) {
return paAbort;
}
return paContinue;
}
bool
PortAudioBackend::process_callback(const float* input,
float* output,
uint32_t sample_count,
const PaStreamCallbackTimeInfo* timeInfo,
PaStreamCallbackFlags statusFlags)
{
PBD::WaitTimerRAII tr (dsp_stats[DeviceWait]);
PBD::TimerRAII tr2 (dsp_stats[RunLoop]);
_active = true;
_dsp_calc.set_start_timestamp_us (PBD::get_microseconds());
if (_run && _freewheel && !_freewheel_ack) {
// acknowledge freewheeling; hand-over thread ID
pthread_mutex_lock (&_freewheel_mutex);
if (_freewheel) {
DEBUG_AUDIO("Setting _freewheel_ack = true;\n");
_freewheel_ack = true;
}
DEBUG_AUDIO("Signalling freewheel thread\n");
pthread_cond_signal (&_freewheel_signal);
pthread_mutex_unlock (&_freewheel_mutex);
}
if (statusFlags & paInputUnderflow ||
statusFlags & paInputOverflow ||
statusFlags & paOutputUnderflow ||
statusFlags & paOutputOverflow ) {
DEBUG_AUDIO("PortAudio: Xrun\n");
engine.Xrun();
return true;
}
if (!_run || _freewheel) {
memset(output, 0, sample_count * sizeof(float) * _system_outputs.size());
return true;
}
bool in_main_thread = pthread_equal(_main_thread, pthread_self());
if (_reinit_thread_callback || !in_main_thread) {
_reinit_thread_callback = false;
_main_thread = pthread_self();
AudioEngine::thread_init_callback (this);
}
process_port_connection_changes();
return blocking_process_main (input, output);
}
bool
PortAudioBackend::start_blocking_process_thread ()
{
if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_MAIN, PBD_RT_STACKSIZE_PROC,
&_main_blocking_thread, blocking_thread_func, this))
{
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &_main_blocking_thread, blocking_thread_func, this))
{
DEBUG_AUDIO("Failed to create main audio thread\n");
_run = false;
return false;
} else {
PBD::warning << get_error_string(AquireRealtimePermissionError) << endmsg;
}
}
int timeout = 5000;
while (!_active && --timeout > 0) { Glib::usleep (1000); }
if (timeout == 0 || !_active) {
DEBUG_AUDIO("Failed to start main audio thread\n");
_pcmio->close_stream();
_run = false;
unregister_ports();
_active = false;
return false;
}
return true;
}
bool
PortAudioBackend::stop_blocking_process_thread ()
{
void *status;
if (pthread_join (_main_blocking_thread, &status)) {
DEBUG_AUDIO("Failed to stop main audio thread\n");
return false;
}
return true;
}
int
PortAudioBackend::stop ()
{
if (!_run) {
return 0;
}
_midiio->stop();
PBD::MMTIMERS::reset_resolution();
_run = false;
if (_use_blocking_api) {
if (!stop_blocking_process_thread()) {
return -1;
}
} else {
_pcmio->close_stream();
_active = false;
if (!stop_freewheel_process_thread()) {
return -1;
}
}
unregister_ports();
return (_active == false) ? 0 : -1;
}
static void* freewheel_thread(void* arg)
{
PortAudioBackend* d = static_cast<PortAudioBackend*>(arg);
d->freewheel_process_thread ();
pthread_exit (0);
return 0;
}
bool
PortAudioBackend::start_freewheel_process_thread ()
{
if (pthread_create(&_pthread_freewheel, NULL, freewheel_thread, this)) {
DEBUG_AUDIO("Failed to create main audio thread\n");
return false;
}
int timeout = 5000;
while (!_freewheel_thread_active && --timeout > 0) { Glib::usleep (1000); }
if (timeout == 0 || !_freewheel_thread_active) {
DEBUG_AUDIO("Failed to start freewheel thread\n");
return false;
}
return true;
}
bool
PortAudioBackend::stop_freewheel_process_thread ()
{
void *status;
if (!_freewheel_thread_active) {
return true;
}
DEBUG_AUDIO("Signaling freewheel thread to stop\n");
pthread_mutex_lock (&_freewheel_mutex);
pthread_cond_signal (&_freewheel_signal);
pthread_mutex_unlock (&_freewheel_mutex);
if (pthread_join (_pthread_freewheel, &status) != 0) {
DEBUG_AUDIO("Failed to stop freewheel thread\n");
return false;
}
return true;
}
void*
PortAudioBackend::freewheel_process_thread()
{
_freewheel_thread_active = true;
bool first_run = false;
pthread_mutex_lock (&_freewheel_mutex);
while(_run) {
// check if we should run,
if (_freewheeling != _freewheel) {
if (!_freewheeling) {
DEBUG_AUDIO("Leaving freewheel\n");
_freewheel = false; // first mark as disabled
_reinit_thread_callback = true; // hand over _main_thread
_freewheel_ack = false; // prepare next handshake
_midiio->set_enabled(true);
engine.freewheel_callback (_freewheeling);
_dsp_calc.reset ();
} else {
first_run = true;
_freewheel = true;
}
}
if (!_freewheel || !_freewheel_ack) {
// wait for a change, we use a timed wait to
// terminate early in case some error sets _run = 0
struct timeval tv;
struct timespec ts;
gettimeofday (&tv, NULL);
ts.tv_sec = tv.tv_sec + 3;
ts.tv_nsec = 0;
DEBUG_AUDIO("Waiting for freewheel change\n");
pthread_cond_timedwait (&_freewheel_signal, &_freewheel_mutex, &ts);
continue;
}
if (first_run) {
// tell the engine we're ready to GO.
engine.freewheel_callback (_freewheeling);
first_run = false;
_freewheel_processed = 0;
_main_thread = pthread_self();
AudioEngine::thread_init_callback (this);
_midiio->set_enabled(false);
}
if (!blocking_process_freewheel()) {
break;
}
process_port_connection_changes();
}
pthread_mutex_unlock (&_freewheel_mutex);
_freewheel_thread_active = false;
if (_run) {
// engine.process_callback() returner error
engine.halted_callback("CoreAudio Freehweeling aborted.");
}
return 0;
}
int
PortAudioBackend::freewheel (bool onoff)
{
if (onoff == _freewheeling) {
return 0;
}
_freewheeling = onoff;
if (0 == pthread_mutex_trylock (&_freewheel_mutex)) {
pthread_cond_signal (&_freewheel_signal);
pthread_mutex_unlock (&_freewheel_mutex);
}
return 0;
}
float
PortAudioBackend::dsp_load () const
{
return 100.f * _dsp_load;
}
size_t
PortAudioBackend::raw_buffer_size (DataType t)
{
switch (t) {
case DataType::AUDIO:
return _samples_per_period * sizeof(Sample);
case DataType::MIDI:
return _max_buffer_size; // XXX not really limited
}
return 0;
}
/* Process time */
samplepos_t
PortAudioBackend::sample_time ()
{
return _processed_samples;
}
samplepos_t
PortAudioBackend::sample_time_at_cycle_start ()
{
return _processed_samples;
}
pframes_t
PortAudioBackend::samples_since_cycle_start ()
{
if (!_active || !_run || _freewheeling || _freewheel) {
return 0;
}
if (!_cycle_timer.valid()) {
return 0;
}
return _cycle_timer.samples_since_cycle_start (PBD::get_microseconds());
}
int
PortAudioBackend::name_to_id(std::string device_name) const {
uint32_t device_id = UINT32_MAX;
std::map<int, std::string> devices;
_pcmio->input_device_list(devices);
_pcmio->output_device_list(devices);
for (std::map<int, std::string>::const_iterator i = devices.begin (); i != devices.end(); ++i) {
if (i->second == device_name) {
device_id = i->first;
break;
}
}
return device_id;
}
bool
PortAudioBackend::set_mmcss_pro_audio (HANDLE* task_handle)
{
bool mmcss_success = PBD::MMCSS::set_thread_characteristics ("Pro Audio", task_handle);
if (!mmcss_success) {
PBD::warning << get_error_string(SettingAudioThreadPriorityError) << endmsg;
return false;
} else {
DEBUG_THREADS("Thread characteristics set to Pro Audio\n");
}
bool mmcss_priority =
PBD::MMCSS::set_thread_priority(*task_handle, PBD::MMCSS::AVRT_PRIORITY_NORMAL);
if (!mmcss_priority) {
PBD::warning << get_error_string(SettingAudioThreadPriorityError) << endmsg;
return false;
} else {
DEBUG_THREADS("Thread priority set to AVRT_PRIORITY_NORMAL\n");
}
return true;
}
bool
PortAudioBackend::reset_mmcss (HANDLE task_handle)
{
if (!PBD::MMCSS::revert_thread_characteristics(task_handle)) {
DEBUG_THREADS("Unable to reset process thread characteristics\n");
return false;
}
return true;
}
void *
PortAudioBackend::portaudio_process_thread (void *arg)
{
ThreadData* td = reinterpret_cast<ThreadData*> (arg);
boost::function<void ()> f = td->f;
delete td;
#ifdef USE_MMCSS_THREAD_PRIORITIES
HANDLE task_handle;
bool mmcss_success = set_mmcss_pro_audio (&task_handle);
#endif
DWORD tid = GetCurrentThreadId ();
DEBUG_THREADS (string_compose ("Process Thread Child ID: %1\n", tid));
f ();
#ifdef USE_MMCSS_THREAD_PRIORITIES
if (mmcss_success) {
reset_mmcss (task_handle);
}
#endif
return 0;
}
int
PortAudioBackend::create_process_thread (boost::function<void()> func)
{
pthread_t thread_id;
ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC);
if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_PROC, PBD_RT_STACKSIZE_PROC,
&thread_id, portaudio_process_thread, td)) {
if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, portaudio_process_thread, td)) {
DEBUG_AUDIO("Cannot create process thread.");
return -1;
}
}
_threads.push_back (thread_id);
return 0;
}
int
PortAudioBackend::join_process_threads ()
{
int rv = 0;
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
{
void *status;
if (pthread_join (*i, &status)) {
DEBUG_AUDIO("Cannot terminate process thread.");
rv -= 1;
}
}
_threads.clear ();
return rv;
}
bool
PortAudioBackend::in_process_thread ()
{
if (_use_blocking_api) {
if (pthread_equal(_main_blocking_thread, pthread_self()) != 0) {
return true;
}
} else {
if (pthread_equal(_main_thread, pthread_self()) != 0) {
return true;
}
}
for (std::vector<pthread_t>::const_iterator i = _threads.begin (); i != _threads.end (); ++i)
{
if (pthread_equal (*i, pthread_self ()) != 0) {
return true;
}
}
return false;
}
uint32_t
PortAudioBackend::process_thread_count ()
{
return _threads.size ();
}
void
PortAudioBackend::update_latencies ()
{
// trigger latency callback in RT thread (locked graph)
port_connect_add_remove_callback();
}
/* PORTENGINE API */
void*
PortAudioBackend::private_handle () const
{
return NULL;
}
const std::string&
PortAudioBackend::my_name () const
{
return _instance_name;
}
int
PortAudioBackend::register_system_audio_ports()
{
LatencyRange lr;
const uint32_t a_ins = _n_inputs;
const uint32_t a_out = _n_outputs;
/* audio ports */
lr.min = lr.max = (_measure_latency ? 0 : _systemic_audio_input_latency);
for (uint32_t i = 0; i < a_ins; ++i) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "system:capture_%d", i+1);
PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, false, lr);
std::shared_ptr<PortAudioPort> audio_port = std::dynamic_pointer_cast<PortAudioPort>(p);
audio_port->set_hw_port_name (
_pcmio->get_input_channel_name (name_to_id (_input_audio_device), i));
_system_inputs.push_back (audio_port);
}
lr.min = lr.max = (_measure_latency ? 0 : _systemic_audio_output_latency);
for (uint32_t i = 0; i < a_out; ++i) {
char tmp[64];
snprintf(tmp, sizeof(tmp), "system:playback_%d", i+1);
PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, true, lr);
std::shared_ptr<PortAudioPort> audio_port = std::dynamic_pointer_cast<PortAudioPort>(p);
audio_port->set_hw_port_name (
_pcmio->get_output_channel_name (name_to_id (_output_audio_device), i));
_system_outputs.push_back(audio_port);
}
return 0;
}
int
PortAudioBackend::register_system_midi_ports (std::string const& device)
{
if (_midi_driver_option == get_standard_device_name(DeviceNone)) {
DEBUG_MIDI("No MIDI backend selected, not system midi ports available\n");
return 0;
}
LatencyRange lr;
const std::vector<WinMMEMidiInputDevice*> inputs = _midiio->get_inputs();
for (std::vector<WinMMEMidiInputDevice*>::const_iterator i = inputs.begin ();
i != inputs.end ();
++i) {
if (!device.empty () && device != (*i)->name()) {
continue;
}
MidiDeviceInfo* info = _midiio->get_device_info((*i)->name());
if (!info || !info->enable) {
continue;
}
std::string port_name = "system:midi_capture_" + (*i)->name();
PortPtr p = add_port (port_name, DataType::MIDI, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
if (!p) {
return -1;
}
lr.min = lr.max = (_measure_latency ? 0 : info->systemic_input_latency);
set_latency_range (p, false, lr);
std::shared_ptr<PortMidiPort> midi_port = std::dynamic_pointer_cast<PortMidiPort>(p);
midi_port->set_hw_port_name ((*i)->name());
midi_clear (midi_port->get_buffer(0));
_system_midi_in.push_back (midi_port);
DEBUG_MIDI (string_compose ("Registered MIDI input port: %1\n", port_name));
}
const std::vector<WinMMEMidiOutputDevice*> outputs = _midiio->get_outputs();
for (std::vector<WinMMEMidiOutputDevice*>::const_iterator i = outputs.begin ();
i != outputs.end ();
++i) {
if (!device.empty () && device != (*i)->name()) {
continue;
}
MidiDeviceInfo* info = _midiio->get_device_info((*i)->name());
if (!info || !info->enable) {
continue;
}
std::string port_name = "system:midi_playback_" + (*i)->name();
PortPtr p = add_port (port_name, DataType::MIDI, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
if (!p) {
return -1;
}
lr.min = lr.max = (_measure_latency ? 0 : info->systemic_output_latency);
set_latency_range (p, false, lr);
std::shared_ptr<PortMidiPort> midi_port = std::dynamic_pointer_cast<PortMidiPort>(p);
midi_port->set_n_periods(2);
midi_port->set_hw_port_name ((*i)->name());
midi_clear (midi_port->get_buffer(0));
_system_midi_out.push_back (midi_port);
DEBUG_MIDI (string_compose ("Registered MIDI output port: %1\n", port_name));
}
return 0;
}
void
PortAudioBackend::update_systemic_midi_latencies ()
{
for (std::vector<BackendPortPtr>::iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) {
MidiDeviceInfo* info = _midiio->get_device_info((*it)->hw_port_name());
if (!info) {
continue;
}
LatencyRange lr;
lr.min = lr.max = (_measure_latency ? 0 : info->systemic_output_latency);
set_latency_range (*it, true, lr);
}
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) {
MidiDeviceInfo* info = _midiio->get_device_info((*it)->hw_port_name());
if (!info) {
continue;
}
LatencyRange lr;
lr.min = lr.max = (_measure_latency ? 0 : info->systemic_input_latency);
set_latency_range (*it, false, lr);
}
update_latencies ();
}
BackendPort*
PortAudioBackend::port_factory (std::string const & name, ARDOUR::DataType type, ARDOUR::PortFlags flags)
{
BackendPort* port = 0;
switch (type) {
case DataType::AUDIO:
port = new PortAudioPort (*this, name, flags);
break;
case DataType::MIDI:
port = new PortMidiPort (*this, name, flags);
break;
default:
PBD::error << string_compose (_("%1::register_port: Invalid Data Type."), _instance_name) << endmsg;
return 0;
}
return port;
}
/* MIDI */
int
PortAudioBackend::midi_event_get (
pframes_t& timestamp,
size_t& size, uint8_t const** buf, void* port_buffer,
uint32_t event_index)
{
if (!buf || !port_buffer) return -1;
PortMidiBuffer& source = * static_cast<PortMidiBuffer*>(port_buffer);
if (event_index >= source.size ()) {
return -1;
}
PortMidiEvent const& event = source[event_index];
timestamp = event.timestamp ();
size = event.size ();
*buf = event.data ();
return 0;
}
int
PortAudioBackend::midi_event_put (
void* port_buffer,
pframes_t timestamp,
const uint8_t* buffer, size_t size)
{
if (!buffer || !port_buffer) return -1;
PortMidiBuffer& dst = * static_cast<PortMidiBuffer*>(port_buffer);
#ifndef NDEBUG
if (dst.size () && (pframes_t)dst.back ().timestamp () > timestamp) {
// nevermind, ::get_buffer() sorts events
DEBUG_MIDI (string_compose ("PortMidiBuffer: unordered event: %1 > %2\n",
(pframes_t)dst.back ().timestamp (),
timestamp));
}
#endif
dst.push_back (PortMidiEvent (timestamp, buffer, size));
return 0;
}
uint32_t
PortAudioBackend::get_midi_event_count (void* port_buffer)
{
if (!port_buffer) return 0;
return static_cast<PortMidiBuffer*>(port_buffer)->size ();
}
void
PortAudioBackend::midi_clear (void* port_buffer)
{
if (!port_buffer) return;
PortMidiBuffer * buf = static_cast<PortMidiBuffer*>(port_buffer);
assert (buf);
buf->clear ();
}
/* Monitoring */
bool
PortAudioBackend::can_monitor_input () const
{
return false;
}
int
PortAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
int
PortAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool)
{
return -1;
}
bool
PortAudioBackend::monitoring_input (PortEngine::PortHandle)
{
return false;
}
/* Latency management */
void
PortAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range)
{
std::shared_ptr<BackendPort> port = std::dynamic_pointer_cast<BackendPort>(port_handle);
if (!valid_port (port)) {
DEBUG_PORTS("BackendPort::set_latency_range (): invalid port.\n");
return;
}
port->set_latency_range (latency_range, for_playback);
}
LatencyRange
PortAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback)
{
std::shared_ptr<BackendPort> port = std::dynamic_pointer_cast<BackendPort>(port_handle);
LatencyRange r;
if (!valid_port (port)) {
DEBUG_PORTS("BackendPort::get_latency_range (): invalid port.\n");
r.min = 0;
r.max = 0;
return r;
}
r = port->latency_range (for_playback);
if (port->is_physical() && port->is_terminal()) {
if (port->type() == DataType::AUDIO) {
if (port->is_input() && for_playback) {
r.min += _pcmio->playback_latency();
r.max += _pcmio->playback_latency();
}
if (port->is_output() && !for_playback) {
r.min += _pcmio->capture_latency();
r.max += _pcmio->capture_latency();
}
} else {
if (port->is_input() && for_playback) {
r.min += _samples_per_period;
r.max += _samples_per_period;
}
if (port->is_output() && !for_playback) {
r.min += _samples_per_period;
r.max += _samples_per_period;
}
}
}
return r;
}
/* Getting access to the data buffer for a port */
void*
PortAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes)
{
std::shared_ptr<BackendPort> port = std::dynamic_pointer_cast<BackendPort>(port_handle);
assert (port);
return port->get_buffer (nframes);
}
void *
PortAudioBackend::blocking_process_thread ()
{
AudioEngine::thread_init_callback (this);
_active = true;
_processed_samples = 0;
manager.registration_callback();
manager.graph_order_callback();
if (_pcmio->start_stream() != paNoError) {
_pcmio->close_stream ();
_active = false;
engine.halted_callback(get_error_string(AudioDeviceIOError).c_str());
}
#ifdef USE_MMCSS_THREAD_PRIORITIES
HANDLE task_handle;
bool mmcss_success = set_mmcss_pro_audio (&task_handle);
#endif
DWORD tid = GetCurrentThreadId ();
DEBUG_THREADS (string_compose ("Process Thread Master ID: %1\n", tid));
_dsp_calc.reset ();
while (_run) {
if (_freewheeling != _freewheel) {
_freewheel = _freewheeling;
engine.freewheel_callback (_freewheel);
if (!_freewheel) {
_dsp_calc.reset ();
} else {
_freewheel_processed = 0;
}
}
if (!_freewheel) {
dsp_stats[DeviceWait].start();
int r = _pcmio->next_cycle (_samples_per_period);
dsp_stats[DeviceWait].update();
switch (r) {
case 0: // OK
break;
case 1:
DEBUG_AUDIO("PortAudio: Xrun\n");
engine.Xrun();
break;
default:
PBD::error << get_error_string(AudioDeviceIOError) << endmsg;
break;
}
if (!blocking_process_main(_pcmio->get_capture_buffer(),
_pcmio->get_playback_buffer())) {
return 0;
}
} else {
if (!blocking_process_freewheel()) {
return 0;
}
}
process_port_connection_changes();
}
_pcmio->close_stream();
_active = false;
if (_run) {
engine.halted_callback(get_error_string(AudioDeviceIOError).c_str());
}
#ifdef USE_MMCSS_THREAD_PRIORITIES
if (mmcss_success) {
reset_mmcss(task_handle);
}
#endif
return 0;
}
bool
PortAudioBackend::blocking_process_main(const float* interleaved_input_data,
float* interleaved_output_data)
{
PBD::TimerRAII tr (dsp_stats[RunLoop]);
uint32_t i = 0;
int64_t min_elapsed_us = 1000000;
int64_t max_elapsed_us = 0;
_dsp_calc.set_start_timestamp_us (PBD::get_microseconds());
i = 0;
/* Copy input audio data into input port buffers */
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin();
it != _system_inputs.end();
++it, ++i) {
assert(_system_inputs.size() == _pcmio->n_capture_channels());
uint32_t channels = _system_inputs.size();
float* input_port_buffer = (float*)(*it)->get_buffer(_samples_per_period);
deinterleave_audio_data(
interleaved_input_data, input_port_buffer, _samples_per_period, i, channels);
}
process_incoming_midi ();
/* clear output buffers */
for (std::vector<BackendPortPtr>::const_iterator it = _system_outputs.begin();
it != _system_outputs.end();
++it) {
memset((*it)->get_buffer(_samples_per_period),
0,
_samples_per_period * sizeof(Sample));
}
_last_cycle_start = _cycle_timer.get_start();
_cycle_timer.reset_start(PBD::get_microseconds());
_cycle_count++;
uint64_t cycle_diff_us = (_cycle_timer.get_start() - _last_cycle_start);
int64_t deviation_us = (cycle_diff_us - _cycle_timer.get_length_us());
_total_deviation_us += ::llabs(deviation_us);
_max_deviation_us =
std::max(_max_deviation_us, (uint64_t)::llabs(deviation_us));
if ((_cycle_count % 1000) == 0) {
uint64_t mean_deviation_us = _total_deviation_us / _cycle_count;
DEBUG_TIMING(string_compose("Mean avg cycle deviation: %1(ms), max %2(ms)\n",
mean_deviation_us * 1e-3,
_max_deviation_us * 1e-3));
}
if (::llabs(deviation_us) > _cycle_timer.get_length_us()) {
DEBUG_TIMING(
string_compose("time between process(ms): %1, Est(ms): %2, Dev(ms): %3\n",
cycle_diff_us * 1e-3,
_cycle_timer.get_length_us() * 1e-3,
deviation_us * 1e-3));
}
/* call engine process callback */
if (engine.process_callback(_samples_per_period)) {
_pcmio->close_stream();
_active = false;
return false;
}
process_outgoing_midi ();
/* write back audio */
i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = _system_outputs.begin();
it != _system_outputs.end();
++it, ++i) {
assert(_system_outputs.size() == _pcmio->n_playback_channels());
const uint32_t channels = _system_outputs.size();
float* output_port_buffer = (float*)(*it)->get_buffer(_samples_per_period);
interleave_audio_data(
output_port_buffer, interleaved_output_data, _samples_per_period, i, channels);
}
_processed_samples += _samples_per_period;
/* calculate DSP load */
_dsp_calc.set_stop_timestamp_us (PBD::get_microseconds());
_dsp_load = _dsp_calc.get_dsp_load();
DEBUG_TIMING(string_compose("DSP Load: %1\n", _dsp_load));
max_elapsed_us = std::max(_dsp_calc.elapsed_time_us(), max_elapsed_us);
min_elapsed_us = std::min(_dsp_calc.elapsed_time_us(), min_elapsed_us);
if ((_cycle_count % 1000) == 0) {
DEBUG_TIMING(string_compose("Elapsed process time(usecs) max: %1, min: %2\n",
max_elapsed_us,
min_elapsed_us));
}
return true;
}
bool
PortAudioBackend::blocking_process_freewheel()
{
// zero audio input buffers
for (std::vector<BackendPortPtr>::const_iterator it = _system_inputs.begin();
it != _system_inputs.end();
++it) {
memset((*it)->get_buffer(_samples_per_period),
0,
_samples_per_period * sizeof(Sample));
}
// TODO clear midi or stop midi recv when entering fwheelin'
if (engine.process_callback(_samples_per_period)) {
_pcmio->close_stream();
_active = false;
return false;
}
// drop all outgoing MIDI messages
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_out.begin();
it != _system_midi_out.end();
++it) {
void* bptr = (*it)->get_buffer(0);
midi_clear(bptr);
}
_dsp_load = 1.0;
_freewheel_processed += _samples_per_period;
if (_freewheel_processed > _samplerate) {
_freewheel_processed = 0;
Glib::usleep(100); // don't hog cpu
}
return true;
}
void
PortAudioBackend::process_incoming_midi ()
{
uint32_t i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_in.begin();
it != _system_midi_in.end();
++it, ++i) {
PortMidiBuffer* mbuf = static_cast<PortMidiBuffer*>((*it)->get_buffer(0));
mbuf->clear();
uint64_t timestamp;
pframes_t sample_offset;
uint8_t data[MaxWinMidiEventSize];
size_t size = sizeof(data);
while (_midiio->dequeue_input_event(i,
_cycle_timer.get_start(),
_cycle_timer.get_next_start(),
timestamp,
data,
size)) {
sample_offset = _cycle_timer.samples_since_cycle_start(timestamp);
midi_event_put(mbuf, sample_offset, data, size);
DEBUG_MIDI(string_compose("Dequeuing incoming MIDI data for device: %1 "
"sample_offset: %2 timestamp: %3, size: %4\n",
_midiio->get_inputs()[i]->name(),
sample_offset,
timestamp,
size));
size = sizeof(data);
}
}
}
void
PortAudioBackend::process_outgoing_midi ()
{
/* mixdown midi */
for (std::vector<BackendPortPtr>::iterator it = _system_midi_out.begin();
it != _system_midi_out.end();
++it) {
std::dynamic_pointer_cast<PortMidiPort>(*it)->next_period();
}
/* queue outgoing midi */
uint32_t i = 0;
for (std::vector<BackendPortPtr>::const_iterator it = _system_midi_out.begin();
it != _system_midi_out.end();
++it, ++i) {
const PortMidiBuffer* src =
std::dynamic_pointer_cast<const PortMidiPort>(*it)->const_buffer();
for (PortMidiBuffer::const_iterator mit = src->begin(); mit != src->end();
++mit) {
uint64_t timestamp =
_cycle_timer.timestamp_from_sample_offset(mit->timestamp());
DEBUG_MIDI(string_compose("Queuing outgoing MIDI data for device: "
"%1 sample_offset: %2 timestamp: %3, size: %4\n",
_midiio->get_outputs()[i]->name(),
mit->timestamp(),
timestamp,
mit->size()));
_midiio->enqueue_output_event(i, timestamp, mit->data(), mit->size());
}
}
}
void
PortAudioBackend::process_port_connection_changes ()
{
bool connections_changed = false;
bool ports_changed = false;
if (!pthread_mutex_trylock (&_port_callback_mutex)) {
int canderef (1);
if (_port_change_flag.compare_exchange_strong (canderef, 0)) {
ports_changed = true;
}
if (!_port_connection_queue.empty ()) {
connections_changed = true;
}
while (!_port_connection_queue.empty ()) {
PortConnectData *c = _port_connection_queue.back ();
manager.connect_callback (c->a, c->b, c->c);
_port_connection_queue.pop_back ();
delete c;
}
pthread_mutex_unlock (&_port_callback_mutex);
}
if (ports_changed) {
manager.registration_callback();
}
if (connections_changed) {
manager.graph_order_callback();
}
if (connections_changed || ports_changed) {
update_system_port_latencies ();
engine.latency_callback(false);
engine.latency_callback(true);
}
}
/******************************************************************************/
static std::shared_ptr<PortAudioBackend> _instance;
static std::shared_ptr<AudioBackend> backend_factory (AudioEngine& e);
static int instantiate (const std::string& arg1, const std::string& /* arg2 */);
static int deinstantiate ();
static bool already_configured ();
static bool available ();
static ARDOUR::AudioBackendInfo _descriptor = {
BACKEND_NAME,
instantiate,
deinstantiate,
backend_factory,
already_configured,
available
};
static std::shared_ptr<AudioBackend>
backend_factory (AudioEngine& e)
{
if (!_instance) {
_instance.reset (new PortAudioBackend (e, _descriptor));
}
return _instance;
}
static int
instantiate (const std::string& arg1, const std::string& /* arg2 */)
{
s_instance_name = arg1;
return 0;
}
static int
deinstantiate ()
{
_instance.reset ();
return 0;
}
static bool
already_configured ()
{
return false;
}
static bool
available ()
{
return true;
}
extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor ()
{
return &_descriptor;
}
/******************************************************************************/
/******************************************************************************/
PortAudioPort::PortAudioPort (PortAudioBackend &b, const std::string& name, PortFlags flags)
: BackendPort (b, name, flags)
{
memset (_buffer, 0, sizeof (_buffer));
#ifndef PLATFORM_WINDOWS
mlock(_buffer, sizeof (_buffer));
#endif
}
PortAudioPort::~PortAudioPort () { }
void* PortAudioPort::get_buffer (pframes_t n_samples)
{
if (is_input ()) {
std::set<BackendPortPtr>::const_iterator it = get_connections ().begin ();
if (it == get_connections ().end ()) {
memset (_buffer, 0, n_samples * sizeof (Sample));
} else {
std::shared_ptr<const PortAudioPort> source = std::dynamic_pointer_cast<const PortAudioPort>(*it);
assert (source && source->is_output ());
memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample));
while (++it != get_connections ().end ()) {
source = std::dynamic_pointer_cast<const PortAudioPort>(*it);
assert (source && source->is_output ());
Sample* dst = buffer ();
const Sample* src = source->const_buffer ();
for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) {
*dst += *src;
}
}
}
}
return _buffer;
}
PortMidiPort::PortMidiPort (PortAudioBackend &b, const std::string& name, PortFlags flags)
: BackendPort (b, name, flags)
, _n_periods (1)
, _bufperiod (0)
{
_buffer[0].clear ();
_buffer[1].clear ();
_buffer[0].reserve (256);
_buffer[1].reserve (256);
}
PortMidiPort::~PortMidiPort () { }
struct MidiEventSorter {
bool operator() (PortMidiEvent const& a, PortMidiEvent const& b) {
return a < b;
}
};
void* PortMidiPort::get_buffer (pframes_t /* nframes */)
{
if (is_input ()) {
(_buffer[_bufperiod]).clear ();
for (std::set<BackendPortPtr>::const_iterator i = get_connections ().begin ();
i != get_connections ().end ();
++i) {
const PortMidiBuffer * src = std::dynamic_pointer_cast<const PortMidiPort>(*i)->const_buffer ();
for (PortMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) {
(_buffer[_bufperiod]).push_back (*it);
}
}
std::stable_sort ((_buffer[_bufperiod]).begin (), (_buffer[_bufperiod]).end (), MidiEventSorter());
}
return &(_buffer[_bufperiod]);
}
PortMidiEvent::PortMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size)
: _size (size)
, _timestamp (timestamp)
{
if (size > 0 && size < MaxWinMidiEventSize) {
memcpy (_data, data, size);
}
}
PortMidiEvent::PortMidiEvent (const PortMidiEvent& other)
: _size (other.size ())
, _timestamp (other.timestamp ())
{
if (other._size > 0) {
assert (other._size < MaxWinMidiEventSize);
memcpy (_data, other._data, other._size);
}
};