13
0
livetrax/libs/ardour/meter.cc

436 lines
10 KiB
C++

/*
Copyright (C) 2006 Paul Davis
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <algorithm>
#include <cmath>
#include <limits>
#include "pbd/compose.h"
#include "ardour/audio_buffer.h"
#include "ardour/buffer_set.h"
#include "ardour/dB.h"
#include "ardour/meter.h"
#include "ardour/midi_buffer.h"
#include "ardour/session.h"
#include "ardour/rc_configuration.h"
#include "ardour/runtime_functions.h"
using namespace std;
using namespace ARDOUR;
PeakMeter::PeakMeter (Session& s, const std::string& name)
: Processor (s, string_compose ("meter-%1", name))
{
Kmeterdsp::init(s.nominal_frame_rate());
Iec1ppmdsp::init(s.nominal_frame_rate());
Iec2ppmdsp::init(s.nominal_frame_rate());
Vumeterdsp::init(s.nominal_frame_rate());
_pending_active = true;
_meter_type = MeterPeak;
_reset_dpm = true;
_reset_max = true;
_bufcnt = 0;
_combined_peak = 0;
}
PeakMeter::~PeakMeter ()
{
while (_kmeter.size() > 0) {
delete (_kmeter.back());
delete (_iec1meter.back());
delete (_iec2meter.back());
delete (_vumeter.back());
_kmeter.pop_back();
_iec1meter.pop_back();
_iec2meter.pop_back();
_vumeter.pop_back();
}
while (_peak_power.size() > 0) {
_peak_buffer.pop_back();
_peak_power.pop_back();
_max_peak_signal.pop_back();
}
}
/** Get peaks from @a bufs
* Input acceptance is lenient - the first n buffers from @a bufs will
* be metered, where n was set by the last call to setup(), excess meters will
* be set to 0.
*
* (runs in jack realtime context)
*/
void
PeakMeter::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, double /*speed*/, pframes_t nframes, bool)
{
if (!_active && !_pending_active) {
return;
}
const bool do_reset_max = _reset_max;
const bool do_reset_dpm = _reset_dpm;
_reset_max = false;
_reset_dpm = false;
_combined_peak = 0;
// cerr << "meter " << name() << " runs with " << bufs.available() << " inputs\n";
const uint32_t n_audio = min (current_meters.n_audio(), bufs.count().n_audio());
const uint32_t n_midi = min (current_meters.n_midi(), bufs.count().n_midi());
uint32_t n = 0;
const float falloff_dB = Config->get_meter_falloff() * nframes / _session.nominal_frame_rate();
const uint32_t zoh = _session.nominal_frame_rate() * .021;
_bufcnt += nframes;
// Meter MIDI in to the first n_midi peaks
for (uint32_t i = 0; i < n_midi; ++i, ++n) {
float val = 0.0f;
const MidiBuffer& buf (bufs.get_midi(i));
for (MidiBuffer::const_iterator e = buf.begin(); e != buf.end(); ++e) {
const Evoral::Event<framepos_t> ev(*e, false);
if (ev.is_note_on()) {
const float this_vel = ev.buffer()[2] / 127.0;
if (this_vel > val) {
val = this_vel;
}
if (val > 0.01) {
if (_combined_peak < 0.01) {
_combined_peak = 0.01;
}
}
} else {
val += 1.0 / bufs.get_midi(n).capacity();
if (val > 1.0) {
val = 1.0;
}
}
}
if (_peak_power[n] < (1.0 / 512.0)) {
_peak_power[n] = 0;
} else {
/* empirical algorithm WRT to audio falloff times */
_peak_power[n] -= sqrtf (_peak_power[n]) * falloff_dB * 0.045f;
}
_peak_power[n] = max(_peak_power[n], val);
_max_peak_signal[n] = 0;
}
// Meter audio in to the rest of the peaks
for (uint32_t i = 0; i < n_audio; ++i, ++n) {
if (bufs.get_audio(i).silent()) {
_peak_buffer[n] = 0;
} else {
_peak_buffer[n] = compute_peak (bufs.get_audio(i).data(), nframes, _peak_buffer[n]);
_peak_buffer[n] = std::min (_peak_buffer[n], 100.f); // cut off at +40dBFS for falloff.
_max_peak_signal[n] = std::max(_peak_buffer[n], _max_peak_signal[n]); // todo sync reset
_combined_peak = std::max(_peak_buffer[n], _combined_peak);
}
if (do_reset_max) {
_max_peak_signal[n] = 0;
}
if (do_reset_dpm) {
_peak_buffer[n] = 0;
_peak_power[n] = -std::numeric_limits<float>::infinity();
} else {
// falloff
if (_peak_power[n] > -318.8f) {
_peak_power[n] -= falloff_dB;
} else {
_peak_power[n] = -std::numeric_limits<float>::infinity();
}
_peak_power[n] = max(_peak_power[n], accurate_coefficient_to_dB(_peak_buffer[n]));
// integration buffer, retain peaks > 49Hz
if (_bufcnt > zoh) {
_peak_buffer[n] = 0;
}
}
if (_meter_type & (MeterKrms | MeterK20 | MeterK14 | MeterK12)) {
_kmeter[i]->process(bufs.get_audio(i).data(), nframes);
}
if (_meter_type & (MeterIEC1DIN | MeterIEC1NOR)) {
_iec1meter[i]->process(bufs.get_audio(i).data(), nframes);
}
if (_meter_type & (MeterIEC2BBC | MeterIEC2EBU)) {
_iec2meter[i]->process(bufs.get_audio(i).data(), nframes);
}
if (_meter_type & MeterVU) {
_vumeter[i]->process(bufs.get_audio(i).data(), nframes);
}
}
// Zero any excess peaks
for (uint32_t i = n; i < _peak_power.size(); ++i) {
_peak_power[i] = -std::numeric_limits<float>::infinity();
_max_peak_signal[n] = 0;
}
if (_bufcnt > zoh) {
_bufcnt = 0;
}
_active = _pending_active;
}
void
PeakMeter::reset ()
{
if (_active || _pending_active) {
_reset_dpm = true;
} else {
for (size_t i = 0; i < _peak_power.size(); ++i) {
_peak_power[i] = -std::numeric_limits<float>::infinity();
_peak_buffer[i] = 0;
}
}
// these are handled async just fine.
for (size_t n = 0; n < _kmeter.size(); ++n) {
_kmeter[n]->reset();
_iec1meter[n]->reset();
_iec2meter[n]->reset();
_vumeter[n]->reset();
}
}
void
PeakMeter::reset_max ()
{
if (_active || _pending_active) {
_reset_max = true;
return;
}
for (size_t i = 0; i < _max_peak_signal.size(); ++i) {
_max_peak_signal[i] = 0;
_peak_buffer[i] = 0;
}
}
bool
PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out)
{
out = in;
return true;
}
bool
PeakMeter::configure_io (ChanCount in, ChanCount out)
{
bool changed = false;
if (out != in) { // always 1:1
return false;
}
if (current_meters != in) {
changed = true;
}
current_meters = in;
set_max_channels (in);
if (changed) {
reset_max();
}
return Processor::configure_io (in, out);
}
void
PeakMeter::reflect_inputs (const ChanCount& in)
{
reset();
current_meters = in;
reset_max();
// ConfigurationChanged() postponed
}
void
PeakMeter::emit_configuration_changed () {
ConfigurationChanged (current_meters, current_meters); /* EMIT SIGNAL */
}
void
PeakMeter::set_max_channels (const ChanCount& chn)
{
uint32_t const limit = chn.n_total();
const size_t n_audio = chn.n_audio();
while (_peak_power.size() > limit) {
_peak_buffer.pop_back();
_peak_power.pop_back();
_max_peak_signal.pop_back();
}
while (_peak_power.size() < limit) {
_peak_buffer.push_back(0);
_peak_power.push_back(-std::numeric_limits<float>::infinity());
_max_peak_signal.push_back(0);
}
assert(_peak_buffer.size() == limit);
assert(_peak_power.size() == limit);
assert(_max_peak_signal.size() == limit);
/* alloc/free other audio-only meter types. */
while (_kmeter.size() > n_audio) {
delete (_kmeter.back());
delete (_iec1meter.back());
delete (_iec2meter.back());
delete (_vumeter.back());
_kmeter.pop_back();
_iec1meter.pop_back();
_iec2meter.pop_back();
_vumeter.pop_back();
}
while (_kmeter.size() < n_audio) {
_kmeter.push_back(new Kmeterdsp());
_iec1meter.push_back(new Iec1ppmdsp());
_iec2meter.push_back(new Iec2ppmdsp());
_vumeter.push_back(new Vumeterdsp());
}
assert(_kmeter.size() == n_audio);
assert(_iec1meter.size() == n_audio);
assert(_iec2meter.size() == n_audio);
assert(_vumeter.size() == n_audio);
reset();
reset_max();
}
/** To be driven by the Meter signal from IO.
* Caller MUST hold its own processor_lock to prevent reconfiguration
* of meter size during this call.
*/
#define CHECKSIZE(MTR) (n < MTR.size() + n_midi && n >= n_midi)
float
PeakMeter::meter_level(uint32_t n, MeterType type) {
float mcptmp;
switch (type) {
case MeterKrms:
case MeterK20:
case MeterK14:
case MeterK12:
{
const uint32_t n_midi = current_meters.n_midi();
if (CHECKSIZE(_kmeter)) {
return accurate_coefficient_to_dB (_kmeter[n - n_midi]->read());
}
}
break;
case MeterIEC1DIN:
case MeterIEC1NOR:
{
const uint32_t n_midi = current_meters.n_midi();
if (CHECKSIZE(_iec1meter)) {
return accurate_coefficient_to_dB (_iec1meter[n - n_midi]->read());
}
}
break;
case MeterIEC2BBC:
case MeterIEC2EBU:
{
const uint32_t n_midi = current_meters.n_midi();
if (CHECKSIZE(_iec2meter)) {
return accurate_coefficient_to_dB (_iec2meter[n - n_midi]->read());
}
}
break;
case MeterVU:
{
const uint32_t n_midi = current_meters.n_midi();
if (CHECKSIZE(_vumeter)) {
return accurate_coefficient_to_dB (_vumeter[n - n_midi]->read());
}
}
break;
case MeterPeak:
case MeterPeak0dB:
if (n < _peak_power.size()) {
return _peak_power[n];
}
break;
case MeterMCP:
mcptmp = _combined_peak;
return accurate_coefficient_to_dB(mcptmp);
case MeterMaxSignal:
assert(0);
break;
default:
case MeterMaxPeak:
if (n < _max_peak_signal.size()) {
return accurate_coefficient_to_dB(_max_peak_signal[n]);
}
break;
}
return minus_infinity();
}
void
PeakMeter::set_type(MeterType t)
{
if (t == _meter_type) {
return;
}
_meter_type = t;
if (t & (MeterKrms | MeterK20 | MeterK14 | MeterK12)) {
const size_t n_audio = current_meters.n_audio();
for (size_t n = 0; n < n_audio; ++n) {
_kmeter[n]->reset();
}
}
if (t & (MeterIEC1DIN | MeterIEC1NOR)) {
const size_t n_audio = current_meters.n_audio();
for (size_t n = 0; n < n_audio; ++n) {
_iec1meter[n]->reset();
}
}
if (t & (MeterIEC2BBC | MeterIEC2EBU)) {
const size_t n_audio = current_meters.n_audio();
for (size_t n = 0; n < n_audio; ++n) {
_iec2meter[n]->reset();
}
}
if (t & MeterVU) {
const size_t n_audio = current_meters.n_audio();
for (size_t n = 0; n < n_audio; ++n) {
_vumeter[n]->reset();
}
}
TypeChanged(t);
}
XMLNode&
PeakMeter::state (bool full_state)
{
XMLNode& node (Processor::state (full_state));
node.set_property("type", "meter");
return node;
}