Tim Mayberry
8770c4668d
git-svn-id: svn://localhost/ardour2/branches/3.0@12824 d708f5d6-7413-0410-9779-e7cbd77b26cf
113 lines
2.9 KiB
C++
113 lines
2.9 KiB
C++
/*
|
|
Copyright (C) 2010 Paul Davis
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "pbd/cartesian.h"
|
|
|
|
using namespace std;
|
|
|
|
void
|
|
PBD::spherical_to_cartesian (double azi, double ele, double len, double& x, double& y, double& z)
|
|
{
|
|
/* convert from cylindrical coordinates in degrees to cartesian */
|
|
|
|
static const double atorad = 2.0 * M_PI / 360.0 ;
|
|
|
|
if (len == 0.0) {
|
|
len = 1.0;
|
|
}
|
|
|
|
x = len * cos (azi * atorad) * cos (ele * atorad);
|
|
y = len * sin (azi * atorad) * cos (ele * atorad);
|
|
z = len * sin (ele * atorad);
|
|
}
|
|
|
|
void
|
|
PBD::cartesian_to_spherical (double x, double y, double z, double& azimuth, double& elevation, double& length)
|
|
{
|
|
#if 1
|
|
/* converts cartesian coordinates to cylindrical in degrees*/
|
|
|
|
double rho, theta, phi;
|
|
|
|
rho = sqrt (x*x + y*y + z*z);
|
|
phi = acos (1.0/rho);
|
|
theta = atan2 (y, x);
|
|
|
|
/* XXX for now, clamp phi to zero */
|
|
|
|
phi = 0.0;
|
|
|
|
if (theta < 0.0) {
|
|
azimuth = 180.0 - (180.0 * (theta / M_PI)); /* LHS is negative */
|
|
} else {
|
|
azimuth = 180.0 * (theta / M_PI);
|
|
}
|
|
|
|
if (phi < 0.0) {
|
|
elevation = 180.0 - (180.0 * (phi / M_PI)); /* LHS is negative */
|
|
} else {
|
|
elevation = 180.0 * (phi / M_PI);
|
|
}
|
|
|
|
length = rho;
|
|
#else
|
|
/* converts cartesian coordinates to cylindrical in degrees*/
|
|
|
|
const double atorad = 2.0 * M_PI / 360.0;
|
|
double atan_y_per_x, atan_x_pl_y_per_z;
|
|
double distance;
|
|
|
|
if (x == 0.0) {
|
|
atan_y_per_x = M_PI / 2;
|
|
} else {
|
|
atan_y_per_x = atan2 (y,x);
|
|
}
|
|
|
|
if (y < 0.0) {
|
|
/* below x-axis: atan2 returns 0 .. -PI (negative) so convert to degrees and ADD to 180 */
|
|
azimuth = 180.0 + (atan_y_per_x / (M_PI/180.0) + 180.0);
|
|
} else {
|
|
/* above x-axis: atan2 returns 0 .. +PI so convert to degrees */
|
|
azimuth = atan_y_per_x / atorad;
|
|
}
|
|
|
|
distance = sqrt (x*x + y*y);
|
|
|
|
if (z == 0.0) {
|
|
atan_x_pl_y_per_z = 0.0;
|
|
} else {
|
|
atan_x_pl_y_per_z = atan2 (z,distance);
|
|
}
|
|
|
|
if (distance == 0.0) {
|
|
if (z < 0.0) {
|
|
atan_x_pl_y_per_z = -M_PI/2.0;
|
|
} else if (z > 0.0) {
|
|
atan_x_pl_y_per_z = M_PI/2.0;
|
|
}
|
|
}
|
|
|
|
elevation = atan_x_pl_y_per_z / atorad;
|
|
|
|
// distance = sqrtf (x*x + y*y + z*z);
|
|
#endif
|
|
}
|
|
|