13
0
livetrax/libs/ardour/monitor_processor.cc
Robin Gareus 8a7d92f196
Fix MonotorProc's channel_solo_control
Previously only ::set_solo() worked. Directly using the
controllable did not update `solo_cnt` and other channels
were not muted.
2024-04-09 22:02:31 +02:00

569 lines
14 KiB
C++

/*
* Copyright (C) 2010-2011 Carl Hetherington <carl@carlh.net>
* Copyright (C) 2010-2017 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2013-2019 Robin Gareus <robin@gareus.org>
* Copyright (C) 2015-2016 Tim Mayberry <mojofunk@gmail.com>
* Copyright (C) 2015 Ben Loftis <ben@harrisonconsoles.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "pbd/error.h"
#include "pbd/xml++.h"
#include "ardour/amp.h"
#include "ardour/debug.h"
#include "ardour/audio_buffer.h"
#include "ardour/monitor_processor.h"
#include "ardour/session.h"
#include "pbd/i18n.h"
using namespace ARDOUR;
using namespace PBD;
using namespace std;
/* specialize for bool because of set_value() semantics */
namespace ARDOUR {
template<> void MPControl<bool>::set_value (double v, PBD::Controllable::GroupControlDisposition gcd) {
bool newval = fabs (v) >= 0.5;
if (newval != _value) {
_value = newval;
Changed (true, gcd); /* EMIT SIGNAL */
}
}
}
MonitorProcessor::MonitorProcessor (Session& s)
: Processor (s, X_("MonitorOut"), Temporal::TimeDomainProvider (Temporal::AudioTime))
, solo_cnt (0)
, _monitor_active (false)
, _dim_all_ptr (new MPControl<bool> (false, _("monitor dim"), Controllable::Toggle))
, _cut_all_ptr (new MPControl<bool> (false, _("monitor cut"), Controllable::Toggle))
, _mono_ptr (new MPControl<bool> (false, _("monitor mono"), Controllable::Toggle))
, _dim_level_ptr (new MPControl<volatile gain_t>
/* default is -12dB, range is -20dB to 0dB */
(dB_to_coefficient(-12.0), _("monitor dim level"), Controllable::Flag (0),
dB_to_coefficient(-20.0), dB_to_coefficient (0.0)))
, _solo_boost_level_ptr (new MPControl<volatile gain_t>
/* default is 0dB, range is 0dB to +20dB */
(dB_to_coefficient(0.0), _("monitor solo boost level"), Controllable::Flag (0),
dB_to_coefficient(0.0), dB_to_coefficient(10.0)))
, _dim_all_control (_dim_all_ptr)
, _cut_all_control (_cut_all_ptr)
, _mono_control (_mono_ptr)
, _dim_level_control (_dim_level_ptr)
, _solo_boost_level_control (_solo_boost_level_ptr)
, _dim_all (*_dim_all_ptr)
, _cut_all (*_cut_all_ptr)
, _mono (*_mono_ptr)
, _dim_level (*_dim_level_ptr)
, _solo_boost_level (*_solo_boost_level_ptr)
{
}
MonitorProcessor::~MonitorProcessor ()
{
allocate_channels (0);
/* special case for MPControl */
_dim_all_control->DropReferences (); /* EMIT SIGNAL */
_cut_all_control->DropReferences (); /* EMIT SIGNAL */
_mono_control->DropReferences (); /* EMIT SIGNAL */
_dim_level_control->DropReferences (); /* EMIT SIGNAL */
_solo_boost_level_control->DropReferences (); /* EMIT SIGNAL */
}
void
MonitorProcessor::allocate_channels (uint32_t size)
{
while (_channels.size() > size) {
if (_channels.back()->soloed) {
if (solo_cnt > 0) {
--solo_cnt;
}
}
ChannelRecord* cr = _channels.back();
_channels.pop_back();
delete cr;
}
uint32_t n = _channels.size() + 1;
while (_channels.size() < size) {
_channels.push_back (new ChannelRecord (n));
/* update solo_cnt when Solo changes */
std::shared_ptr<Controllable> sc = _channels.back()->soloed_control;
std::weak_ptr<Controllable> wc (sc);
sc->Changed.connect_same_thread (*this, [this, wc](bool, PBD::Controllable::GroupControlDisposition)
{
std::shared_ptr<Controllable> ac = wc.lock ();
if (ac && ac->get_value () > 0) {
solo_cnt++;
} else {
if (solo_cnt > 0) {
solo_cnt--;
}
}
update_monitor_state ();
});
}
}
int
MonitorProcessor::set_state (const XMLNode& node, int version)
{
int ret = Processor::set_state (node, version);
if (ret != 0) {
return ret;
}
std::string type_name;
if (!node.get_property (X_("type"), type_name)) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings have no type information"))
<< endmsg;
return -1;
}
if (type_name != X_("monitor")) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor given unknown XML settings"))
<< endmsg;
return -1;
}
uint32_t channels = 0;
if (!node.get_property (X_("channels"), channels)) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings are missing a channel cnt"))
<< endmsg;
return -1;
}
allocate_channels (channels);
// need to check that these conversions are working as expected
gain_t val;
if (node.get_property (X_("dim-level"), val)) {
_dim_level = val;
}
if (node.get_property (X_("solo-boost-level"), val)) {
_solo_boost_level = val;
}
bool bool_val;
if (node.get_property (X_("cut-all"), bool_val)) {
_cut_all = bool_val;
}
if (node.get_property (X_("dim-all"), bool_val)) {
_dim_all = bool_val;
}
if (node.get_property (X_("mono"), bool_val)) {
_mono = bool_val;
}
for (XMLNodeList::const_iterator i = node.children().begin(); i != node.children().end(); ++i) {
if ((*i)->name() == X_("Channel")) {
uint32_t chn;
if (!(*i)->get_property (X_("id"), chn)) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings are missing an ID"))
<< endmsg;
return -1;
}
if (chn >= _channels.size()) {
error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings has an illegal channel count"))
<< endmsg;
return -1;
}
ChannelRecord& cr (*_channels[chn]);
bool gain_coeff_zero;
if ((*i)->get_property ("cut", gain_coeff_zero)) {
if (gain_coeff_zero) {
cr.cut = GAIN_COEFF_ZERO;
} else {
cr.cut = GAIN_COEFF_UNITY;
}
}
bool dim;
if ((*i)->get_property ("dim", dim)) {
cr.dim = dim;
}
bool invert_polarity;
if ((*i)->get_property ("invert", invert_polarity)) {
if (invert_polarity) {
cr.polarity = -1.0f;
} else {
cr.polarity = 1.0f;
}
}
bool soloed;
if ((*i)->get_property ("solo", soloed)) {
cr.soloed = soloed;
}
}
}
/* reset solo cnt */
solo_cnt = 0;
for (vector<ChannelRecord*>::const_iterator x = _channels.begin(); x != _channels.end(); ++x) {
if ((*x)->soloed) {
solo_cnt++;
}
}
update_monitor_state ();
return 0;
}
XMLNode&
MonitorProcessor::state () const
{
XMLNode& node(Processor::state ());
/* this replaces any existing "type" property */
node.set_property (X_("type"), X_("monitor"));
node.set_property (X_ ("dim-level"), (float)_dim_level.val ());
node.set_property (X_ ("solo-boost-level"), (float)_solo_boost_level.val ());
node.set_property (X_("cut-all"), _cut_all.val());
node.set_property (X_("dim-all"), _dim_all.val());
node.set_property (X_("mono"), _mono.val());
node.set_property (X_("channels"), (uint32_t)_channels.size ());
XMLNode* chn_node;
uint32_t chn = 0;
for (vector<ChannelRecord*>::const_iterator x = _channels.begin (); x != _channels.end ();
++x, ++chn) {
chn_node = new XMLNode (X_("Channel"));
chn_node->set_property ("id", chn);
// implicitly cast these to bool
chn_node->set_property (X_("cut"), (*x)->cut != GAIN_COEFF_UNITY);
chn_node->set_property (X_("invert"), (*x)->polarity != GAIN_COEFF_UNITY);
chn_node->set_property (X_("dim"), (*x)->dim == true);
chn_node->set_property (X_("solo"), (*x)->soloed == true);
node.add_child_nocopy (*chn_node);
}
return node;
}
void
MonitorProcessor::run (BufferSet& bufs, samplepos_t /*start_sample*/, samplepos_t /*end_sample*/, double /*speed*/, pframes_t nframes, bool /*result_required*/)
{
uint32_t chn = 0;
gain_t target_gain;
gain_t dim_level_this_time = _dim_level;
gain_t global_cut = (_cut_all ? GAIN_COEFF_ZERO : GAIN_COEFF_UNITY);
gain_t global_dim = (_dim_all ? dim_level_this_time : GAIN_COEFF_UNITY);
gain_t solo_boost;
if (_session.listening() || _session.soloing()) {
solo_boost = _solo_boost_level;
} else {
solo_boost = GAIN_COEFF_UNITY;
}
for (BufferSet::audio_iterator b = bufs.audio_begin(); b != bufs.audio_end(); ++b) {
/* don't double-scale by both track dim and global dim coefficients */
gain_t dim_level = (global_dim == GAIN_COEFF_UNITY ? (_channels[chn]->dim ? dim_level_this_time : GAIN_COEFF_UNITY) : GAIN_COEFF_UNITY);
if (_channels[chn]->soloed) {
target_gain = _channels[chn]->polarity * _channels[chn]->cut * dim_level * global_cut * global_dim * solo_boost;
} else {
if (solo_cnt == 0) {
target_gain = _channels[chn]->polarity * _channels[chn]->cut * dim_level * global_cut * global_dim * solo_boost;
} else {
target_gain = GAIN_COEFF_ZERO;
}
}
if (target_gain != _channels[chn]->current_gain || target_gain != GAIN_COEFF_UNITY) {
_channels[chn]->current_gain = Amp::apply_gain (*b, _session.nominal_sample_rate(), nframes, _channels[chn]->current_gain, target_gain);
}
++chn;
}
if (_mono) {
DEBUG_TRACE (DEBUG::Monitor, "mono-izing\n");
/* chn is now the number of channels, use as a scaling factor when mixing
*/
gain_t scale = 1.f / (float)chn;
BufferSet::audio_iterator b = bufs.audio_begin();
AudioBuffer& ab (*b);
Sample* buf = ab.data();
/* scale the first channel */
for (pframes_t n = 0; n < nframes; ++n) {
buf[n] *= scale;
}
/* add every other channel into the first channel's buffer */
++b;
for (; b != bufs.audio_end(); ++b) {
AudioBuffer& ob (*b);
Sample* obuf = ob.data ();
for (pframes_t n = 0; n < nframes; ++n) {
buf[n] += obuf[n] * scale;
}
}
/* copy the first channel to every other channel's buffer */
b = bufs.audio_begin();
++b;
for (; b != bufs.audio_end(); ++b) {
AudioBuffer& ob (*b);
Sample* obuf = ob.data ();
memcpy (obuf, buf, sizeof (Sample) * nframes);
}
}
}
bool
MonitorProcessor::configure_io (ChanCount in, ChanCount out)
{
allocate_channels (in.n_audio());
return Processor::configure_io (in, out);
}
bool
MonitorProcessor::can_support_io_configuration (const ChanCount& in, ChanCount& out)
{
out = in;
return true;
}
void
MonitorProcessor::set_polarity (uint32_t chn, bool invert)
{
if (invert) {
_channels[chn]->polarity = -1.0f;
} else {
_channels[chn]->polarity = 1.0f;
}
update_monitor_state ();
}
void
MonitorProcessor::set_dim (uint32_t chn, bool yn)
{
_channels[chn]->dim = yn;
update_monitor_state ();
}
void
MonitorProcessor::set_cut (uint32_t chn, bool yn)
{
if (yn) {
_channels[chn]->cut = GAIN_COEFF_ZERO;
} else {
_channels[chn]->cut = GAIN_COEFF_UNITY;
}
update_monitor_state ();
}
void
MonitorProcessor::set_solo (uint32_t chn, bool solo)
{
_channels[chn]->soloed = solo;
/* update_monitor_state is called via the Changed signal */
}
void
MonitorProcessor::set_mono (bool yn)
{
_mono = yn;
update_monitor_state ();
}
void
MonitorProcessor::set_cut_all (bool yn)
{
_cut_all = yn;
update_monitor_state ();
}
void
MonitorProcessor::set_dim_all (bool yn)
{
_dim_all = yn;
update_monitor_state ();
}
bool
MonitorProcessor::display_to_user () const
{
return false;
}
bool
MonitorProcessor::soloed (uint32_t chn) const
{
return _channels[chn]->soloed;
}
bool
MonitorProcessor::inverted (uint32_t chn) const
{
return _channels[chn]->polarity < 0.0f;
}
bool
MonitorProcessor::cut (uint32_t chn) const
{
return _channels[chn]->cut == GAIN_COEFF_ZERO;
}
bool
MonitorProcessor::dimmed (uint32_t chn) const
{
return _channels[chn]->dim;
}
bool
MonitorProcessor::mono () const
{
return _mono;
}
bool
MonitorProcessor::dim_all () const
{
return _dim_all;
}
bool
MonitorProcessor::cut_all () const
{
return _cut_all;
}
void
MonitorProcessor::update_monitor_state ()
{
bool en = false;
if (_cut_all || _dim_all || _mono) {
en = true;
}
const uint32_t nchans = _channels.size();
for (uint32_t i = 0; i < nchans && !en; ++i) {
if (cut (i) || dimmed (i) || soloed (i) || inverted (i)) {
en = true;
break;
}
}
if (_monitor_active != en) {
_monitor_active = en;
_session.MonitorChanged();
}
}
std::shared_ptr<Controllable>
MonitorProcessor::channel_cut_control (uint32_t chn) const
{
if (chn < _channels.size()) {
return _channels[chn]->cut_control;
}
return std::shared_ptr<Controllable>();
}
std::shared_ptr<Controllable>
MonitorProcessor::channel_dim_control (uint32_t chn) const
{
if (chn < _channels.size()) {
return _channels[chn]->dim_control;
}
return std::shared_ptr<Controllable>();
}
std::shared_ptr<Controllable>
MonitorProcessor::channel_polarity_control (uint32_t chn) const
{
if (chn < _channels.size()) {
return _channels[chn]->polarity_control;
}
return std::shared_ptr<Controllable>();
}
std::shared_ptr<Controllable>
MonitorProcessor::channel_solo_control (uint32_t chn) const
{
if (chn < _channels.size()) {
return _channels[chn]->soloed_control;
}
return std::shared_ptr<Controllable>();
}
MonitorProcessor::ChannelRecord::ChannelRecord (uint32_t chn)
: current_gain (GAIN_COEFF_UNITY)
, cut_ptr (new MPControl<gain_t> (1.0, string_compose (_("cut control %1"), chn), PBD::Controllable::GainLike))
, dim_ptr (new MPControl<bool> (false, string_compose (_("dim control"), chn), PBD::Controllable::Toggle))
, polarity_ptr (new MPControl<gain_t> (1.0, string_compose (_("polarity control"), chn), PBD::Controllable::Toggle, -1, 1))
, soloed_ptr (new MPControl<bool> (false, string_compose (_("solo control"), chn), PBD::Controllable::Toggle))
, cut_control (cut_ptr)
, dim_control (dim_ptr)
, polarity_control (polarity_ptr)
, soloed_control (soloed_ptr)
, cut (*cut_ptr)
, dim (*dim_ptr)
, polarity (*polarity_ptr)
, soloed (*soloed_ptr)
{
}
MonitorProcessor::ChannelRecord::~ChannelRecord ()
{
/* special case for MPControl */
cut_control->DropReferences(); /* EMIT SIGNAL */
dim_control->DropReferences(); /* EMIT SIGNAL */
polarity_control->DropReferences(); /* EMIT SIGNAL */
soloed_control->DropReferences(); /* EMIT SIGNAL */
}