498 lines
13 KiB
C++
498 lines
13 KiB
C++
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
|
|
|
/*
|
|
QM Vamp Plugin Set
|
|
|
|
Centre for Digital Music, Queen Mary, University of London.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version. See the file
|
|
COPYING included with this distribution for more information.
|
|
*/
|
|
|
|
#ifdef COMPILER_MSVC
|
|
#include <ardourext/float_cast.h>
|
|
#endif
|
|
#include "OnsetDetect.h"
|
|
|
|
#include "dsp/onsets/DetectionFunction.h"
|
|
#include "dsp/onsets/PeakPicking.h"
|
|
#include "dsp/tempotracking/TempoTrack.h"
|
|
|
|
using std::string;
|
|
using std::vector;
|
|
using std::cerr;
|
|
using std::endl;
|
|
|
|
float OnsetDetector::m_preferredStepSecs = 0.01161;
|
|
|
|
class OnsetDetectorData
|
|
{
|
|
public:
|
|
OnsetDetectorData(const DFConfig &config) : dfConfig(config) {
|
|
df = new DetectionFunction(config);
|
|
}
|
|
~OnsetDetectorData() {
|
|
delete df;
|
|
}
|
|
void reset() {
|
|
delete df;
|
|
df = new DetectionFunction(dfConfig);
|
|
dfOutput.clear();
|
|
origin = Vamp::RealTime::zeroTime;
|
|
}
|
|
|
|
DFConfig dfConfig;
|
|
DetectionFunction *df;
|
|
vector<double> dfOutput;
|
|
Vamp::RealTime origin;
|
|
};
|
|
|
|
|
|
OnsetDetector::OnsetDetector(float inputSampleRate) :
|
|
Vamp::Plugin(inputSampleRate),
|
|
m_d(0),
|
|
m_dfType(DF_COMPLEXSD),
|
|
m_sensitivity(50),
|
|
m_whiten(false)
|
|
{
|
|
}
|
|
|
|
OnsetDetector::~OnsetDetector()
|
|
{
|
|
delete m_d;
|
|
}
|
|
|
|
string
|
|
OnsetDetector::getIdentifier() const
|
|
{
|
|
return "qm-onsetdetector";
|
|
}
|
|
|
|
string
|
|
OnsetDetector::getName() const
|
|
{
|
|
return "Note Onset Detector";
|
|
}
|
|
|
|
string
|
|
OnsetDetector::getDescription() const
|
|
{
|
|
return "Estimate individual note onset positions";
|
|
}
|
|
|
|
string
|
|
OnsetDetector::getMaker() const
|
|
{
|
|
return "Queen Mary, University of London";
|
|
}
|
|
|
|
int
|
|
OnsetDetector::getPluginVersion() const
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
string
|
|
OnsetDetector::getCopyright() const
|
|
{
|
|
return "Plugin by Christian Landone, Chris Duxbury and Juan Pablo Bello. Copyright (c) 2006-2009 QMUL - All Rights Reserved";
|
|
}
|
|
|
|
OnsetDetector::ParameterList
|
|
OnsetDetector::getParameterDescriptors() const
|
|
{
|
|
ParameterList list;
|
|
|
|
ParameterDescriptor desc;
|
|
desc.identifier = "dftype";
|
|
desc.name = "Onset Detection Function Type";
|
|
desc.description = "Method used to calculate the onset detection function";
|
|
desc.minValue = 0;
|
|
desc.maxValue = 4;
|
|
desc.defaultValue = 3;
|
|
desc.isQuantized = true;
|
|
desc.quantizeStep = 1;
|
|
desc.valueNames.push_back("High-Frequency Content");
|
|
desc.valueNames.push_back("Spectral Difference");
|
|
desc.valueNames.push_back("Phase Deviation");
|
|
desc.valueNames.push_back("Complex Domain");
|
|
desc.valueNames.push_back("Broadband Energy Rise");
|
|
list.push_back(desc);
|
|
|
|
desc.identifier = "sensitivity";
|
|
desc.name = "Onset Detector Sensitivity";
|
|
desc.description = "Sensitivity of peak-picker for onset detection";
|
|
desc.minValue = 0;
|
|
desc.maxValue = 100;
|
|
desc.defaultValue = 50;
|
|
desc.isQuantized = true;
|
|
desc.quantizeStep = 1;
|
|
desc.unit = "%";
|
|
desc.valueNames.clear();
|
|
list.push_back(desc);
|
|
|
|
desc.identifier = "whiten";
|
|
desc.name = "Adaptive Whitening";
|
|
desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
|
|
desc.minValue = 0;
|
|
desc.maxValue = 1;
|
|
desc.defaultValue = 0;
|
|
desc.isQuantized = true;
|
|
desc.quantizeStep = 1;
|
|
desc.unit = "";
|
|
list.push_back(desc);
|
|
|
|
return list;
|
|
}
|
|
|
|
float
|
|
OnsetDetector::getParameter(std::string name) const
|
|
{
|
|
if (name == "dftype") {
|
|
switch (m_dfType) {
|
|
case DF_HFC: return 0;
|
|
case DF_SPECDIFF: return 1;
|
|
case DF_PHASEDEV: return 2;
|
|
default: case DF_COMPLEXSD: return 3;
|
|
case DF_BROADBAND: return 4;
|
|
}
|
|
} else if (name == "sensitivity") {
|
|
return m_sensitivity;
|
|
} else if (name == "whiten") {
|
|
return m_whiten ? 1.0 : 0.0;
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
void
|
|
OnsetDetector::setParameter(std::string name, float value)
|
|
{
|
|
if (name == "dftype") {
|
|
int dfType = m_dfType;
|
|
switch (lrintf(value)) {
|
|
case 0: dfType = DF_HFC; break;
|
|
case 1: dfType = DF_SPECDIFF; break;
|
|
case 2: dfType = DF_PHASEDEV; break;
|
|
default: case 3: dfType = DF_COMPLEXSD; break;
|
|
case 4: dfType = DF_BROADBAND; break;
|
|
}
|
|
if (dfType == m_dfType) return;
|
|
m_dfType = dfType;
|
|
m_program = "";
|
|
} else if (name == "sensitivity") {
|
|
if (m_sensitivity == value) return;
|
|
m_sensitivity = value;
|
|
m_program = "";
|
|
} else if (name == "whiten") {
|
|
if (m_whiten == (value > 0.5)) return;
|
|
m_whiten = (value > 0.5);
|
|
m_program = "";
|
|
}
|
|
}
|
|
|
|
OnsetDetector::ProgramList
|
|
OnsetDetector::getPrograms() const
|
|
{
|
|
ProgramList programs;
|
|
programs.push_back("");
|
|
programs.push_back("General purpose");
|
|
programs.push_back("Soft onsets");
|
|
programs.push_back("Percussive onsets");
|
|
return programs;
|
|
}
|
|
|
|
std::string
|
|
OnsetDetector::getCurrentProgram() const
|
|
{
|
|
if (m_program == "") return "";
|
|
else return m_program;
|
|
}
|
|
|
|
void
|
|
OnsetDetector::selectProgram(std::string program)
|
|
{
|
|
if (program == "General purpose") {
|
|
setParameter("dftype", 3); // complex
|
|
setParameter("sensitivity", 50);
|
|
setParameter("whiten", 0);
|
|
} else if (program == "Soft onsets") {
|
|
setParameter("dftype", 3); // complex
|
|
setParameter("sensitivity", 40);
|
|
setParameter("whiten", 1);
|
|
} else if (program == "Percussive onsets") {
|
|
setParameter("dftype", 4); // broadband energy rise
|
|
setParameter("sensitivity", 40);
|
|
setParameter("whiten", 0);
|
|
} else {
|
|
return;
|
|
}
|
|
m_program = program;
|
|
}
|
|
|
|
bool
|
|
OnsetDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
|
{
|
|
if (m_d) {
|
|
delete m_d;
|
|
m_d = 0;
|
|
}
|
|
|
|
if (channels < getMinChannelCount() ||
|
|
channels > getMaxChannelCount()) {
|
|
std::cerr << "OnsetDetector::initialise: Unsupported channel count: "
|
|
<< channels << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (stepSize != getPreferredStepSize()) {
|
|
std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal step size for this sample rate: "
|
|
<< stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
|
}
|
|
|
|
if (blockSize != getPreferredBlockSize()) {
|
|
std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal block size for this sample rate: "
|
|
<< blockSize << " (wanted " << (getPreferredBlockSize()) << ")" << std::endl;
|
|
}
|
|
|
|
DFConfig dfConfig;
|
|
dfConfig.DFType = m_dfType;
|
|
dfConfig.stepSize = stepSize;
|
|
dfConfig.frameLength = blockSize;
|
|
dfConfig.dbRise = 6.0 - m_sensitivity / 16.6667;
|
|
dfConfig.adaptiveWhitening = m_whiten;
|
|
dfConfig.whiteningRelaxCoeff = -1;
|
|
dfConfig.whiteningFloor = -1;
|
|
|
|
m_d = new OnsetDetectorData(dfConfig);
|
|
return true;
|
|
}
|
|
|
|
void
|
|
OnsetDetector::reset()
|
|
{
|
|
if (m_d) m_d->reset();
|
|
}
|
|
|
|
size_t
|
|
OnsetDetector::getPreferredStepSize() const
|
|
{
|
|
size_t step = size_t(m_inputSampleRate * m_preferredStepSecs + 0.0001);
|
|
if (step < 1) step = 1;
|
|
// std::cerr << "OnsetDetector::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
|
|
return step;
|
|
}
|
|
|
|
size_t
|
|
OnsetDetector::getPreferredBlockSize() const
|
|
{
|
|
return getPreferredStepSize() * 2;
|
|
}
|
|
|
|
OnsetDetector::OutputList
|
|
OnsetDetector::getOutputDescriptors() const
|
|
{
|
|
OutputList list;
|
|
|
|
float stepSecs = m_preferredStepSecs;
|
|
// if (m_d) stepSecs = m_d->dfConfig.stepSecs;
|
|
|
|
OutputDescriptor onsets;
|
|
onsets.identifier = "onsets";
|
|
onsets.name = "Note Onsets";
|
|
onsets.description = "Perceived note onset positions";
|
|
onsets.unit = "";
|
|
onsets.hasFixedBinCount = true;
|
|
onsets.binCount = 0;
|
|
onsets.sampleType = OutputDescriptor::VariableSampleRate;
|
|
onsets.sampleRate = 1.0 / stepSecs;
|
|
|
|
OutputDescriptor df;
|
|
df.identifier = "detection_fn";
|
|
df.name = "Onset Detection Function";
|
|
df.description = "Probability function of note onset likelihood";
|
|
df.unit = "";
|
|
df.hasFixedBinCount = true;
|
|
df.binCount = 1;
|
|
df.hasKnownExtents = false;
|
|
df.isQuantized = false;
|
|
df.sampleType = OutputDescriptor::OneSamplePerStep;
|
|
|
|
OutputDescriptor sdf;
|
|
sdf.identifier = "smoothed_df";
|
|
sdf.name = "Smoothed Detection Function";
|
|
sdf.description = "Smoothed probability function used for peak-picking";
|
|
sdf.unit = "";
|
|
sdf.hasFixedBinCount = true;
|
|
sdf.binCount = 1;
|
|
sdf.hasKnownExtents = false;
|
|
sdf.isQuantized = false;
|
|
|
|
sdf.sampleType = OutputDescriptor::VariableSampleRate;
|
|
|
|
//!!! SV doesn't seem to handle these correctly in getRemainingFeatures
|
|
// sdf.sampleType = OutputDescriptor::FixedSampleRate;
|
|
sdf.sampleRate = 1.0 / stepSecs;
|
|
|
|
list.push_back(onsets);
|
|
list.push_back(df);
|
|
list.push_back(sdf);
|
|
|
|
return list;
|
|
}
|
|
|
|
OnsetDetector::FeatureSet
|
|
OnsetDetector::process(const float *const *inputBuffers,
|
|
Vamp::RealTime timestamp)
|
|
{
|
|
if (!m_d) {
|
|
cerr << "ERROR: OnsetDetector::process: "
|
|
<< "OnsetDetector has not been initialised"
|
|
<< endl;
|
|
return FeatureSet();
|
|
}
|
|
|
|
size_t len = m_d->dfConfig.frameLength / 2;
|
|
|
|
// float mean = 0.f;
|
|
// for (size_t i = 0; i < len; ++i) {
|
|
//// std::cerr << inputBuffers[0][i] << " ";
|
|
// mean += inputBuffers[0][i];
|
|
// }
|
|
//// std::cerr << std::endl;
|
|
// mean /= len;
|
|
|
|
// std::cerr << "OnsetDetector::process(" << timestamp << "): "
|
|
// << "dftype " << m_dfType << ", sens " << m_sensitivity
|
|
// << ", len " << len << std::endl;
|
|
|
|
double *magnitudes = new double[len];
|
|
double *phases = new double[len];
|
|
|
|
// We only support a single input channel
|
|
|
|
for (size_t i = 0; i < len; ++i) {
|
|
|
|
magnitudes[i] = sqrt(inputBuffers[0][i*2 ] * inputBuffers[0][i*2 ] +
|
|
inputBuffers[0][i*2+1] * inputBuffers[0][i*2+1]);
|
|
|
|
phases[i] = atan2(-inputBuffers[0][i*2+1], inputBuffers[0][i*2]);
|
|
}
|
|
|
|
double output = m_d->df->process(magnitudes, phases);
|
|
|
|
delete[] magnitudes;
|
|
delete[] phases;
|
|
|
|
if (m_d->dfOutput.empty()) m_d->origin = timestamp;
|
|
|
|
m_d->dfOutput.push_back(output);
|
|
|
|
FeatureSet returnFeatures;
|
|
|
|
Feature feature;
|
|
feature.hasTimestamp = false;
|
|
feature.values.push_back(output);
|
|
|
|
// std::cerr << "df: " << output << std::endl;
|
|
|
|
returnFeatures[1].push_back(feature); // detection function is output 1
|
|
return returnFeatures;
|
|
}
|
|
|
|
OnsetDetector::FeatureSet
|
|
OnsetDetector::getRemainingFeatures()
|
|
{
|
|
if (!m_d) {
|
|
cerr << "ERROR: OnsetDetector::getRemainingFeatures: "
|
|
<< "OnsetDetector has not been initialised"
|
|
<< endl;
|
|
return FeatureSet();
|
|
}
|
|
|
|
if (m_dfType == DF_BROADBAND) {
|
|
for (size_t i = 0; i < m_d->dfOutput.size(); ++i) {
|
|
if (m_d->dfOutput[i] < ((110 - m_sensitivity) *
|
|
m_d->dfConfig.frameLength) / 200) {
|
|
m_d->dfOutput[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
|
|
double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
|
|
|
|
FeatureSet returnFeatures;
|
|
|
|
PPickParams ppParams;
|
|
ppParams.length = m_d->dfOutput.size();
|
|
// tau and cutoff appear to be unused in PeakPicking, but I've
|
|
// inserted some moderately plausible values rather than leave
|
|
// them unset. The QuadThresh values come from trial and error.
|
|
// The rest of these are copied from ttParams in the BeatTracker
|
|
// code: I don't claim to know whether they're good or not --cc
|
|
ppParams.tau = m_d->dfConfig.stepSize / m_inputSampleRate;
|
|
ppParams.alpha = 9;
|
|
ppParams.cutoff = m_inputSampleRate/4;
|
|
ppParams.LPOrd = 2;
|
|
ppParams.LPACoeffs = aCoeffs;
|
|
ppParams.LPBCoeffs = bCoeffs;
|
|
ppParams.WinT.post = 8;
|
|
ppParams.WinT.pre = 7;
|
|
ppParams.QuadThresh.a = (100 - m_sensitivity) / 1000.0;
|
|
ppParams.QuadThresh.b = 0;
|
|
ppParams.QuadThresh.c = (100 - m_sensitivity) / 1500.0;
|
|
|
|
PeakPicking peakPicker(ppParams);
|
|
|
|
double *ppSrc = new double[ppParams.length];
|
|
for (unsigned int i = 0; i < ppParams.length; ++i) {
|
|
ppSrc[i] = m_d->dfOutput[i];
|
|
}
|
|
|
|
vector<int> onsets;
|
|
peakPicker.process(ppSrc, ppParams.length, onsets);
|
|
|
|
for (size_t i = 0; i < onsets.size(); ++i) {
|
|
|
|
size_t index = onsets[i];
|
|
|
|
if (m_dfType != DF_BROADBAND) {
|
|
double prevDiff = 0.0;
|
|
while (index > 1) {
|
|
double diff = ppSrc[index] - ppSrc[index-1];
|
|
if (diff < prevDiff * 0.9) break;
|
|
prevDiff = diff;
|
|
--index;
|
|
}
|
|
}
|
|
|
|
size_t frame = index * m_d->dfConfig.stepSize;
|
|
|
|
Feature feature;
|
|
feature.hasTimestamp = true;
|
|
feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
|
(frame, lrintf(m_inputSampleRate));
|
|
|
|
returnFeatures[0].push_back(feature); // onsets are output 0
|
|
}
|
|
|
|
for (unsigned int i = 0; i < ppParams.length; ++i) {
|
|
|
|
Feature feature;
|
|
// feature.hasTimestamp = false;
|
|
feature.hasTimestamp = true;
|
|
size_t frame = i * m_d->dfConfig.stepSize;
|
|
feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
|
|
(frame, lrintf(m_inputSampleRate));
|
|
|
|
feature.values.push_back(ppSrc[i]);
|
|
returnFeatures[2].push_back(feature); // smoothed df is output 2
|
|
}
|
|
|
|
return returnFeatures;
|
|
}
|
|
|