/* Copyright (C) 2014 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "pbd/convert.h" #include "pbd/failed_constructor.h" #include "pbd/locale_guard.h" #include "canvas/colors.h" #include "canvas/colorspace.h" using namespace std; using namespace ArdourCanvas; using std::max; using std::min; void ArdourCanvas::color_to_hsv (Color color, double& h, double& s, double& v) { double a; color_to_hsva (color, h, s, v, a); } void ArdourCanvas::color_to_hsva (Color color, double& h, double& s, double& v, double& a) { double r, g, b; double cmax; double cmin; double delta; color_to_rgba (color, r, g, b, a); if (r > g) { cmax = max (r, b); } else { cmax = max (g, b); } if (r < g) { cmin = min (r, b); } else { cmin = min (g, b); } v = cmax; delta = cmax - cmin; if (cmax == 0) { // r = g = b == 0 ... v is undefined, s = 0 s = 0.0; h = 0.0; return; } if (delta != 0.0) { if (cmax == r) { h = fmod ((g - b)/delta, 6.0); } else if (cmax == g) { h = ((b - r)/delta) + 2; } else { h = ((r - g)/delta) + 4; } h *= 60.0; if (h < 0.0) { /* negative values are legal but confusing, because they alias positive values. */ h = 360 + h; } } if (delta == 0 || cmax == 0) { s = 0; } else { s = delta / cmax; } } ArdourCanvas::Color ArdourCanvas::hsva_to_color (double h, double s, double v, double a) { s = min (1.0, max (0.0, s)); v = min (1.0, max (0.0, v)); if (s == 0) { return rgba_to_color (v, v, v, a); } h = fmod (h + 360.0, 360.0); double c = v * s; double x = c * (1.0 - fabs(fmod(h / 60.0, 2) - 1.0)); double m = v - c; if (h >= 0.0 && h < 60.0) { return rgba_to_color (c + m, x + m, m, a); } else if (h >= 60.0 && h < 120.0) { return rgba_to_color (x + m, c + m, m, a); } else if (h >= 120.0 && h < 180.0) { return rgba_to_color (m, c + m, x + m, a); } else if (h >= 180.0 && h < 240.0) { return rgba_to_color (m, x + m, c + m, a); } else if (h >= 240.0 && h < 300.0) { return rgba_to_color (x + m, m, c + m, a); } else if (h >= 300.0 && h < 360.0) { return rgba_to_color (c + m, m, x + m, a); } return rgba_to_color (m, m, m, a); } void ArdourCanvas::color_to_rgba (Color color, double& r, double& g, double& b, double& a) { r = ((color >> 24) & 0xff) / 255.0; g = ((color >> 16) & 0xff) / 255.0; b = ((color >> 8) & 0xff) / 255.0; a = ((color >> 0) & 0xff) / 255.0; } ArdourCanvas::Color ArdourCanvas::rgba_to_color (double r, double g, double b, double a) { /* clamp to [0 .. 1] range */ r = min (1.0, max (0.0, r)); g = min (1.0, max (0.0, g)); b = min (1.0, max (0.0, b)); a = min (1.0, max (0.0, a)); /* convert to [0..255] range */ unsigned int rc, gc, bc, ac; rc = rint (r * 255.0); gc = rint (g * 255.0); bc = rint (b * 255.0); ac = rint (a * 255.0); /* build-an-integer */ return (rc << 24) | (gc << 16) | (bc << 8) | ac; } // Inverse of sRGB "gamma" function. static inline double inv_gam_sRGB (double c) { if (c <= 0.04045) { return c/12.92; } else { return pow(((c+0.055)/(1.055)),2.4); } } // sRGB "gamma" function static inline int gam_sRGB(double v) { if (v <= 0.0031308) { v *= 12.92; } else { v = 1.055 * pow (v, 1.0 / 2.4) - 0.055; } return int (v*255+.5); } static double luminance (uint32_t c) { // sRGB luminance(Y) values const double rY = 0.212655; const double gY = 0.715158; const double bY = 0.072187; double r, g, b, a; ArdourCanvas::color_to_rgba (c, r, g, b, a); return (gam_sRGB (rY*inv_gam_sRGB(r) + gY*inv_gam_sRGB(g) + bY*inv_gam_sRGB(b))) / 255.0; } uint32_t ArdourCanvas::contrasting_text_color (uint32_t c) { /* use a slightly off-white... XXX should really look this up */ static const uint32_t white = ArdourCanvas::rgba_to_color (0.98, 0.98, 0.98, 1.0); static const uint32_t black = ArdourCanvas::rgba_to_color (0.0, 0.0, 0.0, 1.0); return (luminance (c) < 0.50) ? white : black; } HSV::HSV () : h (0.0) , s (1.0) , v (1.0) , a (1.0) { } HSV::HSV (double hh, double ss, double vv, double aa) : h (hh) , s (ss) , v (vv) , a (aa) { if (h < 0.0) { /* normalize negative hue values into positive range */ h = 360.0 + h; } } HSV::HSV (Color c) { color_to_hsva (c, h, s, v, a); } HSV::HSV (const std::string& str) { stringstream ss (str); ss >> h; ss >> s; ss >> v; ss >> a; } string HSV::to_string () const { stringstream ss; ss << h << ' '; ss << s << ' '; ss << v << ' '; ss << a; return ss.str(); } bool HSV::is_gray () const { return s == 0; } void HSV::clamp () { h = fmod (h, 360.0); if (h < 0.0) { /* normalize negative hue values into positive range */ h = 360.0 + h; } s = min (1.0, s); v = min (1.0, v); a = min (1.0, a); } HSV HSV::operator+ (const HSV& operand) const { HSV hsv; hsv.h = h + operand.h; hsv.s = s + operand.s; hsv.v = v + operand.v; hsv.a = a + operand.a; hsv.clamp (); return hsv; } HSV HSV::operator- (const HSV& operand) const { HSV hsv; hsv.h = h - operand.h; hsv.s = s - operand.s; hsv.v = s - operand.v; hsv.a = a - operand.a; hsv.clamp (); return hsv; } HSV& HSV::operator=(Color c) { color_to_hsva (c, h, s, v, a); clamp (); return *this; } HSV& HSV::operator=(const std::string& str) { uint32_t c; c = strtol (str.c_str(), 0, 16); color_to_hsva (c, h, s, v, a); clamp (); return *this; } bool HSV::operator== (const HSV& other) { return h == other.h && s == other.s && v == other.v && a == other.a; } HSV HSV::shade (double factor) const { HSV hsv (*this); /* algorithm derived from a google palette website and analysis of their color palettes. basic rule: to make a color darker, increase its saturation until it reaches 88%, but then additionally reduce value/lightness by a larger amount. invert rule to make a color lighter. */ if (factor > 1.0) { if (s < 88) { hsv.v += (hsv.v * (factor * 10.0)); } hsv.s *= factor; } else { if (s < 88) { hsv.v -= (hsv.v * (factor * 10.0)); } hsv.s *= factor; } hsv.clamp(); return hsv; } HSV HSV::outline () const { if (luminance (color()) < 0.50) { /* light color, darker outline: black with 15% opacity */ return HSV (0.0, 0.0, 0.0, 0.15); } else { /* dark color, lighter outline: white with 15% opacity */ return HSV (0.0, 0.0, 1.0, 0.15); } } HSV HSV::mix (const HSV& other, double amount) const { HSV hsv; hsv.h = h + (amount * (other.h - h)); hsv.v = v + (amount * (other.s - s)); hsv.s = s + (amount * (other.v - v)); hsv.clamp(); return hsv; } HSV HSV::delta (const HSV& other) const { HSV d; if (is_gray() && other.is_gray()) { d.h = 0.0; d.s = 0.0; d.v = v - other.v; } else { d.h = h - other.h; d.s = s - other.s; d.v = v - other.v; } d.a = a - other.a; /* do not clamp - we are returning a delta */ return d; } double HSV::distance (const HSV& other) const { if (is_gray() && other.is_gray()) { /* human color perception of achromatics generates about 450 distinct colors. By contrast, CIE94 could give a maximal perceptual distance of sqrt ((360^2) + 1 + 1) = 360. The 450 are not evenly spread (Webers Law), so lets use 360 as an approximation of the number of distinct achromatics. So, scale up the achromatic difference to give about a maximal distance between v = 1.0 and v = 0.0 of 360. A difference of about 0.0055 will generate a return value of 2, which is roughly the limit of human perceptual discrimination for chromatics. */ return fabs (360.0 * (v - other.v)); } if (is_gray() != other.is_gray()) { /* no comparison possible */ return DBL_MAX; } /* Use CIE94 definition for now */ double sL, sA, sB; double oL, oA, oB; double r, g, b, alpha; // Careful, "a" is a field of this Color c; c = hsva_to_color (h, s, v, a); color_to_rgba (c, r, g, b, alpha); Rgb2Lab (&sL, &sA, &sB, r, g, b); c = hsva_to_color (other.h, other.s, other.v, other.a); color_to_rgba (c, r, g, b, alpha); Rgb2Lab (&oL, &oA, &oB, r, g, b); // Weighting factors depending on the application (1 = default) const double whtL = 1.0; const double whtC = 1.0; const double whtH = 1.0; const double xC1 = sqrt ((sA * sA) + (sB * oB)); const double xC2 = sqrt ((oA * oA) + (oB * oB)); double xDL = oL - sL; double xDC = xC2 - xC1; const double xDE = sqrt (((sL - oL) * (sL - oL)) + ((sA - oA) * (sA - oA)) + ((sB - oB) * (sB - oB))); double xDH; if (sqrt (xDE) > (sqrt (abs (xDL)) + sqrt (abs (xDC)))) { xDH = sqrt ((xDE * xDE) - (xDL * xDL) - (xDC * xDC)); } else { xDH = 0; } const double xSC = 1 + (0.045 * xC1); const double xSH = 1 + (0.015 * xC1); xDL /= whtL; xDC /= whtC * xSC; xDH /= whtH * xSH; return sqrt ((xDL * xDL) + (xDC * xDC) + (xDH * xDH)); } HSV HSV::opposite () const { HSV hsv (*this); hsv.h = fmod (h + 180.0, 360.0); return hsv; } HSV HSV::bw_text () const { return HSV (contrasting_text_color (color())); } HSV HSV::text () const { return opposite (); } HSV HSV::selected () const { /* XXX hack */ return HSV (Color (0xff0000)); } void HSV::print (std::ostream& o) const { if (!is_gray()) { o << '(' << h << ',' << s << ',' << v << ',' << a << ')'; } else { o << "gray(" << v << ')'; } } std::ostream& operator<<(std::ostream& o, const ArdourCanvas::HSV& hsv) { hsv.print (o); return o; } HSV HSV::mod (SVAModifier const & svam) { return svam (*this); } SVAModifier::SVAModifier (string const &str) : type (Add) , _s (0) , _v (0) , _a (0) { from_string (str); } void SVAModifier::from_string (string const & str) { char op; stringstream ss (str); string mod; ss >> op; switch (op) { case '*': type = Multiply; /* no-op values for multiply */ _s = 1.0; _v = 1.0; _a = 1.0; break; case '+': type = Add; /* no-op values for add */ _s = 0.0; _v = 0.0; _a = 0.0; break; case '=': type = Assign; /* this will avoid assignment in operator() (see below) */ _s = -1.0; _v = -1.0; _a = -1.0; break; default: throw failed_constructor (); } string::size_type pos; while (ss) { ss >> mod; if ((pos = mod.find ("alpha:")) != string::npos) { _a = PBD::atof (mod.substr (pos+6)); } else if ((pos = mod.find ("saturate:")) != string::npos) { _s = PBD::atof (mod.substr (pos+9)); } else if ((pos = mod.find ("darkness:")) != string::npos) { _v = PBD::atof (mod.substr (pos+9)); } else { throw failed_constructor (); } } } string SVAModifier::to_string () const { PBD::LocaleGuard lg ("POSIX"); stringstream ss; switch (type) { case Add: ss << '+'; break; case Multiply: ss << '*'; break; case Assign: ss << '='; break; } if (_s >= 0.0) { ss << " saturate:" << _s; } if (_v >= 0.0) { ss << " darker:" << _v; } if (_a >= 0.0) { ss << " alpha:" << _a; } return ss.str(); } HSV SVAModifier::operator () (HSV& hsv) const { HSV r (hsv); switch (type) { case Add: r.s += _s; r.v += _v; r.a += _a; break; case Multiply: r.s *= _s; r.v *= _v; r.a *= _a; break; case Assign: if (_s >= 0.0) { r.s = _s; } if (_v >= 0.) { r.v = _v; } if (_a >= 0.0) { r.a = _a; } break; } return r; }