/* * Copyright (C) 2019 Robin Gareus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include "pbd/compose.h" #include "pbd/error.h" #include "pbd/file_utils.h" #include "pbd/pthread_utils.h" #include "ardour/port_manager.h" #include "pulseaudio_backend.h" #include "pbd/i18n.h" using namespace ARDOUR; static std::string s_instance_name; const size_t PulseAudioBackend::_max_buffer_size = 8192; #define N_CHANNELS (2) PulseAudioBackend::PulseAudioBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , PortEngineSharedImpl (e, s_instance_name) , p_stream (0) , p_context (0) , p_mainloop (0) , _run (false) , _active (false) , _freewheel (false) , _freewheeling (false) , _last_process_start (0) , _samplerate (48000) , _samples_per_period (1024) , _systemic_audio_output_latency (0) , _dsp_load (0) , _processed_samples (0) { _instance_name = s_instance_name; } PulseAudioBackend::~PulseAudioBackend () { clear_ports (); } /* PulseAudio */ void PulseAudioBackend::close_pulse (bool unlock) { if (p_mainloop) { if (unlock) { pa_threaded_mainloop_unlock (p_mainloop); } pa_threaded_mainloop_stop (p_mainloop); } if (p_stream) { pa_stream_disconnect (p_stream); pa_stream_unref (p_stream); p_stream = NULL; } if (p_context) { pa_context_disconnect (p_context); pa_context_unref (p_context); p_context = NULL; } if (p_mainloop) { pa_threaded_mainloop_free (p_mainloop); p_mainloop = NULL; } } int PulseAudioBackend::sync_pulse (pa_operation* op) { /* wait for async operation to complete */ if (!op) { pa_threaded_mainloop_unlock (p_mainloop); return 0; } pa_operation_state_t state = pa_operation_get_state (op); while (PA_OPERATION_RUNNING == state) { pa_threaded_mainloop_wait (p_mainloop); state = pa_operation_get_state (op); } pa_operation_unref (op); pa_threaded_mainloop_unlock (p_mainloop); return PA_OPERATION_DONE == state; } bool PulseAudioBackend::cork_pulse (bool pause) { pa_threaded_mainloop_lock (p_mainloop); _operation_succeeded = false; return sync_pulse (pa_stream_cork (p_stream, pause ? 1 : 0, stream_operation_cb, this)) && _operation_succeeded; } void PulseAudioBackend::context_state_cb (pa_context* c, void* arg) { PulseAudioBackend* d = static_cast (arg); switch (pa_context_get_state (c)) { case PA_CONTEXT_READY: case PA_CONTEXT_TERMINATED: case PA_CONTEXT_FAILED: pa_threaded_mainloop_signal (d->p_mainloop, 0); break; case PA_CONTEXT_UNCONNECTED: case PA_CONTEXT_CONNECTING: case PA_CONTEXT_AUTHORIZING: case PA_CONTEXT_SETTING_NAME: break; } } void PulseAudioBackend::stream_state_cb (pa_stream* s, void* arg) { PulseAudioBackend* d = static_cast (arg); switch (pa_stream_get_state (s)) { case PA_STREAM_READY: case PA_STREAM_FAILED: case PA_STREAM_TERMINATED: pa_threaded_mainloop_signal (d->p_mainloop, 0); break; case PA_STREAM_UNCONNECTED: case PA_STREAM_CREATING: break; } } void PulseAudioBackend::stream_operation_cb (pa_stream*, int ok, void* arg) { PulseAudioBackend* d = static_cast (arg); d->_operation_succeeded = ok; pa_threaded_mainloop_signal (d->p_mainloop, 0); } void PulseAudioBackend::stream_request_cb (pa_stream*, size_t length, void* arg) { PulseAudioBackend* d = static_cast (arg); pa_threaded_mainloop_signal (d->p_mainloop, 0); // XXX perhaps do processing here instead of waking up main callback thread. // compare to coreaudio backend } void PulseAudioBackend::stream_latency_update_cb (pa_stream* s, void* arg) { PulseAudioBackend* d = static_cast (arg); pa_usec_t latency; int negative; // XXX this needs PA_STREAM_AUTO_TIMING_UPDATE if (0 == pa_stream_get_latency (s, &latency, &negative)) { if (negative) { d->_systemic_audio_output_latency = 0; } else { d->_systemic_audio_output_latency = floorf (latency * d->_samplerate / 1000000.f); } // XXX garbage value printf ("Pulse latency update %d\n", d->_systemic_audio_output_latency); d->update_latencies (); } pa_threaded_mainloop_signal (d->p_mainloop, 0); } void PulseAudioBackend::stream_xrun_cb (pa_stream*, void* arg) { PulseAudioBackend* d = static_cast (arg); d->engine.Xrun (); } int PulseAudioBackend::init_pulse () { pa_sample_spec ss; ss.channels = N_CHANNELS; ss.rate = _samplerate; ss.format = PA_SAMPLE_FLOAT32LE; if (!pa_sample_spec_valid (&ss)) { PBD::error << _("PulseAudioBackend: Default sample spec not valid") << endmsg; return AudioDeviceInvalidError; } if (!(p_mainloop = pa_threaded_mainloop_new ())) { PBD::error << _("PulseAudioBackend: Failed to allocate main loop") << endmsg; close_pulse (); return BackendInitializationError; } /* see https://freedesktop.org/software/pulseaudio/doxygen/proplist_8h.html */ pa_proplist* proplist = pa_proplist_new (); pa_proplist_sets (proplist, PA_PROP_MEDIA_SOFTWARE, PROGRAM_NAME); pa_proplist_sets (proplist, PA_PROP_MEDIA_ROLE, "production"); #if 0 // TODO /* in tools/linux_packaging/stage2.run.in uses xdg * ICON_NAME="${PGM_VENDOR}-${PGM_NAME}_${PGM_VERSION}" * e.g. "Harrison-Mixbus32C_3.7.24" "Ardour-Ardour_5.12.0" * * gtk2_ardour/wscript $ARDOUR_ICON is used in .desktop.in * 'ardour' */ pa_proplist_sets (proplist, PA_PROP_APPLICATION_ICON_NAME, "Ardour-Ardour_5.12.0"); #endif if (!(p_context = pa_context_new_with_proplist (pa_threaded_mainloop_get_api (p_mainloop), PROGRAM_NAME, proplist))) { PBD::error << _("PulseAudioBackend: Failed to allocate context") << endmsg; close_pulse (); pa_proplist_free (proplist); return BackendInitializationError; } pa_proplist_free (proplist); pa_context_set_state_callback (p_context, PulseAudioBackend::context_state_cb, this); if (pa_context_connect (p_context, NULL, PA_CONTEXT_NOFLAGS, NULL) < 0) { PBD::error << _("PulseAudioBackend: Failed to allocate context") << endmsg; close_pulse (); return AudioDeviceOpenError; } pa_threaded_mainloop_lock (p_mainloop); if (pa_threaded_mainloop_start (p_mainloop) < 0) { PBD::error << _("PulseAudioBackend: Failed to start main loop") << endmsg; close_pulse (true); return AudioDeviceOpenError; } /* Wait until the context is ready, context_state_cb will trigger this */ pa_threaded_mainloop_wait (p_mainloop); if (pa_context_get_state (p_context) != PA_CONTEXT_READY) { PBD::error << _("PulseAudioBackend: Failed to create context") << endmsg; close_pulse (true); return AudioDeviceOpenError; } if (!(p_stream = pa_stream_new (p_context, "master", &ss, NULL))) { PBD::error << _("PulseAudioBackend: Failed to create new stream") << endmsg; close_pulse (true); return AudioDeviceOpenError; } pa_stream_set_state_callback (p_stream, PulseAudioBackend::stream_state_cb, this); pa_stream_set_write_callback (p_stream, PulseAudioBackend::stream_request_cb, this); pa_stream_set_latency_update_callback (p_stream, stream_latency_update_cb, this); pa_stream_set_underflow_callback (p_stream, PulseAudioBackend::stream_xrun_cb, this); pa_stream_set_overflow_callback (p_stream, PulseAudioBackend::stream_xrun_cb, this); /* PulseAudio buffer strategy: Be explicit for small latency and avoid using PA auto tuning. * The user specified a buffer size (_samples_per_period). * Specify the PA buffer to be twice as big so it can use double buffering (maxlength). * Aim for keeping the buffer full (tlength). * Fill up the buffer before starting playback (prebuf). * Immediately ask for more data when there is room for the buffer size (minreq because PA_STREAM_EARLY_REQUESTS). */ pa_buffer_attr ba; /* https://freedesktop.org/software/pulseaudio/doxygen/structpa__buffer__attr.html */ ba.minreq = _samples_per_period * N_CHANNELS * sizeof (float); ba.maxlength = 2 * ba.minreq; ba.tlength = ba.maxlength; ba.prebuf = ba.tlength; ba.fragsize = 0; // capture only /* https://freedesktop.org/software/pulseaudio/doxygen/def_8h.html#a6966d809483170bc6d2e6c16188850fc */ pa_stream_flags_t sf = (pa_stream_flags_t) ( (int)PA_STREAM_NO_REMAP_CHANNELS | (int)PA_STREAM_NO_REMIX_CHANNELS | (int)PA_STREAM_EARLY_REQUESTS // request more data as soon as minreq is reached ); if (pa_stream_connect_playback (p_stream, NULL, &ba, sf, NULL, NULL) < 0) { PBD::error << _("PulseAudioBackend: Failed to connect playback stream") << endmsg; close_pulse (true); return AudioDeviceOpenError; } /* Wait until the stream is ready */ pa_threaded_mainloop_wait (p_mainloop); if (pa_stream_get_state (p_stream) != PA_STREAM_READY) { PBD::error << _("PulseAudioBackend: Failed to start stream") << endmsg; close_pulse (true); return AudioDeviceOpenError; } pa_threaded_mainloop_unlock (p_mainloop); return 0; } /* AUDIOBACKEND API */ std::string PulseAudioBackend::name () const { return X_("PulseAudio"); } bool PulseAudioBackend::is_realtime () const { return true; } std::vector PulseAudioBackend::enumerate_devices () const { std::vector devices; devices.push_back (DeviceStatus (_("Default Playback"), true)); return devices; } std::vector PulseAudioBackend::available_sample_rates (const std::string&) const { std::vector sr; sr.push_back (8000.0); sr.push_back (22050.0); sr.push_back (24000.0); sr.push_back (44100.0); sr.push_back (48000.0); sr.push_back (88200.0); sr.push_back (96000.0); sr.push_back (176400.0); sr.push_back (192000.0); return sr; } std::vector PulseAudioBackend::available_buffer_sizes (const std::string&) const { std::vector bs; bs.push_back (64); bs.push_back (128); bs.push_back (256); bs.push_back (512); bs.push_back (1024); bs.push_back (2048); bs.push_back (4096); bs.push_back (8192); return bs; } bool PulseAudioBackend::can_change_sample_rate_when_running () const { return false; } bool PulseAudioBackend::can_change_buffer_size_when_running () const { return false; } int PulseAudioBackend::set_device_name (const std::string& d) { return 0; } int PulseAudioBackend::set_sample_rate (float sr) { if (sr <= 0) { return -1; } _samplerate = sr; engine.sample_rate_change (sr); return 0; } int PulseAudioBackend::set_buffer_size (uint32_t bs) { if (bs <= 0 || bs > _max_buffer_size) { return -1; } _samples_per_period = bs; engine.buffer_size_change (bs); return 0; } int PulseAudioBackend::set_interleaved (bool yn) { if (!yn) { return 0; } return -1; } int PulseAudioBackend::set_systemic_input_latency (uint32_t sl) { return 0; } int PulseAudioBackend::set_systemic_output_latency (uint32_t sl) { return 0; } /* Retrieving parameters */ std::string PulseAudioBackend::device_name () const { return _("Default Playback"); } float PulseAudioBackend::sample_rate () const { return _samplerate; } uint32_t PulseAudioBackend::buffer_size () const { return _samples_per_period; } bool PulseAudioBackend::interleaved () const { return false; } uint32_t PulseAudioBackend::systemic_input_latency () const { return 0; } uint32_t PulseAudioBackend::systemic_output_latency () const { return _systemic_audio_output_latency; } /* MIDI */ std::vector PulseAudioBackend::enumerate_midi_options () const { std::vector midi_options; midi_options.push_back (get_standard_device_name (DeviceNone)); return midi_options; } std::vector PulseAudioBackend::enumerate_midi_devices () const { return std::vector (); } int PulseAudioBackend::set_midi_option (const std::string& opt) { return 0; } std::string PulseAudioBackend::midi_option () const { return get_standard_device_name (DeviceNone); } /* External control app */ std::string PulseAudioBackend::control_app_name () const { std::string ignored; if (PBD::find_file (PBD::Searchpath (Glib::getenv("PATH")), X_("pavucontrol"), ignored)) { return "pavucontrol"; } return ""; } void PulseAudioBackend::launch_control_app () { if (::vfork () == 0) { ::execlp ("pavucontrol", "pavucontrol", (char*)NULL); _exit (EXIT_SUCCESS); } } /* State Control */ static void* pthread_process (void* arg) { PulseAudioBackend* d = static_cast (arg); d->main_process_thread (); pthread_exit (0); return 0; } int PulseAudioBackend::_start (bool /*for_latency_measurement*/) { if (!_active && _run) { PBD::error << _("PulseAudioBackend: restarting.") << endmsg; /* recover from 'halted', reap threads */ stop (); } if (_active || _run) { PBD::info << _("PulseAudioBackend: already active.") << endmsg; return BackendReinitializationError; } clear_ports (); /* reset internal state */ _dsp_load = 0; _freewheeling = false; _freewheel = false; _last_process_start = 0; _systemic_audio_output_latency = 0; /* connect to pulse-server and prepare stream */ int err = init_pulse (); if (err) { return err; } if (register_system_ports ()) { PBD::error << _("PulseAudioBackend: failed to register system ports.") << endmsg; close_pulse (); return PortRegistrationError; } engine.sample_rate_change (_samplerate); engine.buffer_size_change (_samples_per_period); if (engine.reestablish_ports ()) { PBD::error << _("PulseAudioBackend: Could not re-establish ports.") << endmsg; close_pulse (); return PortReconnectError; } engine.reconnect_ports (); _run = true; _port_change_flag.store (0); if (pbd_realtime_pthread_create ("PulseAudio Main", PBD_SCHED_FIFO, PBD_RT_PRI_MAIN, PBD_RT_STACKSIZE_PROC, &_main_thread, pthread_process, this)) { if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &_main_thread, pthread_process, this)) { PBD::error << _("PulseAudioBackend: failed to create process thread.") << endmsg; stop (); return ProcessThreadStartError; } else { PBD::warning << _("PulseAudioBackend: cannot acquire realtime permissions.") << endmsg; } } int timeout = 5000; while (!_active && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_active) { PBD::error << _("PulseAudioBackend: failed to start process thread.") << endmsg; _run = false; close_pulse (); return ProcessThreadStartError; } return NoError; } int PulseAudioBackend::stop () { void* status; if (!_run) { return 0; } _run = false; if (pa_stream_is_corked (p_stream) == 0) { cork_pulse (true); } pa_threaded_mainloop_lock (p_mainloop); sync_pulse (pa_stream_flush (p_stream, stream_operation_cb, this)); if (pthread_join (_main_thread, &status)) { PBD::error << _("PulseAudioBackend: failed to terminate.") << endmsg; return -1; } unregister_ports (); close_pulse (); return (_active == false) ? 0 : -1; } int PulseAudioBackend::freewheel (bool onoff) { _freewheeling = onoff; return 0; } float PulseAudioBackend::dsp_load () const { return 100.f * _dsp_load; } size_t PulseAudioBackend::raw_buffer_size (DataType t) { switch (t) { case DataType::AUDIO: return _samples_per_period * sizeof (Sample); case DataType::MIDI: return _max_buffer_size; } return 0; } /* Process time */ samplepos_t PulseAudioBackend::sample_time () { return _processed_samples; } samplepos_t PulseAudioBackend::sample_time_at_cycle_start () { return _processed_samples; } pframes_t PulseAudioBackend::samples_since_cycle_start () { if (!_active || !_run || _freewheeling || _freewheel) { return 0; } if (_last_process_start == 0) { return 0; } const int64_t elapsed_time_us = g_get_monotonic_time () - _last_process_start; return std::max ((pframes_t)0, (pframes_t)rint (1e-6 * elapsed_time_us * _samplerate)); } void* PulseAudioBackend::pulse_process_thread (void* arg) { ThreadData* td = reinterpret_cast (arg); boost::function f = td->f; delete td; f (); return 0; } int PulseAudioBackend::create_process_thread (boost::function func) { pthread_t thread_id; ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC); if (pbd_realtime_pthread_create ("PulseAudio Proc", PBD_SCHED_FIFO, PBD_RT_PRI_PROC, PBD_RT_STACKSIZE_PROC, &thread_id, pulse_process_thread, td)) { if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, pulse_process_thread, td)) { PBD::error << _("AudioEngine: cannot create process thread.") << endmsg; return -1; } } _threads.push_back (thread_id); return 0; } int PulseAudioBackend::join_process_threads () { int rv = 0; for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { void* status; if (pthread_join (*i, &status)) { PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg; rv -= 1; } } _threads.clear (); return rv; } bool PulseAudioBackend::in_process_thread () { if (pthread_equal (_main_thread, pthread_self ()) != 0) { return true; } for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { return true; } } return false; } uint32_t PulseAudioBackend::process_thread_count () { return _threads.size (); } void PulseAudioBackend::update_latencies () { /* trigger latency callback in RT thread (locked graph) */ port_connect_add_remove_callback (); } /* PORTENGINE API */ void* PulseAudioBackend::private_handle () const { return NULL; } const std::string& PulseAudioBackend::my_name () const { return _instance_name; } int PulseAudioBackend::register_system_ports () { LatencyRange lr; /* audio ports */ lr.min = lr.max = _systemic_audio_output_latency; for (int i = 1; i <= N_CHANNELS; ++i) { char tmp[64]; snprintf (tmp, sizeof (tmp), "system:playback_%d", i); BackendPortPtr p = add_port (std::string (tmp), DataType::AUDIO, static_cast (IsInput | IsPhysical | IsTerminal)); if (!p) { return -1; } set_latency_range (p, true, lr); //p->set_hw_port_name ("") _system_outputs.push_back (p); } return 0; } BackendPort* PulseAudioBackend::port_factory (std::string const & name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { BackendPort* port = 0; switch (type) { case DataType::AUDIO: port = new PulseAudioPort (*this, name, flags); break; case DataType::MIDI: port = new PulseMidiPort (*this, name, flags); break; default: PBD::error << string_compose (_("%1::port_factory: Invalid Data Type."), _instance_name) << endmsg; return 0; } return port; } /* MIDI */ int PulseAudioBackend::midi_event_get ( pframes_t& timestamp, size_t& size, uint8_t const** buf, void* port_buffer, uint32_t event_index) { assert (buf && port_buffer); PulseMidiBuffer& source = *static_cast (port_buffer); if (event_index >= source.size ()) { return -1; } PulseMidiEvent* const event = source[event_index].get (); timestamp = event->timestamp (); size = event->size (); *buf = event->data (); return 0; } int PulseAudioBackend::midi_event_put ( void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size) { assert (buffer && port_buffer); PulseMidiBuffer& dst = *static_cast (port_buffer); dst.push_back (std::shared_ptr (new PulseMidiEvent (timestamp, buffer, size))); return 0; } uint32_t PulseAudioBackend::get_midi_event_count (void* port_buffer) { assert (port_buffer); return static_cast (port_buffer)->size (); } void PulseAudioBackend::midi_clear (void* port_buffer) { assert (port_buffer); PulseMidiBuffer* buf = static_cast (port_buffer); assert (buf); buf->clear (); } /* Monitoring */ bool PulseAudioBackend::can_monitor_input () const { return false; } int PulseAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool) { return -1; } int PulseAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool) { return -1; } bool PulseAudioBackend::monitoring_input (PortEngine::PortHandle) { return false; } /* Latency management */ void PulseAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range) { BackendPortPtr port = std::dynamic_pointer_cast (port_handle); if (!valid_port (port)) { PBD::error << _("PulseAudioBackend::set_latency_range (): invalid port.") << endmsg; } port->set_latency_range (latency_range, for_playback); } LatencyRange PulseAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback) { BackendPortPtr port = std::dynamic_pointer_cast (port_handle); LatencyRange r; if (!valid_port (port)) { PBD::error << _("PulseAudioBackend::get_latency_range (): invalid port.") << endmsg; r.min = 0; r.max = 0; return r; } r = port->latency_range (for_playback); if (port->is_physical () && port->is_terminal ()) { if (port->is_input () && for_playback) { r.min += _samples_per_period + _systemic_audio_output_latency; r.max += _samples_per_period + _systemic_audio_output_latency; } if (port->is_output () && !for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } } return r; } /* Getting access to the data buffer for a port */ void* PulseAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes) { BackendPortPtr port = std::dynamic_pointer_cast (port_handle); assert (port); return port->get_buffer (nframes); } /* Engine Process */ void* PulseAudioBackend::main_process_thread () { AudioEngine::thread_init_callback (this); _active = true; _processed_samples = 0; manager.registration_callback (); manager.graph_order_callback (); _dsp_load_calc.reset (); stream_latency_update_cb (p_stream, this); while (_run) { if (_freewheeling != _freewheel) { _freewheel = _freewheeling; engine.freewheel_callback (_freewheel); if (_freewheel) { /* when transitioning to freewheeling, cork it and stop writing */ assert (!pa_stream_is_corked (p_stream)); if (!cork_pulse (true)) { PBD::error << _("PulseAudioBackend::main_process_thread failed to cork for freewheeling.") << endmsg; break; } } /* flush corked stream before and after freewheeling */ assert (pa_stream_is_corked (p_stream)); pa_threaded_mainloop_lock (p_mainloop); _operation_succeeded = false; if (!sync_pulse (pa_stream_flush (p_stream, stream_operation_cb, this)) || !_operation_succeeded) { PBD::error << _("PulseAudioBackend::main_process_thread failed to flush.") << endmsg; break; } if (!_freewheel) { /* when transitioning from freewheeling, uncork after flushing and start writing */ if (!cork_pulse (false)) { PBD::error << _("PulseAudioBackend::main_process_thread failed to uncork after freewheeling.") << endmsg; break; } _dsp_load_calc.reset (); } } if (!_freewheel) { pa_threaded_mainloop_lock (p_mainloop); size_t bytes_to_write = sizeof (float) * _samples_per_period * N_CHANNELS; while (pa_stream_writable_size (p_stream) < bytes_to_write) { /* wait until stream_request_cb triggers */ pa_threaded_mainloop_wait (p_mainloop); } if (pa_stream_get_state (p_stream) != PA_STREAM_READY) { pa_threaded_mainloop_unlock (p_mainloop); PBD::error << _("PulseAudioBackend::main_process_thread not ready when writing.") << endmsg; break; } int64_t clock1 = g_get_monotonic_time (); /* call engine process callback */ _last_process_start = g_get_monotonic_time (); if (engine.process_callback (_samples_per_period)) { pa_threaded_mainloop_unlock (p_mainloop); _active = false; PBD::error << _("PulseAudioBackend::main_process_thread engine.process_callback failed.") << endmsg; return 0; } /* write back audio */ uint32_t i = 0; float buf[_max_buffer_size * N_CHANNELS]; assert (_system_outputs.size () == N_CHANNELS); /* interleave */ for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it, ++i) { const float* src = (const float*) (*it)->get_buffer (_samples_per_period); for (size_t n = 0; n < _samples_per_period; ++n) { buf[N_CHANNELS * n + i] = src[n]; } } if (pa_stream_write (p_stream, buf, bytes_to_write, NULL, 0, PA_SEEK_RELATIVE) < 0) { pa_threaded_mainloop_unlock (p_mainloop); PBD::error << _("PulseAudioBackend::main_process_thread pa_stream_write failed.") << endmsg; break; } pa_threaded_mainloop_unlock (p_mainloop); _processed_samples += _samples_per_period; _dsp_load_calc.set_max_time (_samplerate, _samples_per_period); _dsp_load_calc.set_start_timestamp_us (clock1); _dsp_load_calc.set_stop_timestamp_us (g_get_monotonic_time ()); _dsp_load = _dsp_load_calc.get_dsp_load (); } else { /* Freewheelin' */ _last_process_start = 0; if (engine.process_callback (_samples_per_period)) { _active = false; PBD::error << _("PulseAudioBackend::main_process_thread freewheeling engine.process_callback failed.") << endmsg; return 0; } _dsp_load = 1.0f; Glib::usleep (100); // don't hog cpu } bool connections_changed = false; bool ports_changed = false; if (!pthread_mutex_trylock (&_port_callback_mutex)) { int canderef (1); if (_port_change_flag.compare_exchange_strong (canderef, 0)) { ports_changed = true; } if (!_port_connection_queue.empty ()) { connections_changed = true; } process_connection_queue_locked (manager); pthread_mutex_unlock (&_port_callback_mutex); } if (ports_changed) { manager.registration_callback (); } if (connections_changed) { manager.graph_order_callback (); } if (connections_changed || ports_changed) { update_system_port_latencies (); engine.latency_callback (false); engine.latency_callback (true); } } _active = false; if (_run) { engine.halted_callback ("PulseAudio I/O error."); } return 0; } /******************************************************************************/ static std::shared_ptr _instance; static std::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { _("PulseAudio"), instantiate, deinstantiate, backend_factory, already_configured, available }; static std::shared_ptr backend_factory (AudioEngine& e) { if (!_instance) { _instance.reset (new PulseAudioBackend (e, _descriptor)); } return _instance; } static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; return 0; } static int deinstantiate () { _instance.reset (); return 0; } static bool already_configured () { return false; } static bool available () { return true; } extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; } /******************************************************************************/ PulseAudioPort::PulseAudioPort (PulseAudioBackend& b, const std::string& name, PortFlags flags) : BackendPort (b, name, flags) { memset (_buffer, 0, sizeof (_buffer)); mlock (_buffer, sizeof (_buffer)); } PulseAudioPort::~PulseAudioPort () { } void* PulseAudioPort::get_buffer (pframes_t n_samples) { if (is_input ()) { const std::set& connections = get_connections (); std::set::const_iterator it = connections.begin (); if (it == connections.end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { std::shared_ptr source = std::dynamic_pointer_cast (*it); assert (source && source->is_output ()); memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); while (++it != connections.end ()) { source = std::dynamic_pointer_cast (*it); assert (source && source->is_output ()); Sample* dst = _buffer; const Sample* src = source->const_buffer (); for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) { *dst += *src; } } } } return _buffer; } PulseMidiPort::PulseMidiPort (PulseAudioBackend& b, const std::string& name, PortFlags flags) : BackendPort (b, name, flags) { _buffer.clear (); _buffer.reserve (256); } PulseMidiPort::~PulseMidiPort () { } struct MidiEventSorter { bool operator() (const std::shared_ptr& a, const std::shared_ptr& b) { return *a < *b; } }; void* PulseMidiPort::get_buffer (pframes_t /*n_samples*/) { if (is_input ()) { _buffer.clear (); const std::set& connections = get_connections (); for (std::set::const_iterator i = connections.begin (); i != connections.end (); ++i) { const PulseMidiBuffer* src = std::dynamic_pointer_cast (*i)->const_buffer (); for (PulseMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { _buffer.push_back (*it); } } std::stable_sort (_buffer.begin (), _buffer.end (), MidiEventSorter ()); } return &_buffer; } PulseMidiEvent::PulseMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size) : _size (size) , _timestamp (timestamp) { if (size > 0 && size < MaxPulseMidiEventSize) { memcpy (_data, data, size); } } PulseMidiEvent::PulseMidiEvent (const PulseMidiEvent& other) : _size (other.size ()) , _timestamp (other.timestamp ()) { if (other.size () && other.const_data ()) { assert (other._size < MaxPulseMidiEventSize); memcpy (_data, other._data, other._size); } };