/* Copyright (C) 2011-2013 Paul Davis Author: Carl Hetherington This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "gtkmm2ext/utils.h" #include "pbd/compose.h" #include "pbd/signals.h" #include "pbd/stacktrace.h" #include "ardour/types.h" #include "ardour/dB.h" #include "ardour/lmath.h" #include "ardour/audioregion.h" #include "canvas/wave_view.h" #include "canvas/utils.h" #include "canvas/canvas.h" #include "canvas/colors.h" #include #include "gtkmm2ext/gui_thread.h" using namespace std; using namespace ARDOUR; using namespace ArdourCanvas; #define CACHE_HIGH_WATER (2) std::map , std::vector > WaveView::_image_cache; double WaveView::_global_gradient_depth = 0.6; bool WaveView::_global_logscaled = false; WaveView::Shape WaveView::_global_shape = WaveView::Normal; bool WaveView::_global_show_waveform_clipping = true; double WaveView::_clip_level = 0.98853; PBD::Signal0 WaveView::VisualPropertiesChanged; PBD::Signal0 WaveView::ClipLevelChanged; WaveView::WaveView (Canvas* c, boost::shared_ptr region) : Item (c) , _region (region) , _channel (0) , _samples_per_pixel (0) , _height (64) , _show_zero (false) , _zero_color (0xff0000ff) , _clip_color (0xff0000ff) , _logscaled (_global_logscaled) , _shape (_global_shape) , _gradient_depth (_global_gradient_depth) , _shape_independent (false) , _logscaled_independent (false) , _gradient_depth_independent (false) , _amplitude_above_axis (1.0) , _region_amplitude (_region->scale_amplitude ()) , _start_shift (0.0) , _region_start (region->start()) { _region->DropReferences.connect (_source_invalidated_connection, MISSING_INVALIDATOR, boost::bind (&ArdourCanvas::WaveView::invalidate_source, this, boost::weak_ptr(_region->audio_source())), gui_context()); VisualPropertiesChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_visual_property_change, this)); ClipLevelChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_clip_level_change, this)); } WaveView::WaveView (Item* parent, boost::shared_ptr region) : Item (parent) , _region (region) , _channel (0) , _samples_per_pixel (0) , _height (64) , _show_zero (false) , _zero_color (0xff0000ff) , _clip_color (0xff0000ff) , _logscaled (_global_logscaled) , _shape (_global_shape) , _gradient_depth (_global_gradient_depth) , _shape_independent (false) , _logscaled_independent (false) , _gradient_depth_independent (false) , _amplitude_above_axis (1.0) , _region_amplitude (_region->scale_amplitude ()) , _region_start (region->start()) { _region->DropReferences.connect (_source_invalidated_connection, MISSING_INVALIDATOR, boost::bind (&ArdourCanvas::WaveView::invalidate_source, this, boost::weak_ptr(_region->audio_source())), gui_context()); VisualPropertiesChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_visual_property_change, this)); ClipLevelChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_clip_level_change, this)); } WaveView::~WaveView () { _source_invalidated_connection.disconnect(); invalidate_image_cache (); } void WaveView::handle_visual_property_change () { bool changed = false; if (!_shape_independent && (_shape != global_shape())) { _shape = global_shape(); changed = true; } if (!_logscaled_independent && (_logscaled != global_logscaled())) { _logscaled = global_logscaled(); changed = true; } if (!_gradient_depth_independent && (_gradient_depth != global_gradient_depth())) { _gradient_depth = global_gradient_depth(); changed = true; } if (changed) { begin_visual_change (); invalidate_image_cache (); end_visual_change (); } } void WaveView::handle_clip_level_change () { begin_visual_change (); invalidate_image_cache (); end_visual_change (); } void WaveView::set_fill_color (Color c) { if (c != _fill_color) { begin_visual_change (); invalidate_image_cache (); Fill::set_fill_color (c); end_visual_change (); } } void WaveView::set_outline_color (Color c) { if (c != _outline_color) { begin_visual_change (); invalidate_image_cache (); Outline::set_outline_color (c); end_visual_change (); } } void WaveView::set_samples_per_pixel (double samples_per_pixel) { if (samples_per_pixel != _samples_per_pixel) { begin_change (); invalidate_image_cache (); _samples_per_pixel = samples_per_pixel; _bounding_box_dirty = true; end_change (); } } static inline double window_to_image (double wave_origin, double image_start) { return image_start - wave_origin; } static inline float _log_meter (float power, double lower_db, double upper_db, double non_linearity) { return (power < lower_db ? 0.0 : pow((power-lower_db)/(upper_db-lower_db), non_linearity)); } static inline float alt_log_meter (float power) { return _log_meter (power, -192.0, 0.0, 8.0); } void WaveView::set_clip_level (double dB) { const double clip_level = dB_to_coefficient (dB); if (clip_level != _clip_level) { _clip_level = clip_level; ClipLevelChanged (); } } void WaveView::invalidate_source (boost::weak_ptr src) { if (boost::shared_ptr source = src.lock()) { std::map , std::vector >::iterator i; for (i = _image_cache.begin (); i != _image_cache.end (); ++i) { if (i->first == source) { for (uint32_t n = 0; n < i->second.size (); ++n) { i->second[n].image.clear (); } i->second.clear (); _image_cache.erase (i->first); } } } } void WaveView::invalidate_image_cache () { vector deletion_list; vector caches; /* The source may have disappeared.*/ if (_region->n_channels() == 0) { return; } if (_image_cache.find (_region->audio_source ()) != _image_cache.end ()) { caches = _image_cache.find (_region->audio_source ())->second; } else { return; } for (uint32_t i = 0; i < caches.size (); ++i) { if (_channel != caches[i].channel || _height != caches[i].height || _region_amplitude != caches[i].amplitude || _fill_color != caches[i].fill_color) { continue; } deletion_list.push_back (i); } while (deletion_list.size() > 0) { caches[deletion_list.back ()].image.clear (); caches.erase (caches.begin() + deletion_list.back()); deletion_list.pop_back(); } if (caches.size () == 0) { _image_cache.erase(_region->audio_source ()); } else { _image_cache[_region->audio_source ()] = caches; } } void WaveView::consolidate_image_cache () const { list deletion_list; vector caches; uint32_t other_entries = 0; if (_image_cache.find (_region->audio_source ()) != _image_cache.end ()) { caches = _image_cache.find (_region->audio_source ())->second; } for (uint32_t i = 0; i < caches.size (); ++i) { if (_channel != caches[i].channel || _height != caches[i].height || _region_amplitude != caches[i].amplitude || _fill_color != caches[i].fill_color) { other_entries++; continue; } framepos_t segment_start = caches[i].start; framepos_t segment_end = caches[i].end; for (uint32_t j = i; j < caches.size (); ++j) { if (i == j || _channel != caches[j].channel || _height != caches[i].height || _region_amplitude != caches[i].amplitude || _fill_color != caches[i].fill_color) { continue; } if (caches[j].start >= segment_start && caches[j].end <= segment_end) { deletion_list.push_back (j); } } } deletion_list.sort (); deletion_list.unique (); while (deletion_list.size() > 0) { caches[deletion_list.back ()].image.clear (); caches.erase (caches.begin() + deletion_list.back ()); deletion_list.pop_back(); } /* We don't care if this channel/height/amplitude has anything in the cache - just drop the Last Added entries until we reach a size where there is a maximum of CACHE_HIGH_WATER + other entries. */ while (caches.size() > CACHE_HIGH_WATER + other_entries) { caches.front ().image.clear (); caches.erase(caches.begin ()); } if (caches.size () == 0) { _image_cache.erase (_region->audio_source ()); } else { _image_cache[_region->audio_source ()] = caches; } } Coord WaveView::y_extent (double s, bool /*round_to_lower_edge*/) const { /* it is important that this returns an integral value, so that we * can ensure correct single pixel behaviour. * * we need (_height - max(wave_line_width)) * wave_line_width == 1 IFF top==bottom (1 sample per pixel or flat line) * wave_line_width == 2 otherwise * then round away from the zero line, towards peak */ if (_shape == Rectified) { // we only ever have 1 point and align to the bottom (not center) return floor ((1.0 - s) * (_height - 2.0)); } else { /* currently canvas rectangle is off-by-one and we * cannot draw a pixel at 0 (-.5 .. +.5) without it being * clipped. A value 1.0 (ideally one point at y=0) ends * up a pixel down. and a value of -1.0 (ideally y = _height-1) * currently is on the bottom separator line :( * So to make the complete waveform appear centered in * a region, we translate by +1.5 (instead of -.5) * and scale to height - 2.5 (if we scale to height - 2.0 * then the bottom most pixel may bleed into the selection rect * by 0.5 px) * */ Coord pos; pos = floor ((1.0 - s) * .5 * (_height - 2.5)); return min (_height - 2.5, (max (0.0, pos))); } } void WaveView::draw_absent_image (Cairo::RefPtr& image, PeakData* _peaks, int n_peaks) const { Cairo::RefPtr stripe = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height); Cairo::RefPtr stripe_context = Cairo::Context::create (stripe); stripe_context->set_antialias (Cairo::ANTIALIAS_NONE); uint32_t stripe_separation = 150; double start = - floor (_height / stripe_separation) * stripe_separation; int stripe_x = 0; while (start < n_peaks) { stripe_context->move_to (start, 0); stripe_x = start + _height; stripe_context->line_to (stripe_x, _height); start += stripe_separation; } stripe_context->set_source_rgba (1.0, 1.0, 1.0, 1.0); stripe_context->set_line_cap (Cairo::LINE_CAP_SQUARE); stripe_context->set_line_width(50); stripe_context->stroke(); Cairo::RefPtr context = Cairo::Context::create (image); context->set_source_rgba (1.0, 1.0, 0.0, 0.3); context->mask (stripe, 0, 0); context->fill (); } struct LineTips { double top; double bot; double spread; bool clip_max; bool clip_min; LineTips() : top (0.0), bot (0.0), clip_max (false), clip_min (false) {} }; struct ImageSet { Cairo::RefPtr wave; Cairo::RefPtr outline; Cairo::RefPtr clip; Cairo::RefPtr zero; ImageSet() : wave (0), outline (0), clip (0), zero (0) {} }; void WaveView::draw_image (Cairo::RefPtr& image, PeakData* _peaks, int n_peaks) const { ImageSet images; images.wave = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height); images.outline = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height); images.clip = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height); images.zero = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height); Cairo::RefPtr wave_context = Cairo::Context::create (images.wave); Cairo::RefPtr outline_context = Cairo::Context::create (images.outline); Cairo::RefPtr clip_context = Cairo::Context::create (images.clip); Cairo::RefPtr zero_context = Cairo::Context::create (images.zero); wave_context->set_antialias (Cairo::ANTIALIAS_NONE); outline_context->set_antialias (Cairo::ANTIALIAS_NONE); clip_context->set_antialias (Cairo::ANTIALIAS_NONE); zero_context->set_antialias (Cairo::ANTIALIAS_NONE); boost::scoped_array tips (new LineTips[n_peaks]); /* Clip level nominally set to -0.9dBFS to account for inter-sample interpolation possibly clipping (value may be too low). We adjust by the region's own gain (but note: not by any gain automation or its gain envelope) so that clip indicators are closer to providing data about on-disk data. This multiplication is needed because the data we get from AudioRegion::read_peaks() has been scaled by scale_amplitude() already. */ const double clip_level = _clip_level * _region_amplitude; if (_shape == WaveView::Rectified) { /* each peak is a line from the bottom of the waveview * to a point determined by max (_peaks[i].max, * _peaks[i].min) */ if (_logscaled) { for (int i = 0; i < n_peaks; ++i) { tips[i].bot = height() - 1.0; const double p = alt_log_meter (fast_coefficient_to_dB (max (fabs (_peaks[i].max), fabs (_peaks[i].min)))); tips[i].top = y_extent (p, false); tips[i].spread = p * (_height - 1.0); if (_peaks[i].max >= clip_level) { tips[i].clip_max = true; } if (-(_peaks[i].min) >= clip_level) { tips[i].clip_min = true; } } } else { for (int i = 0; i < n_peaks; ++i) { tips[i].bot = height() - 1.0; const double p = max(fabs (_peaks[i].max), fabs (_peaks[i].min)); tips[i].top = y_extent (p, false); tips[i].spread = p * (_height - 2.0); if (p >= clip_level) { tips[i].clip_max = true; } } } } else { if (_logscaled) { for (int i = 0; i < n_peaks; ++i) { double top = _peaks[i].max; double bot = _peaks[i].min; if (_peaks[i].max >= clip_level) { tips[i].clip_max = true; } if (-(_peaks[i].min) >= clip_level) { tips[i].clip_min = true; } if (top > 0.0) { top = alt_log_meter (fast_coefficient_to_dB (top)); } else if (top < 0.0) { top =-alt_log_meter (fast_coefficient_to_dB (-top)); } else { top = 0.0; } if (bot > 0.0) { bot = alt_log_meter (fast_coefficient_to_dB (bot)); } else if (bot < 0.0) { bot = -alt_log_meter (fast_coefficient_to_dB (-bot)); } else { bot = 0.0; } tips[i].top = y_extent (top, false); tips[i].bot = y_extent (bot, true); tips[i].spread = tips[i].bot - tips[i].top; } } else { for (int i = 0; i < n_peaks; ++i) { if (_peaks[i].max >= clip_level) { tips[i].clip_max = true; } if (-(_peaks[i].min) >= clip_level) { tips[i].clip_min = true; } tips[i].top = y_extent (_peaks[i].max, false); tips[i].bot = y_extent (_peaks[i].min, true); tips[i].spread = tips[i].bot - tips[i].top; } } } Color alpha_one = rgba_to_color (0, 0, 0, 1.0); set_source_rgba (wave_context, alpha_one); set_source_rgba (outline_context, alpha_one); set_source_rgba (clip_context, alpha_one); set_source_rgba (zero_context, alpha_one); /* ensure single-pixel lines */ wave_context->set_line_width (1.0); wave_context->translate (0.5, +1.5); outline_context->set_line_width (1.0); outline_context->translate (0.5, +1.5); clip_context->set_line_width (1.0); clip_context->translate (0.5, +1.5); zero_context->set_line_width (1.0); zero_context->translate (0.5, +1.5); /* the height of the clip-indicator should be at most 7 pixels, * or 5% of the height of the waveview item. */ const double clip_height = min (7.0, ceil (_height * 0.05)); /* There are 3 possible components to draw at each x-axis position: the waveform "line", the zero line and an outline/clip indicator. We have to decide which of the 3 to draw at each position, pixel by pixel. This makes the rendering less efficient but it is the only way I can see to do this correctly. To avoid constant source swapping and stroking, we draw the components separately onto four alpha only image surfaces for use as a mask. With only 1 pixel of spread between the top and bottom of the line, we just draw the upper outline/clip indicator. With 2 pixels of spread, we draw the upper and lower outline clip indicators. With 3 pixels of spread we draw the upper and lower outline/clip indicators and at least 1 pixel of the waveform line. With 5 pixels of spread, we draw all components. We can do rectified as two separate passes because we have a much easier decision regarding whether to draw the waveform line. We always draw the clip/outline indicators. */ if (_shape == WaveView::Rectified) { for (int i = 0; i < n_peaks; ++i) { /* waveform line */ if (tips[i].spread >= 1.0) { wave_context->move_to (i, tips[i].top); wave_context->line_to (i, tips[i].bot); } /* clip indicator */ if (_global_show_waveform_clipping && (tips[i].clip_max || tips[i].clip_min)) { clip_context->move_to (i, tips[i].top); /* clip-indicating upper terminal line */ clip_context->rel_line_to (0, min (clip_height, ceil(tips[i].spread + .5))); } else { outline_context->move_to (i, tips[i].top); /* normal upper terminal dot */ outline_context->rel_line_to (0, -1.0); } } wave_context->stroke (); clip_context->stroke (); outline_context->stroke (); } else { const double height_2 = (_height - 2.5) * .5; for (int i = 0; i < n_peaks; ++i) { /* waveform line */ if (tips[i].spread >= 2.0) { wave_context->move_to (i, tips[i].top); wave_context->line_to (i, tips[i].bot); } /* draw square waves and other discontiguous points clearly */ if (i > 0) { if (tips[i-1].top + 2 < tips[i].top) { wave_context->move_to (i-1, tips[i-1].top); wave_context->line_to (i-1, (tips[i].bot + tips[i-1].top)/2); wave_context->move_to (i, (tips[i].bot + tips[i-1].top)/2); wave_context->line_to (i, tips[i].top); } else if (tips[i-1].bot > tips[i].bot + 2) { wave_context->move_to (i-1, tips[i-1].bot); wave_context->line_to (i-1, (tips[i].top + tips[i-1].bot)/2); wave_context->move_to (i, (tips[i].top + tips[i-1].bot)/2); wave_context->line_to (i, tips[i].bot); } } /* zero line */ if (tips[i].spread >= 5.0 && show_zero_line()) { zero_context->move_to (i, floor(height_2)); zero_context->rel_line_to (1.0, 0); } if (tips[i].spread > 1.0) { bool clipped = false; /* outline/clip indicators */ if (_global_show_waveform_clipping && tips[i].clip_max) { clip_context->move_to (i, tips[i].top); /* clip-indicating upper terminal line */ clip_context->rel_line_to (0, min (clip_height, ceil(tips[i].spread + 0.5))); clipped = true; } if (_global_show_waveform_clipping && tips[i].clip_min) { clip_context->move_to (i, tips[i].bot); /* clip-indicating lower terminal line */ clip_context->rel_line_to (0, - min (clip_height, ceil(tips[i].spread + 0.5))); clipped = true; } if (!clipped) { outline_context->move_to (i, tips[i].bot + 1.0); /* normal lower terminal dot */ outline_context->rel_line_to (0, -1.0); outline_context->move_to (i, tips[i].top - 1.0); /* normal upper terminal dot */ outline_context->rel_line_to (0, 1.0); } } else { bool clipped = false; /* outline/clip indicator */ if (_global_show_waveform_clipping && (tips[i].clip_max || tips[i].clip_min)) { clip_context->move_to (i, tips[i].top); /* clip-indicating upper / lower terminal line */ clip_context->rel_line_to (0, 1.0); clipped = true; } if (!clipped) { wave_context->move_to (i, tips[i].top); /* special case where outline only is drawn. * we draw a 1px "line", pretending that the span is 1.0 */ wave_context->rel_line_to (0, 1.0); } } } wave_context->stroke (); outline_context->stroke (); clip_context->stroke (); zero_context->stroke (); } Cairo::RefPtr context = Cairo::Context::create (image); /* Here we set a source colour and use the various components as a mask. */ if (gradient_depth() != 0.0) { Cairo::RefPtr gradient (Cairo::LinearGradient::create (0, 0, 0, _height)); double stops[3]; double r, g, b, a; if (_shape == Rectified) { stops[0] = 0.1; stops[1] = 0.3; stops[2] = 0.9; } else { stops[0] = 0.1; stops[1] = 0.5; stops[2] = 0.9; } color_to_rgba (_fill_color, r, g, b, a); gradient->add_color_stop_rgba (stops[1], r, g, b, a); /* generate a new color for the middle of the gradient */ double h, s, v; color_to_hsv (_fill_color, h, s, v); /* change v towards white */ v *= 1.0 - gradient_depth(); Color center = hsva_to_color (h, s, v, a); color_to_rgba (center, r, g, b, a); gradient->add_color_stop_rgba (stops[0], r, g, b, a); gradient->add_color_stop_rgba (stops[2], r, g, b, a); context->set_source (gradient); } else { set_source_rgba (context, _fill_color); } context->mask (images.wave, 0, 0); context->fill (); set_source_rgba (context, _outline_color); context->mask (images.outline, 0, 0); context->fill (); set_source_rgba (context, _clip_color); context->mask (images.clip, 0, 0); context->fill (); set_source_rgba (context, _zero_color); context->mask (images.zero, 0, 0); context->fill (); } void WaveView::get_image (Cairo::RefPtr& image, framepos_t start, framepos_t end, double& image_offset) const { vector caches; if (_image_cache.find (_region->audio_source ()) != _image_cache.end ()) { caches = _image_cache.find (_region->audio_source ())->second; } /* Find a suitable ImageSurface. */ for (uint32_t i = 0; i < caches.size (); ++i) { if (_channel != caches[i].channel || _height != caches[i].height || _region_amplitude != caches[i].amplitude || _fill_color != caches[i].fill_color) { continue; } framepos_t segment_start = caches[i].start; framepos_t segment_end = caches[i].end; if (end <= segment_end && start >= segment_start) { image_offset = (segment_start - _region_start) / _samples_per_pixel; image = caches[i].image; return; } } consolidate_image_cache (); /* sample position is canonical here, and we want to generate * an image that spans about twice the canvas width */ const framepos_t center = start + ((end - start) / 2); const framecnt_t canvas_samples = _canvas->visible_area().width() * _samples_per_pixel; /* one canvas width */ /* we can request data from anywhere in the Source, between 0 and its length */ framepos_t sample_start = max ((framepos_t) 0, (center - canvas_samples)); framepos_t sample_end = min (center + canvas_samples, _region->source_length (0)); const int n_peaks = llrintf ((sample_end - sample_start)/ (double) _samples_per_pixel); boost::scoped_array peaks (new PeakData[n_peaks]); framecnt_t peaks_read; peaks_read = _region->read_peaks (peaks.get(), n_peaks, sample_start, sample_end - sample_start, _channel, _samples_per_pixel); // apply waveform amplitude zoom multiplier for (int i = 0; i < n_peaks; ++i) { peaks[i].max *= _amplitude_above_axis; peaks[i].min *= _amplitude_above_axis; } image = Cairo::ImageSurface::create (Cairo::FORMAT_ARGB32, n_peaks, _height); if (peaks_read > 0) { draw_image (image, peaks.get(), n_peaks); } else { draw_absent_image (image, peaks.get(), n_peaks); } _image_cache[_region->audio_source ()].push_back (CacheEntry (_channel, _height, _region_amplitude, _fill_color, sample_start, sample_end, image)); image_offset = (sample_start - _region->start()) / _samples_per_pixel; //cerr << "_image_cache size is : " << _image_cache.size() << " entries for this audiosource : " << _image_cache.find (_region->audio_source ())->second.size() << endl; return; } void WaveView::render (Rect const & area, Cairo::RefPtr context) const { assert (_samples_per_pixel != 0); if (!_region) { return; } Rect self = item_to_window (Rect (0.0, 0.0, _region->length() / _samples_per_pixel, _height)); boost::optional d = self.intersection (area); if (!d) { return; } Rect draw = d.get(); /* window coordinates - pixels where x=0 is the left edge of the canvas * window. We round down in case we were asked to * draw "between" pixels at the start and/or end. */ double draw_start = floor (draw.x0); const double draw_end = floor (draw.x1); // cerr << "Need to draw " << draw_start << " .. " << draw_end << endl; /* image coordnates: pixels where x=0 is the start of this waveview, * wherever it may be positioned. thus image_start=N means "an image * that beings N pixels after the start of region that this waveview is * representing. */ const framepos_t image_start = window_to_image (self.x0, draw_start); const framepos_t image_end = window_to_image (self.x0, draw_end); // cerr << "Image/WV space: " << image_start << " .. " << image_end << endl; /* sample coordinates - note, these are not subject to rounding error */ framepos_t sample_start = _region_start + (image_start * _samples_per_pixel); framepos_t sample_end = _region_start + (image_end * _samples_per_pixel); // cerr << "Sample space: " << sample_start << " .. " << sample_end << endl; Cairo::RefPtr image; double image_offset = 0; get_image (image, sample_start, sample_end, image_offset); // cerr << "Offset into image to place at zero: " << image_offset << endl; if (_start_shift && (sample_start == _region_start) && (self.x0 == draw.x0)) { /* we are going to draw the first pixel for this region, but we may not want this to overlap a border around the waveform. If so, _start_shift will be set. */ //cerr << name.substr (23) << " ss = " << sample_start << " rs = " << _region_start << " sf = " << _start_shift << " ds = " << draw_start << " self = " << self << " draw = " << draw << endl; //draw_start += _start_shift; //image_offset += _start_shift; } context->rectangle (draw_start, draw.y0, draw_end - draw_start, draw.height()); /* round image origin position to an exact pixel in device space to * avoid blurring */ double x = self.x0 + image_offset; double y = self.y0; context->user_to_device (x, y); x = round (x); y = round (y); context->device_to_user (x, y); context->set_source (image, x, y); context->fill (); } void WaveView::compute_bounding_box () const { if (_region) { _bounding_box = Rect (0.0, 0.0, _region->length() / _samples_per_pixel, _height); } else { _bounding_box = boost::optional (); } _bounding_box_dirty = false; } void WaveView::set_height (Distance height) { if (height != _height) { begin_change (); invalidate_image_cache (); _height = height; _bounding_box_dirty = true; end_change (); } } void WaveView::set_channel (int channel) { if (channel != _channel) { begin_change (); invalidate_image_cache (); _channel = channel; _bounding_box_dirty = true; end_change (); } } void WaveView::set_logscaled (bool yn) { if (_logscaled != yn) { begin_visual_change (); invalidate_image_cache (); _logscaled = yn; end_visual_change (); } } void WaveView::gain_changed () { begin_visual_change (); invalidate_image_cache (); _region_amplitude = _region->scale_amplitude (); end_visual_change (); } void WaveView::set_zero_color (Color c) { if (_zero_color != c) { begin_visual_change (); invalidate_image_cache (); _zero_color = c; end_visual_change (); } } void WaveView::set_clip_color (Color c) { if (_clip_color != c) { begin_visual_change (); invalidate_image_cache (); _clip_color = c; end_visual_change (); } } void WaveView::set_show_zero_line (bool yn) { if (_show_zero != yn) { begin_visual_change (); invalidate_image_cache (); _show_zero = yn; end_visual_change (); } } void WaveView::set_shape (Shape s) { if (_shape != s) { begin_visual_change (); invalidate_image_cache (); _shape = s; end_visual_change (); } } void WaveView::set_amplitude_above_axis (double a) { if (fabs (_amplitude_above_axis - a) > 0.01) { begin_visual_change (); invalidate_image_cache (); _amplitude_above_axis = a; end_visual_change (); } } void WaveView::set_global_shape (Shape s) { if (_global_shape != s) { _global_shape = s; VisualPropertiesChanged (); /* EMIT SIGNAL */ } } void WaveView::set_global_logscaled (bool yn) { if (_global_logscaled != yn) { _global_logscaled = yn; VisualPropertiesChanged (); /* EMIT SIGNAL */ } } void WaveView::set_region_start (frameoffset_t start) { if (!_region) { return; } if (_region_start == start) { return; } begin_change (); _region_start = start; _bounding_box_dirty = true; end_change (); } void WaveView::region_resized () { /* Called when the region start or end (thus length) has changed. */ if (!_region) { return; } begin_change (); _region_start = _region->start(); _bounding_box_dirty = true; end_change (); } void WaveView::set_global_gradient_depth (double depth) { if (_global_gradient_depth != depth) { _global_gradient_depth = depth; VisualPropertiesChanged (); /* EMIT SIGNAL */ } } void WaveView::set_global_show_waveform_clipping (bool yn) { if (_global_show_waveform_clipping != yn) { _global_show_waveform_clipping = yn; ClipLevelChanged (); } } void WaveView::set_start_shift (double pixels) { if (pixels < 0) { return; } begin_visual_change (); _start_shift = pixels; end_visual_change (); }