/* * Copyright (C) 2015-2016 Tim Mayberry * Copyright (C) 2015-2018 Robin Gareus * Copyright (C) 2016-2018 Paul Davis * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #ifndef PLATFORM_WINDOWS #include #include #endif #ifdef COMPILER_MINGW #include #endif #include #include "portaudio_backend.h" #include "pbd/compose.h" #include "pbd/error.h" #include "pbd/file_utils.h" #include "pbd/pthread_utils.h" #include "pbd/microseconds.h" #include "pbd/windows_timer_utils.h" #include "pbd/windows_mmcss.h" #include "ardour/filesystem_paths.h" #include "ardour/port_manager.h" #include "pbd/i18n.h" #include "audio_utils.h" #include "debug.h" using namespace ARDOUR; namespace { const char * const winmme_driver_name = X_("WinMME"); } static std::string s_instance_name; size_t PortAudioBackend::_max_buffer_size = 8192; std::vector PortAudioBackend::_midi_options; std::vector PortAudioBackend::_input_audio_device_status; std::vector PortAudioBackend::_output_audio_device_status; PortAudioBackend::PortAudioBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , PortEngineSharedImpl (e, s_instance_name) , _pcmio (0) , _run (false) , _active (false) , _use_blocking_api(false) , _freewheel (false) , _freewheeling (false) , _freewheel_ack (false) , _reinit_thread_callback (false) , _measure_latency (false) , _freewheel_processed (0) , _cycle_count(0) , _total_deviation_us(0) , _max_deviation_us(0) , _input_audio_device("") , _output_audio_device("") , _midi_driver_option(winmme_driver_name) , _samplerate (48000) , _samples_per_period (1024) , _n_inputs (0) , _n_outputs (0) , _systemic_audio_input_latency (0) , _systemic_audio_output_latency (0) , _dsp_load (0) , _processed_samples (0) { _instance_name = s_instance_name; pthread_mutex_init (&_freewheel_mutex, 0); pthread_cond_init (&_freewheel_signal, 0); _port_connection_queue.reserve (128); _pcmio = new PortAudioIO (); _midiio = new WinMMEMidiIO (); } PortAudioBackend::~PortAudioBackend () { delete _pcmio; _pcmio = 0; delete _midiio; _midiio = 0; clear_ports (); pthread_mutex_destroy (&_freewheel_mutex); pthread_cond_destroy (&_freewheel_signal); } /* AUDIOBACKEND API */ std::string PortAudioBackend::name () const { return X_("PortAudio"); } bool PortAudioBackend::is_realtime () const { return true; } bool PortAudioBackend::requires_driver_selection() const { // we could do this but implementation would need changing /* if (enumerate_drivers().size() == 1) { return false; } */ return true; } std::vector PortAudioBackend::enumerate_drivers () const { DEBUG_AUDIO ("Portaudio: enumerate_drivers\n"); std::vector currently_available; _pcmio->host_api_list (currently_available); return currently_available; } int PortAudioBackend::set_driver (const std::string& name) { DEBUG_AUDIO (string_compose ("Portaudio: set_driver %1 \n", name)); if (!_pcmio->set_host_api (name)) { DEBUG_AUDIO (string_compose ("Portaudio: Unable to set_driver %1 \n", name)); return -1; } _pcmio->update_devices(); return 0; } bool PortAudioBackend::update_devices () { // update midi device info? return _pcmio->update_devices(); } void PortAudioBackend::set_use_buffered_io (bool use_buffered_io) { DEBUG_AUDIO (string_compose ("Portaudio: use_buffered_io %1 \n", use_buffered_io)); if (running()) { return; } _use_blocking_api = use_buffered_io; } std::string PortAudioBackend::driver_name () const { std::string driver_name = _pcmio->get_host_api (); DEBUG_AUDIO (string_compose ("Portaudio: driver_name %1 \n", driver_name)); return driver_name; } bool PortAudioBackend::use_separate_input_and_output_devices () const { return true; } std::vector PortAudioBackend::enumerate_devices () const { DEBUG_AUDIO ("Portaudio: ERROR enumerate devices should not be called \n"); return std::vector(); } std::vector PortAudioBackend::enumerate_input_devices () const { _input_audio_device_status.clear(); std::map input_devices; _pcmio->input_device_list(input_devices); for (std::map::const_iterator i = input_devices.begin (); i != input_devices.end(); ++i) { if (_input_audio_device == "") _input_audio_device = i->second; _input_audio_device_status.push_back (DeviceStatus (i->second, true)); } return _input_audio_device_status; } std::vector PortAudioBackend::enumerate_output_devices () const { _output_audio_device_status.clear(); std::map output_devices; _pcmio->output_device_list(output_devices); for (std::map::const_iterator i = output_devices.begin (); i != output_devices.end(); ++i) { if (_output_audio_device == "") _output_audio_device = i->second; _output_audio_device_status.push_back (DeviceStatus (i->second, true)); } return _output_audio_device_status; } std::vector PortAudioBackend::available_sample_rates (const std::string&) const { DEBUG_AUDIO ("Portaudio: available_sample_rates\n"); std::vector sr; _pcmio->available_sample_rates(name_to_id(_input_audio_device), sr); return sr; } std::vector PortAudioBackend::available_buffer_sizes (const std::string&) const { DEBUG_AUDIO ("Portaudio: available_buffer_sizes\n"); std::vector bs; _pcmio->available_buffer_sizes(name_to_id(_input_audio_device), bs); return bs; } bool PortAudioBackend::can_change_sample_rate_when_running () const { return false; } bool PortAudioBackend::can_change_buffer_size_when_running () const { return false; // TODO } int PortAudioBackend::set_device_name (const std::string& d) { DEBUG_AUDIO ("Portaudio: set_device_name should not be called\n"); return 0; } int PortAudioBackend::set_input_device_name (const std::string& d) { DEBUG_AUDIO (string_compose ("Portaudio: set_input_device_name %1\n", d)); _input_audio_device = d; return 0; } int PortAudioBackend::set_output_device_name (const std::string& d) { DEBUG_AUDIO (string_compose ("Portaudio: set_output_device_name %1\n", d)); _output_audio_device = d; return 0; } int PortAudioBackend::set_sample_rate (float sr) { if (sr <= 0) { return -1; } // TODO check if it's in the list of valid SR _samplerate = sr; engine.sample_rate_change (sr); return 0; } int PortAudioBackend::set_buffer_size (uint32_t bs) { if (bs <= 0 || bs >= _max_buffer_size) { return -1; } _samples_per_period = bs; engine.buffer_size_change (bs); return 0; } int PortAudioBackend::set_interleaved (bool yn) { if (!yn) { return 0; } return -1; } int PortAudioBackend::set_systemic_input_latency (uint32_t sl) { _systemic_audio_input_latency = sl; return 0; } int PortAudioBackend::set_systemic_output_latency (uint32_t sl) { _systemic_audio_output_latency = sl; return 0; } int PortAudioBackend::set_systemic_midi_input_latency (std::string const device, uint32_t sl) { MidiDeviceInfo* nfo = midi_device_info (device); if (!nfo) return -1; nfo->systemic_input_latency = sl; if (_run && nfo->enable) { update_systemic_midi_latencies (); } return 0; } int PortAudioBackend::set_systemic_midi_output_latency (std::string const device, uint32_t sl) { MidiDeviceInfo* nfo = midi_device_info (device); if (!nfo) return -1; nfo->systemic_output_latency = sl; if (_run && nfo->enable) { update_systemic_midi_latencies (); } return 0; } /* Retrieving parameters */ std::string PortAudioBackend::device_name () const { return "Unused"; } std::string PortAudioBackend::input_device_name () const { return _input_audio_device; } std::string PortAudioBackend::output_device_name () const { return _output_audio_device; } float PortAudioBackend::sample_rate () const { return _samplerate; } uint32_t PortAudioBackend::buffer_size () const { return _samples_per_period; } bool PortAudioBackend::interleaved () const { return false; } uint32_t PortAudioBackend::systemic_input_latency () const { return _systemic_audio_input_latency; } uint32_t PortAudioBackend::systemic_output_latency () const { return _systemic_audio_output_latency; } uint32_t PortAudioBackend::systemic_midi_input_latency (std::string const device) const { MidiDeviceInfo* nfo = midi_device_info (device); if (!nfo) return 0; return nfo->systemic_input_latency; } uint32_t PortAudioBackend::systemic_midi_output_latency (std::string const device) const { MidiDeviceInfo* nfo = midi_device_info (device); if (!nfo) return 0; return nfo->systemic_output_latency; } std::string PortAudioBackend::control_app_name () const { return _pcmio->control_app_name (name_to_id (_input_audio_device)); } void PortAudioBackend::launch_control_app () { return _pcmio->launch_control_app (name_to_id(_input_audio_device)); } /* MIDI */ std::vector PortAudioBackend::enumerate_midi_options () const { if (_midi_options.empty()) { _midi_options.push_back (winmme_driver_name); _midi_options.push_back (get_standard_device_name(DeviceNone)); } return _midi_options; } int PortAudioBackend::set_midi_option (const std::string& opt) { if (opt != get_standard_device_name(DeviceNone) && opt != winmme_driver_name) { return -1; } DEBUG_MIDI (string_compose ("Setting midi option to %1\n", opt)); _midi_driver_option = opt; return 0; } std::string PortAudioBackend::midi_option () const { return _midi_driver_option; } std::vector PortAudioBackend::enumerate_midi_devices () const { std::vector midi_device_status; std::vector device_info; if (_midi_driver_option == winmme_driver_name) { _midiio->update_device_info (); device_info = _midiio->get_device_info (); } for (std::vector::const_iterator i = device_info.begin(); i != device_info.end(); ++i) { midi_device_status.push_back(DeviceStatus((*i)->device_name, true)); } return midi_device_status; } MidiDeviceInfo* PortAudioBackend::midi_device_info (const std::string& device_name) const { std::vector dev_info; if (_midi_driver_option == winmme_driver_name) { dev_info = _midiio->get_device_info(); for (std::vector::const_iterator i = dev_info.begin(); i != dev_info.end(); ++i) { if ((*i)->device_name == device_name) { return *i; } } } return 0; } int PortAudioBackend::set_midi_device_enabled (std::string const device, bool enable) { MidiDeviceInfo* nfo = midi_device_info(device); if (!nfo) { return -1; } const bool was_enabled = nfo->enable; nfo->enable = enable; if (_run && was_enabled != enable) { if (enable) { /* add ports for the given device */ register_system_midi_ports (device); } else { /* remove all ports for the given device */ for (std::vector::iterator it = _system_midi_out.begin (); it != _system_midi_out.end ();) { if ((*it)->hw_port_name () != device) { ++it; continue; } unregister_port (*it); it = _system_midi_out.erase (it); } for (std::vector::iterator it = _system_midi_in.begin (); it != _system_midi_in.end ();) { if ((*it)->hw_port_name () != device) { ++it; continue; } unregister_port (*it); it = _system_midi_in.erase (it); } } update_systemic_midi_latencies (); } return 0; } bool PortAudioBackend::midi_device_enabled (std::string const device) const { MidiDeviceInfo* nfo = midi_device_info(device); if (!nfo) return false; return nfo->enable; } /* State Control */ static void * blocking_thread_func (void *arg) { PortAudioBackend *d = static_cast(arg); d->blocking_process_thread (); pthread_exit (0); return 0; } bool PortAudioBackend::engine_halted () { return !_active && _run; } bool PortAudioBackend::running () { return _active || _run; } int PortAudioBackend::_start (bool for_latency_measurement) { if (engine_halted()) { stop(); } if (running()) { DEBUG_AUDIO("Already started.\n"); return BackendReinitializationError; } clear_ports (); /* reset internal state */ assert (_run == false); _run = false; _dsp_load = 0; _freewheeling = false; _freewheel = false; PaErrorCode err = paNoError; if (_use_blocking_api) { DEBUG_AUDIO("Opening blocking audio stream\n"); err = _pcmio->open_blocking_stream(name_to_id(_input_audio_device), name_to_id(_output_audio_device), _samplerate, _samples_per_period); } else { DEBUG_AUDIO("Opening callback audio stream\n"); err = _pcmio->open_callback_stream(name_to_id(_input_audio_device), name_to_id(_output_audio_device), _samplerate, _samples_per_period, portaudio_callback, this); } // reintepret Portaudio error messages switch (err) { case paNoError: break; case paBadIODeviceCombination: return DeviceConfigurationNotSupportedError; case paInvalidChannelCount: return ChannelCountNotSupportedError; case paInvalidSampleRate: return SampleRateNotSupportedError; default: return AudioDeviceOpenError; } if (_n_outputs != _pcmio->n_playback_channels ()) { _n_outputs = _pcmio->n_playback_channels (); PBD::info << get_error_string(OutputChannelCountNotSupportedError) << endmsg; } if (_n_inputs != _pcmio->n_capture_channels ()) { _n_inputs = _pcmio->n_capture_channels (); PBD::info << get_error_string(InputChannelCountNotSupportedError) << endmsg; } #if 0 if (_pcmio->samples_per_period() != _samples_per_period) { _samples_per_period = _pcmio->samples_per_period(); PBD::warning << _("PortAudioBackend: samples per period does not match.") << endmsg; } #endif if (_pcmio->sample_rate() != _samplerate) { _samplerate = _pcmio->sample_rate(); engine.sample_rate_change (_samplerate); PBD::warning << get_error_string(SampleRateNotSupportedError) << endmsg; } _measure_latency = for_latency_measurement; if (_midi_driver_option == winmme_driver_name) { _midiio->set_enabled(true); //_midiio->set_port_changed_callback(midi_port_change, this); _midiio->start(); // triggers port discovery, callback coremidi_rediscover() } _cycle_timer.set_samplerate(_samplerate); _cycle_timer.set_samples_per_cycle(_samples_per_period); _dsp_calc.set_max_time_us (_cycle_timer.get_length_us()); DEBUG_MIDI ("Registering MIDI ports\n"); if (register_system_midi_ports () != 0) { DEBUG_PORTS("Failed to register system midi ports.\n") return PortRegistrationError; } DEBUG_AUDIO ("Registering Audio ports\n"); if (register_system_audio_ports()) { DEBUG_PORTS("Failed to register system audio ports.\n"); return PortRegistrationError; } engine.sample_rate_change (_samplerate); engine.buffer_size_change (_samples_per_period); if (engine.reestablish_ports ()) { DEBUG_PORTS("Could not re-establish ports.\n"); return PortReconnectError; } _run = true; engine.reconnect_ports (); _port_change_flag.store (0); _dsp_calc.reset (); if (_use_blocking_api) { if (!start_blocking_process_thread()) { return ProcessThreadStartError; } PBD::MMTIMERS::set_min_resolution(); } else { if (_pcmio->start_stream() != paNoError) { DEBUG_AUDIO("Unable to start stream\n"); return AudioDeviceOpenError; } PBD::MMTIMERS::set_min_resolution(); if (!start_freewheel_process_thread()) { DEBUG_AUDIO("Unable to start freewheel thread\n"); stop(); return ProcessThreadStartError; } /* wait for backend to become active */ int timeout = 5000; while (!_active && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_active) { PBD::error << _("PortAudio:: failed to start device.") << endmsg; stop (); return ProcessThreadStartError; } _port_change_flag.store (1); } return NoError; } int PortAudioBackend::portaudio_callback(const void* input, void* output, unsigned long sample_count, const PaStreamCallbackTimeInfo* time_info, PaStreamCallbackFlags status_flags, void* user_data) { PortAudioBackend* pa_backend = static_cast(user_data); if (!pa_backend->process_callback((const float*)input, (float*)output, sample_count, time_info, status_flags)) { return paAbort; } return paContinue; } bool PortAudioBackend::process_callback(const float* input, float* output, uint32_t sample_count, const PaStreamCallbackTimeInfo* timeInfo, PaStreamCallbackFlags statusFlags) { PBD::WaitTimerRAII tr (dsp_stats[DeviceWait]); PBD::TimerRAII tr2 (dsp_stats[RunLoop]); _active = true; _dsp_calc.set_start_timestamp_us (PBD::get_microseconds()); if (_run && _freewheel && !_freewheel_ack) { // acknowledge freewheeling; hand-over thread ID pthread_mutex_lock (&_freewheel_mutex); if (_freewheel) { DEBUG_AUDIO("Setting _freewheel_ack = true;\n"); _freewheel_ack = true; } DEBUG_AUDIO("Signalling freewheel thread\n"); pthread_cond_signal (&_freewheel_signal); pthread_mutex_unlock (&_freewheel_mutex); } if (statusFlags & paInputUnderflow || statusFlags & paInputOverflow || statusFlags & paOutputUnderflow || statusFlags & paOutputOverflow ) { DEBUG_AUDIO("PortAudio: Xrun\n"); engine.Xrun(); return true; } if (!_run || _freewheel) { memset(output, 0, sample_count * sizeof(float) * _system_outputs.size()); return true; } bool in_main_thread = pthread_equal(_main_thread, pthread_self()); if (_reinit_thread_callback || !in_main_thread) { _reinit_thread_callback = false; _main_thread = pthread_self(); AudioEngine::thread_init_callback (this); } process_port_connection_changes(); return blocking_process_main (input, output); } bool PortAudioBackend::start_blocking_process_thread () { if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_MAIN, PBD_RT_STACKSIZE_PROC, &_main_blocking_thread, blocking_thread_func, this)) { if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &_main_blocking_thread, blocking_thread_func, this)) { DEBUG_AUDIO("Failed to create main audio thread\n"); _run = false; return false; } else { PBD::warning << get_error_string(AquireRealtimePermissionError) << endmsg; } } int timeout = 5000; while (!_active && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_active) { DEBUG_AUDIO("Failed to start main audio thread\n"); _pcmio->close_stream(); _run = false; unregister_ports(); _active = false; return false; } return true; } bool PortAudioBackend::stop_blocking_process_thread () { void *status; if (pthread_join (_main_blocking_thread, &status)) { DEBUG_AUDIO("Failed to stop main audio thread\n"); return false; } return true; } int PortAudioBackend::stop () { if (!_run) { return 0; } _midiio->stop(); PBD::MMTIMERS::reset_resolution(); _run = false; if (_use_blocking_api) { if (!stop_blocking_process_thread()) { return -1; } } else { _pcmio->close_stream(); _active = false; if (!stop_freewheel_process_thread()) { return -1; } } unregister_ports(); return (_active == false) ? 0 : -1; } static void* freewheel_thread(void* arg) { PortAudioBackend* d = static_cast(arg); d->freewheel_process_thread (); pthread_exit (0); return 0; } bool PortAudioBackend::start_freewheel_process_thread () { if (pthread_create(&_pthread_freewheel, NULL, freewheel_thread, this)) { DEBUG_AUDIO("Failed to create main audio thread\n"); return false; } int timeout = 5000; while (!_freewheel_thread_active && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_freewheel_thread_active) { DEBUG_AUDIO("Failed to start freewheel thread\n"); return false; } return true; } bool PortAudioBackend::stop_freewheel_process_thread () { void *status; if (!_freewheel_thread_active) { return true; } DEBUG_AUDIO("Signaling freewheel thread to stop\n"); pthread_mutex_lock (&_freewheel_mutex); pthread_cond_signal (&_freewheel_signal); pthread_mutex_unlock (&_freewheel_mutex); if (pthread_join (_pthread_freewheel, &status) != 0) { DEBUG_AUDIO("Failed to stop freewheel thread\n"); return false; } return true; } void* PortAudioBackend::freewheel_process_thread() { _freewheel_thread_active = true; bool first_run = false; pthread_mutex_lock (&_freewheel_mutex); while(_run) { // check if we should run, if (_freewheeling != _freewheel) { if (!_freewheeling) { DEBUG_AUDIO("Leaving freewheel\n"); _freewheel = false; // first mark as disabled _reinit_thread_callback = true; // hand over _main_thread _freewheel_ack = false; // prepare next handshake _midiio->set_enabled(true); engine.freewheel_callback (_freewheeling); _dsp_calc.reset (); } else { first_run = true; _freewheel = true; } } if (!_freewheel || !_freewheel_ack) { // wait for a change, we use a timed wait to // terminate early in case some error sets _run = 0 struct timeval tv; struct timespec ts; gettimeofday (&tv, NULL); ts.tv_sec = tv.tv_sec + 3; ts.tv_nsec = 0; DEBUG_AUDIO("Waiting for freewheel change\n"); pthread_cond_timedwait (&_freewheel_signal, &_freewheel_mutex, &ts); continue; } if (first_run) { // tell the engine we're ready to GO. engine.freewheel_callback (_freewheeling); first_run = false; _freewheel_processed = 0; _main_thread = pthread_self(); AudioEngine::thread_init_callback (this); _midiio->set_enabled(false); } if (!blocking_process_freewheel()) { break; } process_port_connection_changes(); } pthread_mutex_unlock (&_freewheel_mutex); _freewheel_thread_active = false; if (_run) { // engine.process_callback() returner error engine.halted_callback("CoreAudio Freehweeling aborted."); } return 0; } int PortAudioBackend::freewheel (bool onoff) { if (onoff == _freewheeling) { return 0; } _freewheeling = onoff; if (0 == pthread_mutex_trylock (&_freewheel_mutex)) { pthread_cond_signal (&_freewheel_signal); pthread_mutex_unlock (&_freewheel_mutex); } return 0; } float PortAudioBackend::dsp_load () const { return 100.f * _dsp_load; } size_t PortAudioBackend::raw_buffer_size (DataType t) { switch (t) { case DataType::AUDIO: return _samples_per_period * sizeof(Sample); case DataType::MIDI: return _max_buffer_size; // XXX not really limited } return 0; } /* Process time */ samplepos_t PortAudioBackend::sample_time () { return _processed_samples; } samplepos_t PortAudioBackend::sample_time_at_cycle_start () { return _processed_samples; } pframes_t PortAudioBackend::samples_since_cycle_start () { if (!_active || !_run || _freewheeling || _freewheel) { return 0; } if (!_cycle_timer.valid()) { return 0; } return _cycle_timer.samples_since_cycle_start (PBD::get_microseconds()); } int PortAudioBackend::name_to_id(std::string device_name) const { uint32_t device_id = UINT32_MAX; std::map devices; _pcmio->input_device_list(devices); _pcmio->output_device_list(devices); for (std::map::const_iterator i = devices.begin (); i != devices.end(); ++i) { if (i->second == device_name) { device_id = i->first; break; } } return device_id; } bool PortAudioBackend::set_mmcss_pro_audio (HANDLE* task_handle) { bool mmcss_success = PBD::MMCSS::set_thread_characteristics ("Pro Audio", task_handle); if (!mmcss_success) { PBD::warning << get_error_string(SettingAudioThreadPriorityError) << endmsg; return false; } else { DEBUG_THREADS("Thread characteristics set to Pro Audio\n"); } bool mmcss_priority = PBD::MMCSS::set_thread_priority(*task_handle, PBD::MMCSS::AVRT_PRIORITY_NORMAL); if (!mmcss_priority) { PBD::warning << get_error_string(SettingAudioThreadPriorityError) << endmsg; return false; } else { DEBUG_THREADS("Thread priority set to AVRT_PRIORITY_NORMAL\n"); } return true; } bool PortAudioBackend::reset_mmcss (HANDLE task_handle) { if (!PBD::MMCSS::revert_thread_characteristics(task_handle)) { DEBUG_THREADS("Unable to reset process thread characteristics\n"); return false; } return true; } void * PortAudioBackend::portaudio_process_thread (void *arg) { ThreadData* td = reinterpret_cast (arg); boost::function f = td->f; delete td; #ifdef USE_MMCSS_THREAD_PRIORITIES HANDLE task_handle; bool mmcss_success = set_mmcss_pro_audio (&task_handle); #endif DWORD tid = GetCurrentThreadId (); DEBUG_THREADS (string_compose ("Process Thread Child ID: %1\n", tid)); f (); #ifdef USE_MMCSS_THREAD_PRIORITIES if (mmcss_success) { reset_mmcss (task_handle); } #endif return 0; } int PortAudioBackend::create_process_thread (boost::function func) { pthread_t thread_id; ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC); if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_PROC, PBD_RT_STACKSIZE_PROC, &thread_id, portaudio_process_thread, td)) { if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, portaudio_process_thread, td)) { DEBUG_AUDIO("Cannot create process thread."); return -1; } } _threads.push_back (thread_id); return 0; } int PortAudioBackend::join_process_threads () { int rv = 0; for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { void *status; if (pthread_join (*i, &status)) { DEBUG_AUDIO("Cannot terminate process thread."); rv -= 1; } } _threads.clear (); return rv; } bool PortAudioBackend::in_process_thread () { if (_use_blocking_api) { if (pthread_equal(_main_blocking_thread, pthread_self()) != 0) { return true; } } else { if (pthread_equal(_main_thread, pthread_self()) != 0) { return true; } } for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { return true; } } return false; } uint32_t PortAudioBackend::process_thread_count () { return _threads.size (); } void PortAudioBackend::update_latencies () { // trigger latency callback in RT thread (locked graph) port_connect_add_remove_callback(); } /* PORTENGINE API */ void* PortAudioBackend::private_handle () const { return NULL; } const std::string& PortAudioBackend::my_name () const { return _instance_name; } int PortAudioBackend::register_system_audio_ports() { LatencyRange lr; const uint32_t a_ins = _n_inputs; const uint32_t a_out = _n_outputs; /* audio ports */ lr.min = lr.max = (_measure_latency ? 0 : _systemic_audio_input_latency); for (uint32_t i = 0; i < a_ins; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:capture_%d", i+1); PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); std::shared_ptr audio_port = std::dynamic_pointer_cast(p); audio_port->set_hw_port_name ( _pcmio->get_input_channel_name (name_to_id (_input_audio_device), i)); _system_inputs.push_back (audio_port); } lr.min = lr.max = (_measure_latency ? 0 : _systemic_audio_output_latency); for (uint32_t i = 0; i < a_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:playback_%d", i+1); PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); std::shared_ptr audio_port = std::dynamic_pointer_cast(p); audio_port->set_hw_port_name ( _pcmio->get_output_channel_name (name_to_id (_output_audio_device), i)); _system_outputs.push_back(audio_port); } return 0; } int PortAudioBackend::register_system_midi_ports (std::string const& device) { if (_midi_driver_option == get_standard_device_name(DeviceNone)) { DEBUG_MIDI("No MIDI backend selected, not system midi ports available\n"); return 0; } LatencyRange lr; const std::vector inputs = _midiio->get_inputs(); for (std::vector::const_iterator i = inputs.begin (); i != inputs.end (); ++i) { if (!device.empty () && device != (*i)->name()) { continue; } MidiDeviceInfo* info = _midiio->get_device_info((*i)->name()); if (!info || !info->enable) { continue; } std::string port_name = "system:midi_capture_" + (*i)->name(); PortPtr p = add_port (port_name, DataType::MIDI, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) { return -1; } lr.min = lr.max = (_measure_latency ? 0 : info->systemic_input_latency); set_latency_range (p, false, lr); std::shared_ptr midi_port = std::dynamic_pointer_cast(p); midi_port->set_hw_port_name ((*i)->name()); midi_clear (midi_port->get_buffer(0)); _system_midi_in.push_back (midi_port); DEBUG_MIDI (string_compose ("Registered MIDI input port: %1\n", port_name)); } const std::vector outputs = _midiio->get_outputs(); for (std::vector::const_iterator i = outputs.begin (); i != outputs.end (); ++i) { if (!device.empty () && device != (*i)->name()) { continue; } MidiDeviceInfo* info = _midiio->get_device_info((*i)->name()); if (!info || !info->enable) { continue; } std::string port_name = "system:midi_playback_" + (*i)->name(); PortPtr p = add_port (port_name, DataType::MIDI, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) { return -1; } lr.min = lr.max = (_measure_latency ? 0 : info->systemic_output_latency); set_latency_range (p, false, lr); std::shared_ptr midi_port = std::dynamic_pointer_cast(p); midi_port->set_n_periods(2); midi_port->set_hw_port_name ((*i)->name()); midi_clear (midi_port->get_buffer(0)); _system_midi_out.push_back (midi_port); DEBUG_MIDI (string_compose ("Registered MIDI output port: %1\n", port_name)); } return 0; } void PortAudioBackend::update_systemic_midi_latencies () { for (std::vector::iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) { MidiDeviceInfo* info = _midiio->get_device_info((*it)->hw_port_name()); if (!info) { continue; } LatencyRange lr; lr.min = lr.max = (_measure_latency ? 0 : info->systemic_output_latency); set_latency_range (*it, true, lr); } for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) { MidiDeviceInfo* info = _midiio->get_device_info((*it)->hw_port_name()); if (!info) { continue; } LatencyRange lr; lr.min = lr.max = (_measure_latency ? 0 : info->systemic_input_latency); set_latency_range (*it, false, lr); } update_latencies (); } BackendPort* PortAudioBackend::port_factory (std::string const & name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { BackendPort* port = 0; switch (type) { case DataType::AUDIO: port = new PortAudioPort (*this, name, flags); break; case DataType::MIDI: port = new PortMidiPort (*this, name, flags); break; default: PBD::error << string_compose (_("%1::register_port: Invalid Data Type."), _instance_name) << endmsg; return 0; } return port; } /* MIDI */ int PortAudioBackend::midi_event_get ( pframes_t& timestamp, size_t& size, uint8_t const** buf, void* port_buffer, uint32_t event_index) { if (!buf || !port_buffer) return -1; PortMidiBuffer& source = * static_cast(port_buffer); if (event_index >= source.size ()) { return -1; } PortMidiEvent const& event = source[event_index]; timestamp = event.timestamp (); size = event.size (); *buf = event.data (); return 0; } int PortAudioBackend::midi_event_put ( void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size) { if (!buffer || !port_buffer) return -1; PortMidiBuffer& dst = * static_cast(port_buffer); #ifndef NDEBUG if (dst.size () && (pframes_t)dst.back ().timestamp () > timestamp) { // nevermind, ::get_buffer() sorts events DEBUG_MIDI (string_compose ("PortMidiBuffer: unordered event: %1 > %2\n", (pframes_t)dst.back ().timestamp (), timestamp)); } #endif dst.push_back (PortMidiEvent (timestamp, buffer, size)); return 0; } uint32_t PortAudioBackend::get_midi_event_count (void* port_buffer) { if (!port_buffer) return 0; return static_cast(port_buffer)->size (); } void PortAudioBackend::midi_clear (void* port_buffer) { if (!port_buffer) return; PortMidiBuffer * buf = static_cast(port_buffer); assert (buf); buf->clear (); } /* Monitoring */ bool PortAudioBackend::can_monitor_input () const { return false; } int PortAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool) { return -1; } int PortAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool) { return -1; } bool PortAudioBackend::monitoring_input (PortEngine::PortHandle) { return false; } /* Latency management */ void PortAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range) { std::shared_ptr port = std::dynamic_pointer_cast(port_handle); if (!valid_port (port)) { DEBUG_PORTS("BackendPort::set_latency_range (): invalid port.\n"); return; } port->set_latency_range (latency_range, for_playback); } LatencyRange PortAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback) { std::shared_ptr port = std::dynamic_pointer_cast(port_handle); LatencyRange r; if (!valid_port (port)) { DEBUG_PORTS("BackendPort::get_latency_range (): invalid port.\n"); r.min = 0; r.max = 0; return r; } r = port->latency_range (for_playback); if (port->is_physical() && port->is_terminal()) { if (port->type() == DataType::AUDIO) { if (port->is_input() && for_playback) { r.min += _pcmio->playback_latency(); r.max += _pcmio->playback_latency(); } if (port->is_output() && !for_playback) { r.min += _pcmio->capture_latency(); r.max += _pcmio->capture_latency(); } } else { if (port->is_input() && for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } if (port->is_output() && !for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } } } return r; } /* Getting access to the data buffer for a port */ void* PortAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes) { std::shared_ptr port = std::dynamic_pointer_cast(port_handle); assert (port); return port->get_buffer (nframes); } void * PortAudioBackend::blocking_process_thread () { AudioEngine::thread_init_callback (this); _active = true; _processed_samples = 0; manager.registration_callback(); manager.graph_order_callback(); if (_pcmio->start_stream() != paNoError) { _pcmio->close_stream (); _active = false; engine.halted_callback(get_error_string(AudioDeviceIOError).c_str()); } #ifdef USE_MMCSS_THREAD_PRIORITIES HANDLE task_handle; bool mmcss_success = set_mmcss_pro_audio (&task_handle); #endif DWORD tid = GetCurrentThreadId (); DEBUG_THREADS (string_compose ("Process Thread Master ID: %1\n", tid)); _dsp_calc.reset (); while (_run) { if (_freewheeling != _freewheel) { _freewheel = _freewheeling; engine.freewheel_callback (_freewheel); if (!_freewheel) { _dsp_calc.reset (); } else { _freewheel_processed = 0; } } if (!_freewheel) { dsp_stats[DeviceWait].start(); int r = _pcmio->next_cycle (_samples_per_period); dsp_stats[DeviceWait].update(); switch (r) { case 0: // OK break; case 1: DEBUG_AUDIO("PortAudio: Xrun\n"); engine.Xrun(); break; default: PBD::error << get_error_string(AudioDeviceIOError) << endmsg; break; } if (!blocking_process_main(_pcmio->get_capture_buffer(), _pcmio->get_playback_buffer())) { return 0; } } else { if (!blocking_process_freewheel()) { return 0; } } process_port_connection_changes(); } _pcmio->close_stream(); _active = false; if (_run) { engine.halted_callback(get_error_string(AudioDeviceIOError).c_str()); } #ifdef USE_MMCSS_THREAD_PRIORITIES if (mmcss_success) { reset_mmcss(task_handle); } #endif return 0; } bool PortAudioBackend::blocking_process_main(const float* interleaved_input_data, float* interleaved_output_data) { PBD::TimerRAII tr (dsp_stats[RunLoop]); uint32_t i = 0; int64_t min_elapsed_us = 1000000; int64_t max_elapsed_us = 0; _dsp_calc.set_start_timestamp_us (PBD::get_microseconds()); i = 0; /* Copy input audio data into input port buffers */ for (std::vector::const_iterator it = _system_inputs.begin(); it != _system_inputs.end(); ++it, ++i) { assert(_system_inputs.size() == _pcmio->n_capture_channels()); uint32_t channels = _system_inputs.size(); float* input_port_buffer = (float*)(*it)->get_buffer(_samples_per_period); deinterleave_audio_data( interleaved_input_data, input_port_buffer, _samples_per_period, i, channels); } process_incoming_midi (); /* clear output buffers */ for (std::vector::const_iterator it = _system_outputs.begin(); it != _system_outputs.end(); ++it) { memset((*it)->get_buffer(_samples_per_period), 0, _samples_per_period * sizeof(Sample)); } _last_cycle_start = _cycle_timer.get_start(); _cycle_timer.reset_start(PBD::get_microseconds()); _cycle_count++; uint64_t cycle_diff_us = (_cycle_timer.get_start() - _last_cycle_start); int64_t deviation_us = (cycle_diff_us - _cycle_timer.get_length_us()); _total_deviation_us += ::llabs(deviation_us); _max_deviation_us = std::max(_max_deviation_us, (uint64_t)::llabs(deviation_us)); if ((_cycle_count % 1000) == 0) { uint64_t mean_deviation_us = _total_deviation_us / _cycle_count; DEBUG_TIMING(string_compose("Mean avg cycle deviation: %1(ms), max %2(ms)\n", mean_deviation_us * 1e-3, _max_deviation_us * 1e-3)); } if (::llabs(deviation_us) > _cycle_timer.get_length_us()) { DEBUG_TIMING( string_compose("time between process(ms): %1, Est(ms): %2, Dev(ms): %3\n", cycle_diff_us * 1e-3, _cycle_timer.get_length_us() * 1e-3, deviation_us * 1e-3)); } /* call engine process callback */ if (engine.process_callback(_samples_per_period)) { _pcmio->close_stream(); _active = false; return false; } process_outgoing_midi (); /* write back audio */ i = 0; for (std::vector::const_iterator it = _system_outputs.begin(); it != _system_outputs.end(); ++it, ++i) { assert(_system_outputs.size() == _pcmio->n_playback_channels()); const uint32_t channels = _system_outputs.size(); float* output_port_buffer = (float*)(*it)->get_buffer(_samples_per_period); interleave_audio_data( output_port_buffer, interleaved_output_data, _samples_per_period, i, channels); } _processed_samples += _samples_per_period; /* calculate DSP load */ _dsp_calc.set_stop_timestamp_us (PBD::get_microseconds()); _dsp_load = _dsp_calc.get_dsp_load(); DEBUG_TIMING(string_compose("DSP Load: %1\n", _dsp_load)); max_elapsed_us = std::max(_dsp_calc.elapsed_time_us(), max_elapsed_us); min_elapsed_us = std::min(_dsp_calc.elapsed_time_us(), min_elapsed_us); if ((_cycle_count % 1000) == 0) { DEBUG_TIMING(string_compose("Elapsed process time(usecs) max: %1, min: %2\n", max_elapsed_us, min_elapsed_us)); } return true; } bool PortAudioBackend::blocking_process_freewheel() { // zero audio input buffers for (std::vector::const_iterator it = _system_inputs.begin(); it != _system_inputs.end(); ++it) { memset((*it)->get_buffer(_samples_per_period), 0, _samples_per_period * sizeof(Sample)); } // TODO clear midi or stop midi recv when entering fwheelin' if (engine.process_callback(_samples_per_period)) { _pcmio->close_stream(); _active = false; return false; } // drop all outgoing MIDI messages for (std::vector::const_iterator it = _system_midi_out.begin(); it != _system_midi_out.end(); ++it) { void* bptr = (*it)->get_buffer(0); midi_clear(bptr); } _dsp_load = 1.0; _freewheel_processed += _samples_per_period; if (_freewheel_processed > _samplerate) { _freewheel_processed = 0; Glib::usleep(100); // don't hog cpu } return true; } void PortAudioBackend::process_incoming_midi () { uint32_t i = 0; for (std::vector::const_iterator it = _system_midi_in.begin(); it != _system_midi_in.end(); ++it, ++i) { PortMidiBuffer* mbuf = static_cast((*it)->get_buffer(0)); mbuf->clear(); uint64_t timestamp; pframes_t sample_offset; uint8_t data[MaxWinMidiEventSize]; size_t size = sizeof(data); while (_midiio->dequeue_input_event(i, _cycle_timer.get_start(), _cycle_timer.get_next_start(), timestamp, data, size)) { sample_offset = _cycle_timer.samples_since_cycle_start(timestamp); midi_event_put(mbuf, sample_offset, data, size); DEBUG_MIDI(string_compose("Dequeuing incoming MIDI data for device: %1 " "sample_offset: %2 timestamp: %3, size: %4\n", _midiio->get_inputs()[i]->name(), sample_offset, timestamp, size)); size = sizeof(data); } } } void PortAudioBackend::process_outgoing_midi () { /* mixdown midi */ for (std::vector::iterator it = _system_midi_out.begin(); it != _system_midi_out.end(); ++it) { std::dynamic_pointer_cast(*it)->next_period(); } /* queue outgoing midi */ uint32_t i = 0; for (std::vector::const_iterator it = _system_midi_out.begin(); it != _system_midi_out.end(); ++it, ++i) { const PortMidiBuffer* src = std::dynamic_pointer_cast(*it)->const_buffer(); for (PortMidiBuffer::const_iterator mit = src->begin(); mit != src->end(); ++mit) { uint64_t timestamp = _cycle_timer.timestamp_from_sample_offset(mit->timestamp()); DEBUG_MIDI(string_compose("Queuing outgoing MIDI data for device: " "%1 sample_offset: %2 timestamp: %3, size: %4\n", _midiio->get_outputs()[i]->name(), mit->timestamp(), timestamp, mit->size())); _midiio->enqueue_output_event(i, timestamp, mit->data(), mit->size()); } } } void PortAudioBackend::process_port_connection_changes () { bool connections_changed = false; bool ports_changed = false; if (!pthread_mutex_trylock (&_port_callback_mutex)) { int canderef (1); if (_port_change_flag.compare_exchange_strong (canderef, 0)) { ports_changed = true; } if (!_port_connection_queue.empty ()) { connections_changed = true; } process_connection_queue_locked (manager); pthread_mutex_unlock (&_port_callback_mutex); } if (ports_changed) { manager.registration_callback(); } if (connections_changed) { manager.graph_order_callback(); } if (connections_changed || ports_changed) { update_system_port_latencies (); engine.latency_callback(false); engine.latency_callback(true); } } /******************************************************************************/ static std::shared_ptr _instance; static std::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { BACKEND_NAME, instantiate, deinstantiate, backend_factory, already_configured, available }; static std::shared_ptr backend_factory (AudioEngine& e) { if (!_instance) { _instance.reset (new PortAudioBackend (e, _descriptor)); } return _instance; } static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; return 0; } static int deinstantiate () { _instance.reset (); return 0; } static bool already_configured () { return false; } static bool available () { return true; } extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; } /******************************************************************************/ /******************************************************************************/ PortAudioPort::PortAudioPort (PortAudioBackend &b, const std::string& name, PortFlags flags) : BackendPort (b, name, flags) { memset (_buffer, 0, sizeof (_buffer)); #ifndef PLATFORM_WINDOWS mlock(_buffer, sizeof (_buffer)); #endif } PortAudioPort::~PortAudioPort () { } void* PortAudioPort::get_buffer (pframes_t n_samples) { if (is_input ()) { std::set::const_iterator it = get_connections ().begin (); if (it == get_connections ().end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { std::shared_ptr source = std::dynamic_pointer_cast(*it); assert (source && source->is_output ()); memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); while (++it != get_connections ().end ()) { source = std::dynamic_pointer_cast(*it); assert (source && source->is_output ()); Sample* dst = buffer (); const Sample* src = source->const_buffer (); for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) { *dst += *src; } } } } return _buffer; } PortMidiPort::PortMidiPort (PortAudioBackend &b, const std::string& name, PortFlags flags) : BackendPort (b, name, flags) , _n_periods (1) , _bufperiod (0) { _buffer[0].clear (); _buffer[1].clear (); _buffer[0].reserve (256); _buffer[1].reserve (256); } PortMidiPort::~PortMidiPort () { } struct MidiEventSorter { bool operator() (PortMidiEvent const& a, PortMidiEvent const& b) { return a < b; } }; void* PortMidiPort::get_buffer (pframes_t /* nframes */) { if (is_input ()) { (_buffer[_bufperiod]).clear (); for (std::set::const_iterator i = get_connections ().begin (); i != get_connections ().end (); ++i) { const PortMidiBuffer * src = std::dynamic_pointer_cast(*i)->const_buffer (); for (PortMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { (_buffer[_bufperiod]).push_back (*it); } } std::stable_sort ((_buffer[_bufperiod]).begin (), (_buffer[_bufperiod]).end (), MidiEventSorter()); } return &(_buffer[_bufperiod]); } PortMidiEvent::PortMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size) : _size (size) , _timestamp (timestamp) { if (size > 0 && size < MaxWinMidiEventSize) { memcpy (_data, data, size); } } PortMidiEvent::PortMidiEvent (const PortMidiEvent& other) : _size (other.size ()) , _timestamp (other.timestamp ()) { if (other._size > 0) { assert (other._size < MaxWinMidiEventSize); memcpy (_data, other._data, other._size); } };