/* * Copyright (C) 2014-2015 Tim Mayberry * Copyright (C) 2014-2018 Paul Davis * Copyright (C) 2014-2021 Robin Gareus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include "alsa_audiobackend.h" #include "pbd/compose.h" #include "pbd/convert.h" #include "pbd/error.h" #include "pbd/file_utils.h" #include "pbd/pthread_utils.h" #include "ardour/debug.h" #include "ardour/filesystem_paths.h" #include "ardour/port_manager.h" #include "ardouralsautil/devicelist.h" #include "pbd/i18n.h" using namespace ARDOUR; static std::string s_instance_name; size_t AlsaAudioBackend::_max_buffer_size = 8192; std::vector AlsaAudioBackend::_midi_options; std::vector AlsaAudioBackend::_input_audio_device_status; std::vector AlsaAudioBackend::_output_audio_device_status; std::vector AlsaAudioBackend::_duplex_audio_device_status; std::vector AlsaAudioBackend::_midi_device_status; ALSADeviceInfo AlsaAudioBackend::_input_audio_device_info; ALSADeviceInfo AlsaAudioBackend::_output_audio_device_info; AlsaAudioBackend::AlsaAudioBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , PortEngineSharedImpl (e, s_instance_name) , _pcmi (0) , _run (false) , _active (false) , _freewheel (false) , _freewheeling (false) , _measure_latency (false) , _last_process_start (0) , _input_audio_device ("") , _output_audio_device ("") , _midi_driver_option (_("ALSA sequencer")) , _samplerate (48000) , _samples_per_period (1024) , _periods_per_cycle (2) , _n_inputs (0) , _n_outputs (0) , _systemic_audio_input_latency (0) , _systemic_audio_output_latency (0) , _midi_device_thread_active (false) , _dsp_load (0) , _processed_samples (0) { _instance_name = s_instance_name; pthread_mutex_init (&_device_port_mutex, 0); _input_audio_device_info.valid = false; _output_audio_device_info.valid = false; _port_connection_queue.reserve (128); } AlsaAudioBackend::~AlsaAudioBackend () { clear_ports (); pthread_mutex_destroy (&_device_port_mutex); } /* AUDIOBACKEND API */ std::string AlsaAudioBackend::name () const { return X_("ALSA"); } bool AlsaAudioBackend::is_realtime () const { return true; } std::vector AlsaAudioBackend::enumerate_devices () const { _duplex_audio_device_status.clear (); std::map devices; get_alsa_audio_device_names (devices); for (std::map::const_iterator i = devices.begin (); i != devices.end (); ++i) { if (_input_audio_device == "") { _input_audio_device = i->first; } if (_output_audio_device == "") { _output_audio_device = i->first; } _duplex_audio_device_status.push_back (DeviceStatus (i->first, true)); } return _duplex_audio_device_status; } std::vector AlsaAudioBackend::enumerate_input_devices () const { _input_audio_device_status.clear (); std::map devices; get_alsa_audio_device_names (devices, HalfDuplexIn); _input_audio_device_status.push_back (DeviceStatus (get_standard_device_name (DeviceNone), true)); for (std::map::const_iterator i = devices.begin (); i != devices.end (); ++i) { if (_input_audio_device == "") { _input_audio_device = i->first; } _input_audio_device_status.push_back (DeviceStatus (i->first, true)); } return _input_audio_device_status; } std::vector AlsaAudioBackend::enumerate_output_devices () const { _output_audio_device_status.clear (); std::map devices; get_alsa_audio_device_names (devices, HalfDuplexOut); _output_audio_device_status.push_back (DeviceStatus (get_standard_device_name (DeviceNone), true)); for (std::map::const_iterator i = devices.begin (); i != devices.end (); ++i) { if (_output_audio_device == "") { _output_audio_device = i->first; } _output_audio_device_status.push_back (DeviceStatus (i->first, true)); } return _output_audio_device_status; } std::vector AlsaAudioBackend::available_sample_rates2 (const std::string& input_device, const std::string& output_device) const { std::vector sr; if (input_device == get_standard_device_name (DeviceNone) && output_device == get_standard_device_name (DeviceNone)) { return sr; } else if (input_device == get_standard_device_name (DeviceNone)) { sr = available_sample_rates (output_device); } else if (output_device == get_standard_device_name (DeviceNone)) { sr = available_sample_rates (input_device); } else { std::vector sr_in = available_sample_rates (input_device); std::vector sr_out = available_sample_rates (output_device); std::set_intersection (sr_in.begin (), sr_in.end (), sr_out.begin (), sr_out.end (), std::back_inserter (sr)); } return sr; } std::vector AlsaAudioBackend::available_sample_rates (const std::string& device) const { ALSADeviceInfo* nfo = NULL; std::vector sr; if (device == get_standard_device_name (DeviceNone)) { return sr; } if (device == _input_audio_device && _input_audio_device_info.valid) { nfo = &_input_audio_device_info; } else if (device == _output_audio_device && _output_audio_device_info.valid) { nfo = &_output_audio_device_info; } static const float avail_rates[] = { 8000, 22050.0, 24000.0, 44100.0, 48000.0, 88200.0, 96000.0, 176400.0, 192000.0 }; for (size_t i = 0; i < sizeof (avail_rates) / sizeof (float); ++i) { if (!nfo || (avail_rates[i] >= nfo->min_rate && avail_rates[i] <= nfo->max_rate)) { sr.push_back (avail_rates[i]); } } return sr; } std::vector AlsaAudioBackend::available_buffer_sizes2 (const std::string& input_device, const std::string& output_device) const { std::vector bs; if (input_device == get_standard_device_name (DeviceNone) && output_device == get_standard_device_name (DeviceNone)) { return bs; } else if (input_device == get_standard_device_name (DeviceNone)) { bs = available_buffer_sizes (output_device); } else if (output_device == get_standard_device_name (DeviceNone)) { bs = available_buffer_sizes (input_device); } else { std::vector bs_in = available_buffer_sizes (input_device); std::vector bs_out = available_buffer_sizes (output_device); std::set_intersection (bs_in.begin (), bs_in.end (), bs_out.begin (), bs_out.end (), std::back_inserter (bs)); } return bs; } std::vector AlsaAudioBackend::available_buffer_sizes (const std::string& device) const { ALSADeviceInfo* nfo = NULL; std::vector bs; if (device == get_standard_device_name (DeviceNone)) { return bs; } if (device == _input_audio_device && _input_audio_device_info.valid) { nfo = &_input_audio_device_info; } else if (device == _output_audio_device && _output_audio_device_info.valid) { nfo = &_output_audio_device_info; } static const unsigned long avail_sizes[] = { 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 }; for (size_t i = 0; i < sizeof (avail_sizes) / sizeof (unsigned long); ++i) { if (!nfo || (avail_sizes[i] >= nfo->min_size && avail_sizes[i] <= nfo->max_size)) { bs.push_back (avail_sizes[i]); } } if (!nfo) { return bs; } static const unsigned long try_msec[] = { 2, 4, 5, 6, 8, 10, 15, 20, 25, 40 }; for (size_t i = 0; i < sizeof (try_msec) / sizeof (unsigned long); ++i) { unsigned int msbs = _samplerate * try_msec[i] / 1000; if (msbs >= nfo->min_size && msbs <= nfo->max_size) { bs.push_back (msbs); } } std::sort (bs.begin (), bs.end ()); return bs; } std::vector AlsaAudioBackend::available_period_sizes (const std::string& driver, const std::string& device) const { std::vector ps; ps.push_back (2); ALSADeviceInfo* nfo = NULL; if (device == get_standard_device_name (DeviceNone)) { return ps; } if (device == _output_audio_device && _output_audio_device_info.valid) { nfo = &_output_audio_device_info; if (nfo->max_nper > 2) { ps.push_back (3); } if (nfo->min_nper > 3) { ps.push_back (nfo->min_nper); } } else { ps.push_back (3); } return ps; } bool AlsaAudioBackend::can_change_sample_rate_when_running () const { return false; } bool AlsaAudioBackend::can_change_buffer_size_when_running () const { return false; // why not? :) } int AlsaAudioBackend::set_input_device_name (const std::string& d) { if (_input_audio_device == d && _input_audio_device_info.valid) { return 0; } _input_audio_device = d; if (d == get_standard_device_name (DeviceNone)) { _input_audio_device_info.valid = false; return 0; } std::string alsa_device; std::map devices; get_alsa_audio_device_names (devices, HalfDuplexIn); for (std::map::const_iterator i = devices.begin (); i != devices.end (); ++i) { if (i->first == d) { alsa_device = i->second; break; } } if (alsa_device == "") { _input_audio_device_info.valid = false; return 1; } AlsaDeviceReservation adr (alsa_device.c_str ()); /* device will be busy once used, hence cache the parameters */ /* return */ get_alsa_device_parameters (alsa_device.c_str (), false, &_input_audio_device_info); return 0; } int AlsaAudioBackend::set_output_device_name (const std::string& d) { if (_output_audio_device == d && _output_audio_device_info.valid) { return 0; } _output_audio_device = d; if (d == get_standard_device_name (DeviceNone)) { _output_audio_device_info.valid = false; return 0; } std::string alsa_device; std::map devices; get_alsa_audio_device_names (devices, HalfDuplexOut); for (std::map::const_iterator i = devices.begin (); i != devices.end (); ++i) { if (i->first == d) { alsa_device = i->second; break; } } if (alsa_device == "") { _output_audio_device_info.valid = false; return 1; } AlsaDeviceReservation adr (alsa_device.c_str ()); /* return */ get_alsa_device_parameters (alsa_device.c_str (), true, &_output_audio_device_info); return 0; } int AlsaAudioBackend::set_device_name (const std::string& d) { int rv = 0; rv |= set_input_device_name (d); rv |= set_output_device_name (d); return rv; } bool AlsaAudioBackend::can_measure_systemic_latency () const { return _input_audio_device == _output_audio_device && _input_audio_device != get_standard_device_name (DeviceNone); } int AlsaAudioBackend::set_sample_rate (float sr) { if (sr <= 0) { return -1; } _samplerate = sr; engine.sample_rate_change (sr); return 0; } int AlsaAudioBackend::set_peridod_size (uint32_t n) { if (n == 0) { return -1; } if (_run) { return -1; } _periods_per_cycle = n; return 0; } int AlsaAudioBackend::set_buffer_size (uint32_t bs) { if (bs <= 0 || bs >= _max_buffer_size) { return -1; } if (_run) { return -1; } _samples_per_period = bs; engine.buffer_size_change (bs); return 0; } int AlsaAudioBackend::set_interleaved (bool yn) { if (!yn) { return 0; } return -1; } int AlsaAudioBackend::set_systemic_input_latency (uint32_t sl) { if (_systemic_audio_input_latency == sl) { return 0; } _systemic_audio_input_latency = sl; if (_run) { update_systemic_audio_latencies (); } return 0; } int AlsaAudioBackend::set_systemic_output_latency (uint32_t sl) { if (_systemic_audio_output_latency == sl) { return 0; } _systemic_audio_output_latency = sl; if (_run) { update_systemic_audio_latencies (); } return 0; } int AlsaAudioBackend::set_systemic_midi_input_latency (std::string const device, uint32_t sl) { struct AlsaMidiDeviceInfo* nfo = midi_device_info (device); if (!nfo) { return -1; } nfo->systemic_input_latency = sl; if (_run && nfo->enabled) { update_systemic_midi_latencies (); } return 0; } int AlsaAudioBackend::set_systemic_midi_output_latency (std::string const device, uint32_t sl) { struct AlsaMidiDeviceInfo* nfo = midi_device_info (device); if (!nfo) { return -1; } nfo->systemic_output_latency = sl; if (_run && nfo->enabled) { update_systemic_midi_latencies (); } return 0; } void AlsaAudioBackend::update_systemic_audio_latencies () { const uint32_t lcpp = (_periods_per_cycle - 2) * _samples_per_period; LatencyRange lr; lr.min = lr.max = lcpp + (_measure_latency ? 0 : _systemic_audio_output_latency); for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) { set_latency_range (*it, true, lr); } lr.min = lr.max = (_measure_latency ? 0 : _systemic_audio_input_latency); for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { set_latency_range (*it, false, lr); } update_latencies (); } void AlsaAudioBackend::update_systemic_midi_latencies () { pthread_mutex_lock (&_device_port_mutex); uint32_t i = 0; for (std::vector::iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it, ++i) { assert (_rmidi_out.size () > i); AlsaMidiOut* rm = _rmidi_out.at (i); struct AlsaMidiDeviceInfo* nfo = midi_device_info (rm->name ()); assert (nfo); LatencyRange lr; lr.min = lr.max = (_measure_latency ? 0 : nfo->systemic_output_latency); set_latency_range (*it, true, lr); } i = 0; for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) { assert (_rmidi_in.size () > i); AlsaMidiIO* rm = _rmidi_in.at (i); struct AlsaMidiDeviceInfo* nfo = midi_device_info (rm->name ()); assert (nfo); LatencyRange lr; lr.min = lr.max = (_measure_latency ? 0 : nfo->systemic_input_latency); set_latency_range (*it, false, lr); } pthread_mutex_unlock (&_device_port_mutex); update_latencies (); } /* Retrieving parameters */ std::string AlsaAudioBackend::device_name () const { if (_input_audio_device != get_standard_device_name (DeviceNone)) { return _input_audio_device; } if (_output_audio_device != get_standard_device_name (DeviceNone)) { return _output_audio_device; } return ""; } std::string AlsaAudioBackend::input_device_name () const { return _input_audio_device; } std::string AlsaAudioBackend::output_device_name () const { return _output_audio_device; } float AlsaAudioBackend::sample_rate () const { return _samplerate; } uint32_t AlsaAudioBackend::buffer_size () const { return _samples_per_period; } uint32_t AlsaAudioBackend::period_size () const { return _periods_per_cycle; } bool AlsaAudioBackend::interleaved () const { return false; } uint32_t AlsaAudioBackend::systemic_input_latency () const { return _systemic_audio_input_latency; } uint32_t AlsaAudioBackend::systemic_output_latency () const { return _systemic_audio_output_latency; } uint32_t AlsaAudioBackend::systemic_midi_input_latency (std::string const device) const { struct AlsaMidiDeviceInfo* nfo = midi_device_info (device); if (!nfo) { return 0; } return nfo->systemic_input_latency; } uint32_t AlsaAudioBackend::systemic_midi_output_latency (std::string const device) const { struct AlsaMidiDeviceInfo* nfo = midi_device_info (device); if (!nfo) { return 0; } return nfo->systemic_output_latency; } /* MIDI */ struct AlsaAudioBackend::AlsaMidiDeviceInfo* AlsaAudioBackend::midi_device_info (std::string const name) const { for (std::map::const_iterator i = _midi_devices.begin (); i != _midi_devices.end (); ++i) { if (i->first == name) { return (i->second); } } assert (_midi_driver_option != get_standard_device_name (DeviceNone)); std::map devices; if (_midi_driver_option == _("ALSA raw devices")) { get_alsa_rawmidi_device_names (devices); } else { get_alsa_sequencer_names (devices); } for (std::map::const_iterator i = devices.begin (); i != devices.end (); ++i) { if (i->first == name) { _midi_devices[name] = new AlsaMidiDeviceInfo (); return _midi_devices[name]; } } return 0; } std::vector AlsaAudioBackend::enumerate_midi_options () const { if (_midi_options.empty ()) { _midi_options.push_back (_("ALSA raw devices")); _midi_options.push_back (_("ALSA sequencer")); _midi_options.push_back (get_standard_device_name (DeviceNone)); } return _midi_options; } std::vector AlsaAudioBackend::enumerate_midi_devices () const { _midi_device_status.clear (); std::map devices; if (_midi_driver_option == _("ALSA raw devices")) { get_alsa_rawmidi_device_names (devices); } else if (_midi_driver_option == _("ALSA sequencer")) { get_alsa_sequencer_names (devices); } for (std::map::const_iterator i = devices.begin (); i != devices.end (); ++i) { _midi_device_status.push_back (DeviceStatus (i->first, true)); } return _midi_device_status; } int AlsaAudioBackend::set_midi_option (const std::string& opt) { if (opt != get_standard_device_name (DeviceNone) && opt != _("ALSA raw devices") && opt != _("ALSA sequencer")) { return -1; } if (_run && _midi_driver_option != opt) { return -1; } _midi_driver_option = opt; return 0; } std::string AlsaAudioBackend::midi_option () const { return _midi_driver_option; } int AlsaAudioBackend::set_midi_device_enabled (std::string const device, bool enable) { struct AlsaMidiDeviceInfo* nfo = midi_device_info (device); if (!nfo) { return -1; } const bool prev_enabled = nfo->enabled; nfo->enabled = enable; if (_run && prev_enabled != enable) { if (enable) { // add ports for the given device register_system_midi_ports (device); } else { // remove all ports provided by the given device pthread_mutex_lock (&_device_port_mutex); uint32_t i = 0; for (std::vector::iterator it = _system_midi_out.begin (); it != _system_midi_out.end ();) { assert (_rmidi_out.size () > i); AlsaMidiOut* rm = _rmidi_out.at (i); if (rm->name () != device) { ++it; ++i; continue; } unregister_port (*it); it = _system_midi_out.erase (it); rm->stop (); assert (rm == *(_rmidi_out.begin () + i)); _rmidi_out.erase (_rmidi_out.begin () + i); delete rm; } i = 0; for (std::vector::iterator it = _system_midi_in.begin (); it != _system_midi_in.end ();) { assert (_rmidi_in.size () > i); AlsaMidiIn* rm = _rmidi_in.at (i); if (rm->name () != device) { ++it; ++i; continue; } unregister_port (*it); it = _system_midi_in.erase (it); rm->stop (); assert (rm == *(_rmidi_in.begin () + i)); _rmidi_in.erase (_rmidi_in.begin () + i); delete rm; } pthread_mutex_unlock (&_device_port_mutex); } update_systemic_midi_latencies (); } return 0; } bool AlsaAudioBackend::midi_device_enabled (std::string const device) const { struct AlsaMidiDeviceInfo* nfo = midi_device_info (device); if (!nfo) { return false; } return nfo->enabled; } /* State Control */ static void* pthread_process (void* arg) { AlsaAudioBackend* d = static_cast (arg); d->main_process_thread (); pthread_exit (0); return 0; } int AlsaAudioBackend::_start (bool for_latency_measurement) { if (!_active && _run) { // recover from 'halted', reap threads stop (); } if (_active || _run) { if (for_latency_measurement != _measure_latency) { _measure_latency = for_latency_measurement; update_systemic_audio_latencies (); update_systemic_midi_latencies (); PBD::info << _("AlsaAudioBackend: reload latencies.") << endmsg; return NoError; } PBD::info << _("AlsaAudioBackend: already active.") << endmsg; return BackendReinitializationError; } _measure_latency = for_latency_measurement; clear_ports (); /* reset internal state */ _dsp_load = 0; _freewheeling = false; _freewheel = false; _last_process_start = 0; _device_reservation.release_device (); assert (_rmidi_in.size () == 0); assert (_rmidi_out.size () == 0); assert (_pcmi == 0); int duplex = 0; std::string audio_device; std::string alsa_device; std::map devices; if (_input_audio_device == get_standard_device_name (DeviceNone) && _output_audio_device == get_standard_device_name (DeviceNone)) { PBD::error << _("AlsaAudioBackend: At least one of input or output device needs to be set."); return AudioDeviceInvalidError; } std::string slave_device; AudioSlave::DuplexMode slave_duplex = AudioSlave::FullDuplex; if (_input_audio_device != _output_audio_device) { std::string input_audio_device (_input_audio_device); std::string output_audio_device (_output_audio_device); if (_input_audio_device != get_standard_device_name (DeviceNone) && _output_audio_device != get_standard_device_name (DeviceNone)) { /* Different devices for In + Out. * Ideally use input as clock source, and resample output. * But when using separate devices, input is usually one (or more) * cheap USB mic. Also keeping output device as "main", * retains master-out connection. */ if (getenv ("ARDOUR_ALSA_CLK")) { slave_device = _output_audio_device; output_audio_device = get_standard_device_name (DeviceNone); //XXX slave_duplex = AudioSlave::HalfDuplexOut; } else { slave_device = _input_audio_device; input_audio_device = get_standard_device_name (DeviceNone); //XXX slave_duplex = AudioSlave::HalfDuplexIn; } } if (input_audio_device != get_standard_device_name (DeviceNone)) { get_alsa_audio_device_names (devices, HalfDuplexIn); audio_device = input_audio_device; duplex = 1; } else { get_alsa_audio_device_names (devices, HalfDuplexOut); audio_device = output_audio_device; duplex = 2; } } else { get_alsa_audio_device_names (devices); audio_device = _input_audio_device; duplex = 3; } std::map::const_iterator di = devices.find (audio_device); if (di == devices.end ()) { PBD::error << _("AlsaAudioBackend: Cannot find configured device. Is it still connected?"); return AudioDeviceNotAvailableError; } else { alsa_device = di->second; assert (!alsa_device.empty ()); } _device_reservation.acquire_device (alsa_device.c_str ()); _pcmi = new Alsa_pcmi ( (duplex & 2) ? alsa_device.c_str () : NULL, (duplex & 1) ? alsa_device.c_str () : NULL, /* ctrl name */ 0, _samplerate, _samples_per_period, _periods_per_cycle, _periods_per_cycle, /* debug */ 0); AudioBackend::ErrorCode error_code = NoError; switch (_pcmi->state ()) { case 0: /* OK */ break; case -1: PBD::error << _("AlsaAudioBackend: failed to open device.") << endmsg; error_code = AudioDeviceOpenError; break; case -2: PBD::error << _("AlsaAudioBackend: failed to allocate parameters.") << endmsg; error_code = AudioDeviceOpenError; break; case -3: PBD::error << _("AlsaAudioBackend: cannot set requested sample rate.") << endmsg; error_code = SampleRateNotSupportedError; break; case -4: PBD::error << _("AlsaAudioBackend: cannot set requested period size.") << endmsg; error_code = PeriodSizeNotSupportedError; break; case -5: PBD::error << _("AlsaAudioBackend: cannot set requested number of periods.") << endmsg; error_code = PeriodCountNotSupportedError; break; case -6: PBD::error << _("AlsaAudioBackend: unsupported sample format.") << endmsg; error_code = SampleFormatNotSupportedError; break; default: PBD::error << _("AlsaAudioBackend: initialization failed.") << endmsg; error_code = AudioDeviceOpenError; break; } if (_pcmi->state ()) { delete _pcmi; _pcmi = 0; _device_reservation.release_device (); return error_code; } #ifndef NDEBUG fprintf (stdout, " --[[ ALSA Device %s\n", alsa_device.c_str ()); _pcmi->printinfo (); fprintf (stdout, " --]]\n"); #else /* If any debug parameter is set, print info */ if (getenv ("ARDOUR_ALSA_DEBUG")) { fprintf (stdout, " --[[ ALSA Device %s\n", alsa_device.c_str ()); _pcmi->printinfo (); fprintf (stdout, " --]]\n"); } #endif if (_n_outputs != _pcmi->nplay ()) { if (_n_outputs == 0) { _n_outputs = _pcmi->nplay (); } else { _n_outputs = std::min (_n_outputs, _pcmi->nplay ()); } PBD::info << _("AlsaAudioBackend: adjusted output channel count to match device.") << endmsg; } if (_n_inputs != _pcmi->ncapt ()) { if (_n_inputs == 0) { _n_inputs = _pcmi->ncapt (); } else { _n_inputs = std::min (_n_inputs, _pcmi->ncapt ()); } PBD::info << _("AlsaAudioBackend: adjusted input channel count to match device.") << endmsg; } if (_pcmi->fsize () != _samples_per_period) { _samples_per_period = _pcmi->fsize (); PBD::warning << string_compose (_("AlsaAudioBackend: samples per period does not match, using %1."), _samples_per_period) << endmsg; } if (_pcmi->fsamp () != _samplerate) { _samplerate = _pcmi->fsamp (); engine.sample_rate_change (_samplerate); PBD::warning << _("AlsaAudioBackend: sample rate does not match.") << endmsg; } register_system_midi_ports (); if (register_system_audio_ports ()) { PBD::error << _("AlsaAudioBackend: failed to register system ports.") << endmsg; delete _pcmi; _pcmi = 0; _device_reservation.release_device (); return PortRegistrationError; } engine.sample_rate_change (_samplerate); engine.buffer_size_change (_samples_per_period); if (engine.reestablish_ports ()) { PBD::error << _("AlsaAudioBackend: Could not re-establish ports.") << endmsg; delete _pcmi; _pcmi = 0; _device_reservation.release_device (); return PortReconnectError; } _run = true; _port_change_flag.store (0); if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_MAIN, PBD_RT_STACKSIZE_PROC, &_main_thread, pthread_process, this)) { if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &_main_thread, pthread_process, this)) { PBD::error << _("AlsaAudioBackend: failed to create process thread.") << endmsg; delete _pcmi; _pcmi = 0; _device_reservation.release_device (); _run = false; return ProcessThreadStartError; } else { PBD::warning << _("AlsaAudioBackend: cannot acquire realtime permissions.") << endmsg; } } int timeout = 5000; while (!_active && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_active) { PBD::error << _("AlsaAudioBackend: failed to start process thread.") << endmsg; delete _pcmi; _pcmi = 0; _device_reservation.release_device (); _run = false; return ProcessThreadStartError; } _midi_device_thread_active = listen_for_midi_device_changes (); devices.clear (); get_alsa_audio_device_names (devices, (AlsaDuplex)slave_duplex); if (!slave_device.empty () && (di = devices.find (slave_device)) != devices.end ()) { std::string dev = di->second; if (add_slave (dev.c_str (), _samplerate, _samples_per_period, _periods_per_cycle, slave_duplex)) { PBD::info << string_compose (_("ALSA slave '%1' added"), dev) << endmsg; } else { PBD::error << string_compose (_("ALSA failed to add '%1' as slave"), dev) << endmsg; } } #if 1 // TODO: we need a GUI (and API) for this /* example: ARDOUR_ALSA_EXT="hw:2@48000/512*3;hw:3@44100" */ if (NULL != getenv ("ARDOUR_ALSA_EXT")) { boost::char_separator sep (";"); std::string ext (getenv ("ARDOUR_ALSA_EXT")); boost::tokenizer > devs (ext, sep); BOOST_FOREACH (const std::string& tmp, devs) { std::string dev (tmp); unsigned int sr = _samplerate; unsigned int spp = _samples_per_period; unsigned int ppc = _periods_per_cycle; AudioSlave::DuplexMode duplex = AudioSlave::FullDuplex; std::string::size_type n = dev.find ('@'); if (n != std::string::npos) { std::string const opt (dev.substr (n + 1)); sr = PBD::atoi (opt); dev = dev.substr (0, n); std::string::size_type n = opt.find ('/'); if (n != std::string::npos) { std::string const opt2 (opt.substr (n + 1)); spp = PBD::atoi (opt2); std::string::size_type n = opt2.find ('*'); if (n != std::string::npos) { ppc = PBD::atoi (opt2.substr (n + 1)); } } } if (add_slave (dev.c_str (), sr, spp, ppc, duplex)) { PBD::info << string_compose (_("ALSA slave '%1' added"), dev) << endmsg; } else { PBD::error << string_compose (_("ALSA failed to add '%1' as slave"), dev) << endmsg; } } } #endif engine.reconnect_ports (); return NoError; } int AlsaAudioBackend::stop () { void* status; if (!_run) { return 0; } _run = false; if (pthread_join (_main_thread, &status)) { PBD::error << _("AlsaAudioBackend: failed to terminate.") << endmsg; return -1; } stop_listen_for_midi_device_changes (); while (!_rmidi_out.empty ()) { AlsaMidiIO* m = _rmidi_out.back (); m->stop (); _rmidi_out.pop_back (); delete m; } while (!_rmidi_in.empty ()) { AlsaMidiIO* m = _rmidi_in.back (); m->stop (); _rmidi_in.pop_back (); delete m; } while (!_slaves.empty ()) { AudioSlave* s = _slaves.back (); _slaves.pop_back (); delete s; } unregister_ports (); delete _pcmi; _pcmi = 0; _device_reservation.release_device (); _measure_latency = false; return (_active == false) ? 0 : -1; } int AlsaAudioBackend::freewheel (bool onoff) { _freewheeling = onoff; return 0; } float AlsaAudioBackend::dsp_load () const { return 100.f * _dsp_load; } size_t AlsaAudioBackend::raw_buffer_size (DataType t) { switch (t) { case DataType::AUDIO: return _samples_per_period * sizeof (Sample); case DataType::MIDI: return _max_buffer_size; // XXX not really limited } return 0; } /* Process time */ samplepos_t AlsaAudioBackend::sample_time () { return _processed_samples; } samplepos_t AlsaAudioBackend::sample_time_at_cycle_start () { return _processed_samples; } pframes_t AlsaAudioBackend::samples_since_cycle_start () { if (!_active || !_run || _freewheeling || _freewheel) { return 0; } if (_last_process_start == 0) { return 0; } const int64_t elapsed_time_us = g_get_monotonic_time () - _last_process_start; return std::max ((pframes_t)0, (pframes_t)rint (1e-6 * elapsed_time_us * _samplerate)); } void* AlsaAudioBackend::alsa_process_thread (void* arg) { ThreadData* td = reinterpret_cast (arg); boost::function f = td->f; delete td; f (); return 0; } int AlsaAudioBackend::create_process_thread (boost::function func) { pthread_t thread_id; ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC); if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, PBD_RT_PRI_PROC, PBD_RT_STACKSIZE_PROC, &thread_id, alsa_process_thread, td)) { if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, alsa_process_thread, td)) { PBD::error << _("AudioEngine: cannot create process thread.") << endmsg; return -1; } } _threads.push_back (thread_id); return 0; } int AlsaAudioBackend::join_process_threads () { int rv = 0; for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { void* status; if (pthread_join (*i, &status)) { PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg; rv -= 1; } } _threads.clear (); return rv; } bool AlsaAudioBackend::in_process_thread () { if (pthread_equal (_main_thread, pthread_self ()) != 0) { return true; } for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { return true; } } return false; } uint32_t AlsaAudioBackend::process_thread_count () { return _threads.size (); } void AlsaAudioBackend::update_latencies () { // trigger latency callback in RT thread (locked graph) port_connect_add_remove_callback (); } /* PORTENGINE API */ void* AlsaAudioBackend::private_handle () const { return NULL; } const std::string& AlsaAudioBackend::my_name () const { return _instance_name; } int AlsaAudioBackend::register_system_audio_ports () { LatencyRange lr; const int a_ins = _n_inputs; const int a_out = _n_outputs; const uint32_t lcpp = (_periods_per_cycle - 2) * _samples_per_period; /* audio ports */ lr.min = lr.max = (_measure_latency ? 0 : _systemic_audio_input_latency); for (int i = 1; i <= a_ins; ++i) { char tmp[64]; snprintf (tmp, sizeof (tmp), "system:capture_%d", i); PortHandle p = add_port (std::string (tmp), DataType::AUDIO, static_cast (IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); BackendPortPtr ap = std::dynamic_pointer_cast (p); ap->set_hw_port_name (string_compose (_("Main In %1"), i)); _system_inputs.push_back (ap); } lr.min = lr.max = lcpp + (_measure_latency ? 0 : _systemic_audio_output_latency); for (int i = 1; i <= a_out; ++i) { char tmp[64]; snprintf (tmp, sizeof (tmp), "system:playback_%d", i); PortHandle p = add_port (std::string (tmp), DataType::AUDIO, static_cast (IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); BackendPortPtr ap = std::dynamic_pointer_cast (p); if (a_out == 2) { ap->set_hw_port_name (i == 1 ? _("Out Left") : _("Out Right")); } else { ap->set_hw_port_name (string_compose (_("Main Out %1"), i)); } _system_outputs.push_back (ap); } return 0; } void AlsaAudioBackend::auto_update_midi_devices () { std::map devices; if (_midi_driver_option == _("ALSA raw devices")) { get_alsa_rawmidi_device_names (devices); } else if (_midi_driver_option == _("ALSA sequencer")) { get_alsa_sequencer_names (devices); } else { return; } /* find new devices */ for (std::map::const_iterator i = devices.begin (); i != devices.end (); ++i) { if (_midi_devices.find (i->first) != _midi_devices.end ()) { continue; } _midi_devices[i->first] = new AlsaMidiDeviceInfo (false); set_midi_device_enabled (i->first, true); } for (std::map::iterator i = _midi_devices.begin (); i != _midi_devices.end ();) { if (devices.find (i->first) != devices.end ()) { ++i; continue; } set_midi_device_enabled (i->first, false); std::map::iterator tmp = i; ++tmp; _midi_devices.erase (i); i = tmp; } } void* AlsaAudioBackend::_midi_device_thread (void* arg) { AlsaAudioBackend* self = static_cast (arg); pthread_set_name ("ALSA-MIDI-LIST"); self->midi_device_thread (); pthread_exit (0); return 0; } void AlsaAudioBackend::midi_device_thread () { snd_seq_t* seq; if (snd_seq_open (&seq, "hw", SND_SEQ_OPEN_INPUT, 0) < 0) { return; } if (snd_seq_set_client_name (seq, "Ardour")) { snd_seq_close (seq); return; } if (snd_seq_nonblock (seq, 1) < 0) { snd_seq_close (seq); return; } int npfds = snd_seq_poll_descriptors_count (seq, POLLIN); if (npfds < 1) { snd_seq_close (seq); return; } int port = snd_seq_create_simple_port (seq, "port", SND_SEQ_PORT_CAP_WRITE | SND_SEQ_PORT_CAP_NO_EXPORT, SND_SEQ_PORT_TYPE_APPLICATION); snd_seq_connect_from (seq, port, SND_SEQ_CLIENT_SYSTEM, SND_SEQ_PORT_SYSTEM_ANNOUNCE); struct pollfd* pfds = (struct pollfd*)malloc (npfds * sizeof (struct pollfd)); snd_seq_poll_descriptors (seq, pfds, npfds, POLLIN); snd_seq_drop_input (seq); bool do_poll = true; while (_run) { if (do_poll) { int perr = poll (pfds, npfds, 200 /* ms */); if (perr == 0) { continue; } if (perr < 0) { break; } } snd_seq_event_t* event; ssize_t err = snd_seq_event_input (seq, &event); #if EAGAIN == EWOULDBLOCK if ((err == -EAGAIN) || (err == -ENOSPC)) #else if ((err == -EAGAIN) || (err == -EWOULDBLOCK) || (err == -ENOSPC)) #endif { do_poll = true; continue; } if (err < 0) { break; } assert (event->source.client == SND_SEQ_CLIENT_SYSTEM); switch (event->type) { case SND_SEQ_EVENT_PORT_START: case SND_SEQ_EVENT_PORT_EXIT: case SND_SEQ_EVENT_PORT_CHANGE: auto_update_midi_devices (); engine.request_device_list_update (); default: break; } do_poll = (0 == err); } free (pfds); snd_seq_delete_simple_port (seq, port); snd_seq_close (seq); } bool AlsaAudioBackend::listen_for_midi_device_changes () { if (pthread_create (&_midi_device_thread_id, NULL, _midi_device_thread, this)) { return false; } return true; } void AlsaAudioBackend::stop_listen_for_midi_device_changes () { if (!_midi_device_thread_active) { return; } pthread_join (_midi_device_thread_id, NULL); _midi_device_thread_active = false; } /* set playback-latency for _system_inputs * and capture-latency for _system_outputs */ void AlsaAudioBackend::update_system_port_latencies () { pthread_mutex_lock (&_device_port_mutex); PortEngineSharedImpl::update_system_port_latencies (); pthread_mutex_unlock (&_device_port_mutex); for (AudioSlaves::iterator s = _slaves.begin (); s != _slaves.end (); ++s) { if ((*s)->dead) { continue; } for (std::vector::const_iterator it = (*s)->inputs.begin (); it != (*s)->inputs.end (); ++it) { (*it)->update_connected_latency (true); } for (std::vector::const_iterator it = (*s)->outputs.begin (); it != (*s)->outputs.end (); ++it) { (*it)->update_connected_latency (false); } } } /* libs/ardouralsautil/devicelist.cc appends either of * " (IO)", " (I)", or " (O)" * depending of the device is full-duples or half-duplex */ static std::string replace_name_io (std::string const& name, bool in) { if (name.empty ()) { return ""; } size_t pos = name.find_last_of ('('); if (pos == std::string::npos) { assert (0); // this should never happen. return name; } return name.substr (0, pos) + "(" + (in ? "In" : "Out") + ")"; } static uint32_t elf_hash (std::string const& s) { const uint8_t* b = (const uint8_t*)s.c_str (); uint32_t h = 0; for (size_t i = 0; i < s.length (); ++i) { h = (h << 4) + b[i]; uint32_t high = h & 0xF0000000; if (high) { h ^= high >> 24; h &= ~high; } } return h; } int AlsaAudioBackend::register_system_midi_ports (const std::string device) { std::map devices; if (_midi_driver_option == get_standard_device_name (DeviceNone)) { return 0; } else if (_midi_driver_option == _("ALSA raw devices")) { get_alsa_rawmidi_device_names (devices); } else { get_alsa_sequencer_names (devices); } for (std::map::const_iterator i = devices.begin (); i != devices.end (); ++i) { if (!device.empty () && device != i->first) { continue; } struct AlsaMidiDeviceInfo* nfo = midi_device_info (i->first); if (!nfo) { continue; } if (!nfo->enabled) { continue; } AlsaMidiOut* mout; if (_midi_driver_option == _("ALSA raw devices")) { mout = new AlsaRawMidiOut (i->first, i->second.c_str ()); } else { mout = new AlsaSeqMidiOut (i->first, i->second.c_str ()); } if (mout->state ()) { PBD::warning << string_compose (_("AlsaMidiOut: failed to open midi device '%1'."), i->second) << endmsg; delete mout; } else { mout->setup_timing (_samples_per_period, _samplerate); mout->sync_time (g_get_monotonic_time ()); if (mout->start ()) { PBD::warning << string_compose (_("AlsaMidiOut: failed to start midi device '%1'."), i->second) << endmsg; delete mout; } else { char tmp[64]; for (int x = 0; x < 10; ++x) { snprintf (tmp, sizeof (tmp), "system:midi_playback_%x%d", elf_hash (i->first), x); if (!find_port (tmp)) { break; } } PortHandle p = add_port (std::string (tmp), DataType::MIDI, static_cast (IsInput | IsPhysical | IsTerminal)); if (!p) { mout->stop (); delete mout; } else { LatencyRange lr; lr.min = lr.max = (_measure_latency ? 0 : nfo->systemic_output_latency); set_latency_range (p, true, lr); std::dynamic_pointer_cast (p)->set_n_periods (_periods_per_cycle); // TODO check MIDI alignment BackendPortPtr ap = std::dynamic_pointer_cast (p); ap->set_hw_port_name (replace_name_io (i->first, false)); pthread_mutex_lock (&_device_port_mutex); _system_midi_out.push_back (ap); pthread_mutex_unlock (&_device_port_mutex); _rmidi_out.push_back (mout); } } } AlsaMidiIn* midin; if (_midi_driver_option == _("ALSA raw devices")) { midin = new AlsaRawMidiIn (i->first, i->second.c_str ()); } else { midin = new AlsaSeqMidiIn (i->first, i->second.c_str ()); } if (midin->state ()) { PBD::warning << string_compose (_("AlsaMidiIn: failed to open midi device '%1'."), i->second) << endmsg; delete midin; } else { midin->setup_timing (_samples_per_period, _samplerate); midin->sync_time (g_get_monotonic_time ()); if (midin->start ()) { PBD::warning << string_compose (_("AlsaMidiIn: failed to start midi device '%1'."), i->second) << endmsg; delete midin; } else { char tmp[64]; for (int x = 0; x < 10; ++x) { snprintf (tmp, sizeof (tmp), "system:midi_capture_%x%d", elf_hash (i->first), x); if (!find_port (tmp)) { break; } } PortHandle p = add_port (std::string (tmp), DataType::MIDI, static_cast (IsOutput | IsPhysical | IsTerminal)); if (!p) { midin->stop (); delete midin; continue; } LatencyRange lr; lr.min = lr.max = (_measure_latency ? 0 : nfo->systemic_input_latency); set_latency_range (p, false, lr); BackendPortPtr ap = std::dynamic_pointer_cast (p); ap->set_hw_port_name (replace_name_io (i->first, true)); pthread_mutex_lock (&_device_port_mutex); _system_midi_in.push_back (ap); pthread_mutex_unlock (&_device_port_mutex); _rmidi_in.push_back (midin); } } } return 0; } /* MIDI */ int AlsaAudioBackend::midi_event_get ( pframes_t& timestamp, size_t& size, uint8_t const** buf, void* port_buffer, uint32_t event_index) { assert (buf && port_buffer); AlsaMidiBuffer& source = *static_cast (port_buffer); if (event_index >= source.size ()) { return -1; } AlsaMidiEvent const& event = source[event_index]; timestamp = event.timestamp (); size = event.size (); *buf = event.data (); return 0; } int AlsaAudioBackend::midi_event_put ( void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size) { assert (buffer && port_buffer); if (size >= MaxAlsaMidiEventSize) { return -1; } AlsaMidiBuffer& dst = *static_cast (port_buffer); #ifndef NDEBUG if (dst.size () && (pframes_t)dst.back ().timestamp () > timestamp) { // nevermind, ::get_buffer() sorts events fprintf (stderr, "AlsaMidiBuffer: it's too late for this event. %d > %d\n", (pframes_t)dst.back ().timestamp (), timestamp); } #endif dst.push_back (AlsaMidiEvent (timestamp, buffer, size)); return 0; } uint32_t AlsaAudioBackend::get_midi_event_count (void* port_buffer) { assert (port_buffer); return static_cast (port_buffer)->size (); } void AlsaAudioBackend::midi_clear (void* port_buffer) { assert (port_buffer); AlsaMidiBuffer* buf = static_cast (port_buffer); assert (buf); buf->clear (); } /* Monitoring */ bool AlsaAudioBackend::can_monitor_input () const { return false; } int AlsaAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool) { return -1; } int AlsaAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool) { return -1; } bool AlsaAudioBackend::monitoring_input (PortEngine::PortHandle) { return false; } /* Latency management */ void AlsaAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range) { BackendPortPtr port = std::dynamic_pointer_cast (port_handle); if (!valid_port (port)) { DEBUG_TRACE (PBD::DEBUG::BackendPorts, "AlsaPort::set_latency_range (): invalid port."); return; } port->set_latency_range (latency_range, for_playback); } LatencyRange AlsaAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback) { BackendPortPtr port = std::dynamic_pointer_cast (port_handle); LatencyRange r; if (!valid_port (port)) { DEBUG_TRACE (PBD::DEBUG::BackendPorts, "AlsaPort::get_latency_range (): invalid port."); r.min = 0; r.max = 0; return r; } r = port->latency_range (for_playback); if (port->is_physical () && port->is_terminal ()) { if (port->is_input () && for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } if (port->is_output () && !for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } } return r; } BackendPort* AlsaAudioBackend::port_factory (std::string const& name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { BackendPort* port = 0; switch (type) { case DataType::AUDIO: port = new AlsaAudioPort (*this, name, flags); break; case DataType::MIDI: port = new AlsaMidiPort (*this, name, flags); break; default: PBD::error << string_compose (_("%1::register_port: Invalid Data Type."), _instance_name) << endmsg; return 0; } return port; } /* Getting access to the data buffer for a port */ void* AlsaAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes) { BackendPortPtr port = std::dynamic_pointer_cast (port_handle); assert (port); return port->get_buffer (nframes); } /* Engine Process */ void* AlsaAudioBackend::main_process_thread () { AudioEngine::thread_init_callback (this); bool reset_dll = true; int last_n_periods = 0; _active = true; _processed_samples = 0; double dll_dt = (double)_samples_per_period / (double)_samplerate; double dll_w1 = 2 * M_PI * 0.1 * dll_dt; double dll_w2 = dll_w1 * dll_w1; uint64_t clock1; int no_proc_errors = 0; const int bailout = 5 * _samplerate / _samples_per_period; manager.registration_callback (); manager.graph_order_callback (); const double sr_norm = 1e-6 * (double)_samplerate / (double)_samples_per_period; /* warm up freewheel dry-run - see also AudioEngine _init_countdown */ int cnt = std::max (4, (int)(_samplerate / _samples_per_period) / 8); for (int w = 0; w < cnt; ++w) { for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample)); } if (engine.process_callback (_samples_per_period)) { _active = false; return 0; } Glib::usleep (1000000 * (_samples_per_period / _samplerate)); } _dsp_load_calc.reset (); _pcmi->pcm_start (); while (_run) { long nr; bool xrun = false; bool drain_slaves = false; if (_freewheeling != _freewheel) { _freewheel = _freewheeling; engine.freewheel_callback (_freewheel); for (AudioSlaves::iterator s = _slaves.begin (); s != _slaves.end (); ++s) { (*s)->freewheel (_freewheel); } if (!_freewheel) { _pcmi->pcm_stop (); _pcmi->pcm_start (); drain_slaves = true; _dsp_load_calc.reset (); } } if (!_freewheel) { dsp_stats[DeviceWait].start(); nr = _pcmi->pcm_wait (); dsp_stats[DeviceWait].update(); dsp_stats[RunLoop].start (); /* update DLL */ uint64_t clock0 = g_get_monotonic_time (); if (reset_dll || last_n_periods != 1) { reset_dll = false; drain_slaves = true; dll_dt = 1e6 * (double)_samples_per_period / (double)_samplerate; _t0 = clock0; _t1 = clock0 + dll_dt; } else { const double er = clock0 - _t1; _t0 = _t1; _t1 = _t1 + dll_w1 * er + dll_dt; dll_dt += dll_w2 * er; } for (AudioSlaves::iterator s = _slaves.begin (); s != _slaves.end (); ++s) { if ((*s)->dead) { continue; } if ((*s)->halt) { /* slave died, unregister its ports (not rt-safe, but no matter) */ PBD::error << _("ALSA Slave device halted") << endmsg; for (std::vector::const_iterator it = (*s)->inputs.begin (); it != (*s)->inputs.end (); ++it) { unregister_port (*it); } for (std::vector::const_iterator it = (*s)->outputs.begin (); it != (*s)->outputs.end (); ++it) { unregister_port (*it); } (*s)->inputs.clear (); (*s)->outputs.clear (); (*s)->active = false; (*s)->dead = true; continue; } (*s)->active = (*s)->running () && (*s)->state () >= 0; if (!(*s)->active) { continue; } (*s)->cycle_start (_t0, (_t1 - _t0) * sr_norm, drain_slaves); } if (_pcmi->state () > 0) { ++no_proc_errors; xrun = true; } if (_pcmi->state () < 0) { PBD::error << _("AlsaAudioBackend: I/O error. Audio Process Terminated.") << endmsg; break; } if (no_proc_errors > bailout) { PBD::error << string_compose (_("AlsaAudioBackend: Audio Process Terminated after %1 consecutive xruns."), no_proc_errors) << endmsg; break; } last_n_periods = 0; while (nr >= (long)_samples_per_period && _freewheeling == _freewheel) { uint32_t i = 0; clock1 = g_get_monotonic_time (); no_proc_errors = 0; _pcmi->capt_init (_samples_per_period); for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++i) { _pcmi->capt_chan (i, (float*)(*it)->get_buffer (_samples_per_period), _samples_per_period); } _pcmi->capt_done (_samples_per_period); for (AudioSlaves::iterator s = _slaves.begin (); s != _slaves.end (); ++s) { if (!(*s)->active) { continue; } i = 0; for (std::vector::const_iterator it = (*s)->inputs.begin (); it != (*s)->inputs.end (); ++it, ++i) { (*s)->capt_chan (i, (float*)(std::dynamic_pointer_cast (*it)->get_buffer (_samples_per_period)), _samples_per_period); } } /* only used when adding/removing MIDI device/system ports */ pthread_mutex_lock (&_device_port_mutex); /* de-queue incoming midi*/ i = 0; for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) { assert (_rmidi_in.size () > i); AlsaMidiIn* rm = _rmidi_in.at (i); void* bptr = (*it)->get_buffer (0); pframes_t time; uint8_t data[MaxAlsaMidiEventSize]; size_t size = sizeof (data); midi_clear (bptr); while (rm->recv_event (time, data, size)) { midi_event_put (bptr, time, data, size); size = sizeof (data); } rm->sync_time (clock1); } pthread_mutex_unlock (&_device_port_mutex); for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) { memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample)); } /* call engine process callback */ _last_process_start = g_get_monotonic_time (); if (engine.process_callback (_samples_per_period)) { _pcmi->pcm_stop (); _active = false; return 0; } /* only used when adding/removing MIDI device/system ports */ pthread_mutex_lock (&_device_port_mutex); for (std::vector::iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) { std::dynamic_pointer_cast (*it)->next_period (); } /* queue outgoing midi */ i = 0; for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it, ++i) { assert (_rmidi_out.size () > i); AlsaMidiBuffer const* src = std::dynamic_pointer_cast (*it)->const_buffer (); AlsaMidiOut* rm = _rmidi_out.at (i); rm->sync_time (clock1); for (AlsaMidiBuffer::const_iterator mit = src->begin (); mit != src->end (); ++mit) { rm->send_event (mit->timestamp (), mit->data (), mit->size ()); } } pthread_mutex_unlock (&_device_port_mutex); /* write back audio */ i = 0; _pcmi->play_init (_samples_per_period); for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it, ++i) { _pcmi->play_chan (i, (const float*)(*it)->get_buffer (_samples_per_period), _samples_per_period); } for (; i < _pcmi->nplay (); ++i) { _pcmi->clear_chan (i, _samples_per_period); } _pcmi->play_done (_samples_per_period); for (AudioSlaves::iterator s = _slaves.begin (); s != _slaves.end (); ++s) { if (!(*s)->active) { continue; } i = 0; for (std::vector::const_iterator it = (*s)->outputs.begin (); it != (*s)->outputs.end (); ++it, ++i) { (*s)->play_chan (i, (float*)(*it)->get_buffer (_samples_per_period), _samples_per_period); } (*s)->cycle_end (); } nr -= _samples_per_period; _processed_samples += _samples_per_period; _dsp_load_calc.set_max_time (_samplerate, _samples_per_period); _dsp_load_calc.set_start_timestamp_us (clock1); _dsp_load_calc.set_stop_timestamp_us (g_get_monotonic_time ()); _dsp_load = _dsp_load_calc.get_dsp_load (); ++last_n_periods; dsp_stats[RunLoop].update (); } if (xrun && (_pcmi->capt_xrun () > 0 || _pcmi->play_xrun () > 0)) { engine.Xrun (); reset_dll = true; #if 0 fprintf(stderr, "ALSA xrun read: %.2f ms, write: %.2f ms\n", _pcmi->capt_xrun() * 1000.0, _pcmi->play_xrun() * 1000.0); #endif } } else { // Freewheelin' // zero audio input buffers for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample)); } clock1 = g_get_monotonic_time (); uint32_t i = 0; pthread_mutex_lock (&_device_port_mutex); for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) { static_cast ((*it)->get_buffer (0))->clear (); AlsaMidiIn* rm = _rmidi_in.at (i); void* bptr = (*it)->get_buffer (0); midi_clear (bptr); // zero midi buffer // TODO add an API call for this. pframes_t time; uint8_t data[64]; // match MaxAlsaEventSize in alsa_rawmidi.cc size_t size = sizeof (data); while (rm->recv_event (time, data, size)) { ; // discard midi-data from HW. } rm->sync_time (clock1); } pthread_mutex_unlock (&_device_port_mutex); _last_process_start = 0; if (engine.process_callback (_samples_per_period)) { _pcmi->pcm_stop (); _active = false; return 0; } // drop all outgoing MIDI messages pthread_mutex_lock (&_device_port_mutex); for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) { void* bptr = (*it)->get_buffer (0); midi_clear (bptr); } pthread_mutex_unlock (&_device_port_mutex); _dsp_load = 1.0; reset_dll = true; Glib::usleep (100); // don't hog cpu } bool connections_changed = false; bool ports_changed = false; if (!pthread_mutex_trylock (&_port_callback_mutex)) { int canderef (1); if (_port_change_flag.compare_exchange_strong (canderef, 0)) { ports_changed = true; } if (!_port_connection_queue.empty ()) { connections_changed = true; } process_connection_queue_locked (manager); pthread_mutex_unlock (&_port_callback_mutex); } if (ports_changed) { manager.registration_callback (); } if (connections_changed) { manager.graph_order_callback (); } if (connections_changed || ports_changed) { update_system_port_latencies (); // flush, clear engine.latency_callback (false); engine.latency_callback (true); } } _pcmi->pcm_stop (); _active = false; if (_run) { engine.halted_callback ("ALSA I/O error."); } return 0; } /******************************************************************************/ bool AlsaAudioBackend::add_slave (const char* device, unsigned int slave_rate, unsigned int slave_spp, unsigned int slave_ppc, AudioSlave::DuplexMode duplex) { AudioSlave* s = new AudioSlave (device, duplex, _samplerate, _samples_per_period, slave_rate, slave_spp, slave_ppc); if (s->state ()) { // TODO parse error status PBD::error << string_compose (_("Failed to create slave device '%1' error %2\n"), device, s->state ()) << endmsg; goto errout; } for (uint32_t i = 0, n = 1; i < s->ncapt (); ++i) { char tmp[64]; do { snprintf (tmp, sizeof (tmp), "extern:capture_%d", n); if (find_port (tmp)) { ++n; } else { break; } } while (1); PortPtr p = add_port (std::string (tmp), DataType::AUDIO, static_cast (IsOutput | IsPhysical | IsTerminal)); if (!p) { goto errout; } BackendPortPtr ap = std::dynamic_pointer_cast (p); ap->set_hw_port_name (string_compose (_("Aux In %1"), n)); s->inputs.push_back (ap); } for (uint32_t i = 0, n = 1; i < s->nplay (); ++i) { char tmp[64]; do { snprintf (tmp, sizeof (tmp), "extern:playback_%d", n); if (find_port (tmp)) { ++n; } else { break; } } while (1); PortPtr p = add_port (std::string (tmp), DataType::AUDIO, static_cast (IsInput | IsPhysical | IsTerminal)); if (!p) { goto errout; } BackendPortPtr ap = std::dynamic_pointer_cast (p); ap->set_hw_port_name (string_compose (_("Aux Out %1"), n)); s->outputs.push_back (ap); } if (!s->start ()) { PBD::error << string_compose (_("Failed to start slave device '%1'\n"), device) << endmsg; goto errout; } s->UpdateLatency.connect_same_thread (s->latency_connection, boost::bind (&AlsaAudioBackend::update_latencies, this)); _slaves.push_back (s); return true; errout: delete s; // releases device return false; } AlsaAudioBackend::AudioSlave::AudioSlave ( const char* device, DuplexMode duplex, unsigned int master_rate, unsigned int master_samples_per_period, unsigned int slave_rate, unsigned int slave_samples_per_period, unsigned int slave_periods_per_cycle) : AlsaDeviceReservation (device) , AlsaAudioSlave ( (duplex & HalfDuplexOut) ? device : NULL /* playback */, (duplex & HalfDuplexIn) ? device : NULL /* capture */, master_rate, master_samples_per_period, slave_rate, slave_samples_per_period, slave_periods_per_cycle) , active (false) , halt (false) , dead (false) { Halted.connect_same_thread (_halted_connection, boost::bind (&AudioSlave::halted, this)); } AlsaAudioBackend::AudioSlave::~AudioSlave () { stop (); } void AlsaAudioBackend::AudioSlave::halted () { // Note: Halted() is emitted from the Slave's process thread. release_device (); halt = true; } void AlsaAudioBackend::AudioSlave::update_latencies (uint32_t play, uint32_t capt) { LatencyRange lr; lr.min = lr.max = (capt); bool changed = false; for (std::vector::const_iterator it = inputs.begin (); it != inputs.end (); ++it) { LatencyRange lx; lx = (*it)->latency_range (false); if (lr == lx) { continue; } (*it)->set_latency_range (lr, false); changed = true; } lr.min = lr.max = play; for (std::vector::const_iterator it = outputs.begin (); it != outputs.end (); ++it) { LatencyRange lx; lx = (*it)->latency_range (true); if (lr == lx) { continue; } (*it)->set_latency_range (lr, true); changed = true; } #ifndef NDEBUG printf ("ALSA SLAVE-device latency play=%d capt=%d changed:%d\n", play, capt, changed); // XXX DEBUG #endif if (changed) { UpdateLatency (); /* EMIT SIGNAL */ } } /******************************************************************************/ static std::shared_ptr _instance; static std::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { "ALSA", instantiate, deinstantiate, backend_factory, already_configured, available }; static std::shared_ptr backend_factory (AudioEngine& e) { if (!_instance) { _instance.reset (new AlsaAudioBackend (e, _descriptor)); } return _instance; } static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; return 0; } static int deinstantiate () { _instance.reset (); return 0; } static bool already_configured () { return false; } static bool available () { return true; } extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; } /******************************************************************************/ /******************************************************************************/ AlsaAudioPort::AlsaAudioPort (AlsaAudioBackend& b, const std::string& name, PortFlags flags) : BackendPort (b, name, flags) { memset (_buffer, 0, sizeof (_buffer)); mlock (_buffer, sizeof (_buffer)); } AlsaAudioPort::~AlsaAudioPort () { } void* AlsaAudioPort::get_buffer (pframes_t n_samples) { if (is_input ()) { const std::set& connections = get_connections (); std::set::const_iterator it = connections.begin (); if (it == connections.end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { std::shared_ptr source = std::dynamic_pointer_cast (*it); assert (source && source->is_output ()); memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); while (++it != connections.end ()) { source = std::dynamic_pointer_cast (*it); assert (source && source->is_output ()); Sample* dst = buffer (); const Sample* src = source->const_buffer (); for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) { *dst += *src; } } } } return _buffer; } AlsaMidiPort::AlsaMidiPort (AlsaAudioBackend& b, const std::string& name, PortFlags flags) : BackendPort (b, name, flags) , _n_periods (1) , _bufperiod (0) { _buffer[0].clear (); _buffer[1].clear (); _buffer[2].clear (); _buffer[0].reserve (256); _buffer[1].reserve (256); _buffer[2].reserve (256); } AlsaMidiPort::~AlsaMidiPort () { } struct MidiEventSorter { bool operator() (AlsaMidiEvent const& a, AlsaMidiEvent const& b) { return a < b; } }; void* AlsaMidiPort::get_buffer (pframes_t /* nframes */) { if (is_input ()) { (_buffer[_bufperiod]).clear (); const std::set& connections = get_connections (); for (std::set::const_iterator i = connections.begin (); i != connections.end (); ++i) { const AlsaMidiBuffer* src = std::dynamic_pointer_cast (*i)->const_buffer (); for (AlsaMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { (_buffer[_bufperiod]).push_back (*it); } } std::stable_sort ((_buffer[_bufperiod]).begin (), (_buffer[_bufperiod]).end (), MidiEventSorter ()); } return &(_buffer[_bufperiod]); } AlsaMidiEvent::AlsaMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size) : _size (size) , _timestamp (timestamp) { if (size > 0 && size < MaxAlsaMidiEventSize) { memcpy (_data, data, size); } } AlsaMidiEvent::AlsaMidiEvent (const AlsaMidiEvent& other) : _size (other.size ()) , _timestamp (other.timestamp ()) { if (other._size > 0) { assert (other._size < MaxAlsaMidiEventSize); memcpy (_data, other._data, other._size); } }; /******************************************************************************/ AlsaDeviceReservation::AlsaDeviceReservation () : _device_reservation (0) { } AlsaDeviceReservation::AlsaDeviceReservation (const char* device_name) : _device_reservation (0) { acquire_device (device_name, true); } AlsaDeviceReservation::~AlsaDeviceReservation () { release_device (); } bool AlsaDeviceReservation::acquire_device (const char* device_name, bool silent) { int device_number = card_to_num (device_name); if (device_number < 0) { return false; } assert (_device_reservation == 0); _reservation_succeeded = false; std::string request_device_exe; if (!PBD::find_file ( PBD::Searchpath (Glib::build_filename (ARDOUR::ardour_dll_directory (), "ardouralsautil") + G_SEARCHPATH_SEPARATOR_S + ARDOUR::ardour_dll_directory ()), "ardour-request-device", request_device_exe)) { PBD::warning << "ardour-request-device binary was not found..'" << endmsg; return false; } char** argp; char tmp[128]; argp = (char**)calloc (5, sizeof (char*)); argp[0] = strdup (request_device_exe.c_str ()); argp[1] = strdup ("-P"); snprintf (tmp, sizeof (tmp), "%d", getpid ()); argp[2] = strdup (tmp); snprintf (tmp, sizeof (tmp), "Audio%d", device_number); argp[3] = strdup (tmp); argp[4] = 0; _device_reservation = new ARDOUR::SystemExec (request_device_exe, argp); _device_reservation->ReadStdout.connect_same_thread (_reservation_connection, boost::bind (&AlsaDeviceReservation::reservation_stdout, this, _1, _2)); _device_reservation->Terminated.connect_same_thread (_reservation_connection, boost::bind (&AlsaDeviceReservation::release_device, this)); if (_device_reservation->start (SystemExec::ShareWithParent)) { if (!silent) { PBD::warning << _("AlsaAudioBackend: Device Request failed.") << endmsg; } release_device (); return false; } /* wait to check if reservation succeeded. */ int timeout = 500; // 5 sec while (_device_reservation && !_reservation_succeeded && --timeout > 0) { Glib::usleep (10000); } if (timeout == 0 || !_reservation_succeeded) { if (!silent) { PBD::warning << _("AlsaAudioBackend: Device Reservation failed.") << endmsg; } release_device (); return false; } return true; } void AlsaDeviceReservation::release_device () { _reservation_connection.drop_connections (); ARDOUR::SystemExec* tmp = _device_reservation; _device_reservation = 0; delete tmp; } void AlsaDeviceReservation::reservation_stdout (std::string d, size_t /* s */) { if (d.substr (0, 19) == "Acquired audio-card") { _reservation_succeeded = true; } }