/* * Copyright (C) 2014 Robin Gareus * Copyright (C) 2013 Paul Davis * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include "dummy_audiobackend.h" #include "pbd/error.h" #include "ardour/port_manager.h" #include "i18n.h" using namespace ARDOUR; static std::string s_instance_name; size_t DummyAudioBackend::_max_buffer_size = 8192; DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , _running (false) , _freewheeling (false) , _samplerate (48000) , _samples_per_period (1024) , _dsp_load (0) , _n_inputs (0) , _n_outputs (0) , _n_midi_inputs (0) , _n_midi_outputs (0) , _systemic_input_latency (0) , _systemic_output_latency (0) , _processed_samples (0) { _instance_name = s_instance_name; pthread_mutex_init (&_port_callback_mutex, 0); } DummyAudioBackend::~DummyAudioBackend () { pthread_mutex_destroy (&_port_callback_mutex); } /* AUDIOBACKEND API */ std::string DummyAudioBackend::name () const { return X_("Dummy"); } bool DummyAudioBackend::is_realtime () const { return false; } std::vector DummyAudioBackend::enumerate_devices () const { std::vector s; s.push_back (DeviceStatus (_("Dummy"), true)); return s; } std::vector DummyAudioBackend::available_sample_rates (const std::string&) const { std::vector sr; sr.push_back (8000.0); sr.push_back (22050.0); sr.push_back (24000.0); sr.push_back (44100.0); sr.push_back (48000.0); sr.push_back (88200.0); sr.push_back (96000.0); sr.push_back (176400.0); sr.push_back (192000.0); return sr; } std::vector DummyAudioBackend::available_buffer_sizes (const std::string&) const { std::vector bs; bs.push_back (4); bs.push_back (8); bs.push_back (16); bs.push_back (32); bs.push_back (64); bs.push_back (128); bs.push_back (256); bs.push_back (512); bs.push_back (1024); bs.push_back (2048); bs.push_back (4096); bs.push_back (8192); return bs; } uint32_t DummyAudioBackend::available_input_channel_count (const std::string&) const { return 128; } uint32_t DummyAudioBackend::available_output_channel_count (const std::string&) const { return 128; } bool DummyAudioBackend::can_change_sample_rate_when_running () const { return true; } bool DummyAudioBackend::can_change_buffer_size_when_running () const { return true; } int DummyAudioBackend::set_device_name (const std::string&) { return 0; } int DummyAudioBackend::set_sample_rate (float sr) { if (sr <= 0) { return -1; } _samplerate = sr; engine.sample_rate_change (sr); return 0; } int DummyAudioBackend::set_buffer_size (uint32_t bs) { if (bs <= 0 || bs >= _max_buffer_size) { return -1; } _samples_per_period = bs; engine.buffer_size_change (bs); return 0; } int DummyAudioBackend::set_interleaved (bool yn) { if (!yn) { return 0; } return -1; } int DummyAudioBackend::set_input_channels (uint32_t cc) { _n_inputs = cc; return 0; } int DummyAudioBackend::set_output_channels (uint32_t cc) { _n_outputs = cc; return 0; } int DummyAudioBackend::set_systemic_input_latency (uint32_t sl) { _systemic_input_latency = sl; return 0; } int DummyAudioBackend::set_systemic_output_latency (uint32_t sl) { _systemic_output_latency = sl; return 0; } /* Retrieving parameters */ std::string DummyAudioBackend::device_name () const { return _("Dummy Device"); } float DummyAudioBackend::sample_rate () const { return _samplerate; } uint32_t DummyAudioBackend::buffer_size () const { return _samples_per_period; } bool DummyAudioBackend::interleaved () const { return false; } uint32_t DummyAudioBackend::input_channels () const { return _n_inputs; } uint32_t DummyAudioBackend::output_channels () const { return _n_outputs; } uint32_t DummyAudioBackend::systemic_input_latency () const { return _systemic_input_latency; } uint32_t DummyAudioBackend::systemic_output_latency () const { return _systemic_output_latency; } /* MIDI */ std::vector DummyAudioBackend::enumerate_midi_options () const { std::vector m; m.push_back (_("1 in, 1 out")); m.push_back (_("2 in, 2 out")); m.push_back (_("8 in, 8 out")); return m; } int DummyAudioBackend::set_midi_option (const std::string& opt) { if (opt == _("1 in, 1 out")) { _n_midi_inputs = _n_midi_outputs = 1; } else if (opt == _("2 in, 2 out")) { _n_midi_inputs = _n_midi_outputs = 2; } else if (opt == _("8 in, 8 out")) { _n_midi_inputs = _n_midi_outputs = 8; } else { _n_midi_inputs = _n_midi_outputs = 0; } return -1; } std::string DummyAudioBackend::midi_option () const { return ""; } /* State Control */ static void * pthread_process (void *arg) { DummyAudioBackend *d = static_cast(arg); d->main_process_thread (); pthread_exit (0); return 0; } int DummyAudioBackend::_start (bool /*for_latency_measurement*/) { if (_running) { PBD::error << _("DummyAudioBackend: already active.") << endmsg; return -1; } if (_ports.size()) { PBD::warning << _("DummyAudioBackend: recovering from unclean shutdown, port registry is not empty.") << endmsg; _ports.clear(); } if (register_system_ports()) { PBD::error << _("DummyAudioBackend: failed to register system ports.") << endmsg; return -1; } if (engine.reestablish_ports ()) { PBD::error << _("DummyAudioBackend: Could not re-establish ports.") << endmsg; stop (); return -1; } engine.buffer_size_change (_samples_per_period); engine.reconnect_ports (); if (pthread_create (&_main_thread, NULL, pthread_process, this)) { PBD::error << _("DummyAudioBackend: cannot start.") << endmsg; } int timeout = 5000; while (!_running && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_running) { PBD::error << _("DummyAudioBackend: failed to start process thread.") << endmsg; return -1; } return 0; } int DummyAudioBackend::stop () { void *status; if (!_running) { return 0; } _running = false; if (pthread_join (_main_thread, &status)) { PBD::error << _("DummyAudioBackend: failed to terminate.") << endmsg; return -1; } unregister_system_ports(); return 0; } int DummyAudioBackend::freewheel (bool onoff) { if (onoff == _freewheeling) { return 0; } _freewheeling = onoff; engine.freewheel_callback (onoff); return 0; } float DummyAudioBackend::dsp_load () const { return 100.f * _dsp_load; } size_t DummyAudioBackend::raw_buffer_size (DataType t) { switch (t) { case DataType::AUDIO: return _max_buffer_size * sizeof(Sample); case DataType::MIDI: return _max_buffer_size; // XXX not really limited } return 0; } /* Process time */ pframes_t DummyAudioBackend::sample_time () { return _processed_samples; } pframes_t DummyAudioBackend::sample_time_at_cycle_start () { return _processed_samples; } pframes_t DummyAudioBackend::samples_since_cycle_start () { return 0; } void * DummyAudioBackend::dummy_process_thread (void *arg) { ThreadData* td = reinterpret_cast (arg); boost::function f = td->f; delete td; f (); return 0; } int DummyAudioBackend::create_process_thread (boost::function func) { pthread_t thread_id; pthread_attr_t attr; size_t stacksize = 100000; pthread_attr_init (&attr); pthread_attr_setstacksize (&attr, stacksize); ThreadData* td = new ThreadData (this, func, stacksize); if (pthread_create (&thread_id, &attr, dummy_process_thread, td)) { PBD::error << _("AudioEngine: cannot create process thread.") << endmsg; return -1; } _threads.push_back (thread_id); return 0; } int DummyAudioBackend::join_process_threads () { int rv = 0; for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { void *status; if (pthread_join (*i, &status)) { PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg; rv -= 1; } } _threads.clear (); return rv; } bool DummyAudioBackend::in_process_thread () { for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { return true; } } return false; } uint32_t DummyAudioBackend::process_thread_count () { return _threads.size (); } void DummyAudioBackend::update_latencies () { } /* PORTENGINE API */ void* DummyAudioBackend::private_handle () const { return NULL; } const std::string& DummyAudioBackend::my_name () const { return _instance_name; } bool DummyAudioBackend::available () const { return true; } uint32_t DummyAudioBackend::port_name_size () const { return 256; } int DummyAudioBackend::set_port_name (PortEngine::PortHandle port, const std::string& name) { if (!valid_port (port)) { PBD::error << _("DummyBackend::set_port_name: Invalid Port(s)") << endmsg; return -1; } return static_cast(port)->set_name (_instance_name + ":" + name); } std::string DummyAudioBackend::get_port_name (PortEngine::PortHandle port) const { if (!valid_port (port)) { PBD::error << _("DummyBackend::get_port_name: Invalid Port(s)") << endmsg; return std::string (); } return static_cast(port)->name (); } PortEngine::PortHandle DummyAudioBackend::get_port_by_name (const std::string& name) const { PortHandle port = (PortHandle) find_port (name); return port; } int DummyAudioBackend::get_ports ( const std::string& port_name_pattern, DataType type, PortFlags flags, std::vector& port_names) const { int rv = 0; regex_t port_regex; bool use_regexp = false; if (port_name_pattern.size () > 0) { if (!regcomp (&port_regex, port_name_pattern.c_str (), REG_EXTENDED|REG_NOSUB)) { use_regexp = true; } } for (size_t i = 0; i < _ports.size (); ++i) { DummyPort* port = _ports[i]; if ((port->type () == type) && (port->flags () & flags)) { if (!use_regexp || !regexec (&port_regex, port->name ().c_str (), 0, NULL, 0)) { port_names.push_back (port->name ()); ++rv; } } } if (use_regexp) { regfree (&port_regex); } return rv; } DataType DummyAudioBackend::port_data_type (PortEngine::PortHandle port) const { if (!valid_port (port)) { return DataType::NIL; } return static_cast(port)->type (); } PortEngine::PortHandle DummyAudioBackend::register_port ( const std::string& name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { if (name.size () == 0) { return 0; } if (flags & IsPhysical) { return 0; } return add_port (_instance_name + ":" + name, type, flags); } PortEngine::PortHandle DummyAudioBackend::add_port ( const std::string& name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { assert(name.size ()); if (find_port (name)) { PBD::error << _("DummyBackend::register_port: Port already exists:") << " (" << name << ")" << endmsg; return 0; } DummyPort* port = NULL; switch (type) { case DataType::AUDIO: port = new DummyAudioPort (*this, name, flags); break; case DataType::MIDI: port = new DummyMidiPort (*this, name, flags); break; default: PBD::error << _("DummyBackend::register_port: Invalid Data Type.") << endmsg; return 0; } _ports.push_back (port); return port; } void DummyAudioBackend::unregister_port (PortEngine::PortHandle port_handle) { if (!valid_port (port_handle)) { PBD::error << _("DummyBackend::unregister_port: Invalid Port.") << endmsg; } DummyPort* port = static_cast(port_handle); std::vector::iterator i = std::find (_ports.begin (), _ports.end (), static_cast(port_handle)); if (i == _ports.end ()) { PBD::error << _("DummyBackend::unregister_port: Failed to find port") << endmsg; return; } disconnect_all(port_handle); _ports.erase (i); delete port; } int DummyAudioBackend::register_system_ports() { LatencyRange lr; const int a_ins = _n_inputs > 0 ? _n_inputs : 8; const int a_out = _n_outputs > 0 ? _n_outputs : 8; const int m_ins = _n_midi_inputs > 0 ? _n_midi_inputs : 2; const int m_out = _n_midi_outputs > 0 ? _n_midi_outputs : 2; /* audio ports */ lr.min = lr.max = _samples_per_period + _systemic_input_latency; for (int i = 1; i <= a_ins; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:capture_%d", i); PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); } lr.min = lr.max = _samples_per_period + _systemic_output_latency; for (int i = 1; i <= a_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:playback_%d", i); PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); } /* midi ports */ lr.min = lr.max = _samples_per_period + _systemic_input_latency; for (int i = 1; i <= m_ins; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:midi_capture_%d", i); PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); } lr.min = lr.max = _samples_per_period + _systemic_output_latency; for (int i = 1; i <= m_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:midi_playback_%d", i); PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); } return 0; } void DummyAudioBackend::unregister_system_ports() { size_t i = 0; while (i < _ports.size ()) { DummyPort* port = _ports[i]; if (port->is_physical () && port->is_terminal ()) { port->disconnect_all (); _ports.erase (_ports.begin() + i); } else { ++i; } } } int DummyAudioBackend::connect (const std::string& src, const std::string& dst) { DummyPort* src_port = find_port (src); DummyPort* dst_port = find_port (dst); if (!src_port) { PBD::error << _("DummyBackend::connect: Invalid Source port:") << " (" << src <<")" << endmsg; return -1; } if (!dst_port) { PBD::error << _("DummyBackend::connect: Invalid Destination port:") << " (" << dst <<")" << endmsg; return -1; } return src_port->connect (dst_port); } int DummyAudioBackend::disconnect (const std::string& src, const std::string& dst) { DummyPort* src_port = find_port (src); DummyPort* dst_port = find_port (dst); if (!src_port || !dst_port) { PBD::error << _("DummyBackend::disconnect: Invalid Port(s)") << endmsg; return -1; } return src_port->disconnect (dst_port); } int DummyAudioBackend::connect (PortEngine::PortHandle src, const std::string& dst) { DummyPort* dst_port = find_port (dst); if (!valid_port (src)) { PBD::error << _("DummyBackend::connect: Invalid Source Port Handle") << endmsg; return -1; } if (!dst_port) { PBD::error << _("DummyBackend::connect: Invalid Destination Port") << " (" << dst << ")" << endmsg; return -1; } return static_cast(src)->connect (dst_port); } int DummyAudioBackend::disconnect (PortEngine::PortHandle src, const std::string& dst) { DummyPort* dst_port = find_port (dst); if (!valid_port (src) || !dst_port) { PBD::error << _("DummyBackend::disconnect: Invalid Port(s)") << endmsg; return -1; } return static_cast(src)->disconnect (dst_port); } int DummyAudioBackend::disconnect_all (PortEngine::PortHandle port) { if (!valid_port (port)) { PBD::error << _("DummyBackend::disconnect_all: Invalid Port") << endmsg; return -1; } static_cast(port)->disconnect_all (); return 0; } bool DummyAudioBackend::connected (PortEngine::PortHandle port, bool /* process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("DummyBackend::disconnect_all: Invalid Port") << endmsg; return false; } return static_cast(port)->is_connected (); } bool DummyAudioBackend::connected_to (PortEngine::PortHandle src, const std::string& dst, bool /*process_callback_safe*/) { DummyPort* dst_port = find_port (dst); if (!valid_port (src) || !dst_port) { PBD::error << _("DummyBackend::connected_to: Invalid Port") << endmsg; return false; } return static_cast(src)->is_connected (dst_port); } bool DummyAudioBackend::physically_connected (PortEngine::PortHandle port, bool /*process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("DummyBackend::physically_connected: Invalid Port") << endmsg; return false; } return static_cast(port)->is_physically_connected (); } int DummyAudioBackend::get_connections (PortEngine::PortHandle port, std::vector& names, bool /*process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("DummyBackend::get_connections: Invalid Port") << endmsg; return -1; } assert (0 == names.size ()); const std::vector& connected_ports = static_cast(port)->get_connections (); for (std::vector::const_iterator i = connected_ports.begin (); i != connected_ports.end (); ++i) { names.push_back ((*i)->name ()); } return (int)names.size (); } /* MIDI */ int DummyAudioBackend::midi_event_get ( pframes_t& timestamp, size_t& size, uint8_t** buf, void* port_buffer, uint32_t event_index) { assert (buf && port_buffer); DummyMidiBuffer& source = * static_cast(port_buffer); if (event_index >= source.size ()) { return -1; } DummyMidiEvent * const event = source[event_index].get (); timestamp = event->timestamp (); size = event->size (); *buf = event->data (); return 0; } int DummyAudioBackend::midi_event_put ( void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size) { assert (buffer && port_buffer); DummyMidiBuffer& dst = * static_cast(port_buffer); if (dst.size () && (pframes_t)dst.back ()->timestamp () > timestamp) { fprintf (stderr, "DummyMidiBuffer: it's too late for this event.\n"); return -1; } dst.push_back (boost::shared_ptr(new DummyMidiEvent (timestamp, buffer, size))); return 0; } uint32_t DummyAudioBackend::get_midi_event_count (void* port_buffer) { assert (port_buffer); return static_cast(port_buffer)->size (); } void DummyAudioBackend::midi_clear (void* port_buffer) { assert (port_buffer); DummyMidiBuffer * buf = static_cast(port_buffer); assert (buf); buf->clear (); } /* Monitoring */ bool DummyAudioBackend::can_monitor_input () const { return false; } int DummyAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool) { return -1; } int DummyAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool) { return -1; } bool DummyAudioBackend::monitoring_input (PortEngine::PortHandle) { return false; } /* Latency management */ void DummyAudioBackend::set_latency_range (PortEngine::PortHandle port, bool for_playback, LatencyRange latency_range) { if (!valid_port (port)) { PBD::error << _("DummyPort::set_latency_range (): invalid port.") << endmsg; } static_cast(port)->set_latency_range (latency_range, for_playback); } LatencyRange DummyAudioBackend::get_latency_range (PortEngine::PortHandle port, bool for_playback) { if (!valid_port (port)) { PBD::error << _("DummyPort::get_latency_range (): invalid port.") << endmsg; LatencyRange r; r.min = 0; r.max = 0; return r; } return static_cast(port)->latency_range (for_playback); } /* Discovering physical ports */ bool DummyAudioBackend::port_is_physical (PortEngine::PortHandle port) const { if (!valid_port (port)) { PBD::error << _("DummyPort::port_is_physical (): invalid port.") << endmsg; return false; } return static_cast(port)->is_physical (); } void DummyAudioBackend::get_physical_outputs (DataType type, std::vector& port_names) { for (size_t i = 0; i < _ports.size (); ++i) { DummyPort* port = _ports[i]; if ((port->type () == type) && port->is_output () && port->is_physical ()) { port_names.push_back (port->name ()); } } } void DummyAudioBackend::get_physical_inputs (DataType type, std::vector& port_names) { for (size_t i = 0; i < _ports.size (); ++i) { DummyPort* port = _ports[i]; if ((port->type () == type) && port->is_input () && port->is_physical ()) { port_names.push_back (port->name ()); } } } ChanCount DummyAudioBackend::n_physical_outputs () const { int n_midi = 0; int n_audio = 0; for (size_t i = 0; i < _ports.size (); ++i) { DummyPort* port = _ports[i]; if (port->is_output () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; case DataType::MIDI: ++n_midi; break; default: break; } } } ChanCount cc; cc.set (DataType::AUDIO, n_audio); cc.set (DataType::MIDI, n_midi); return cc; } ChanCount DummyAudioBackend::n_physical_inputs () const { int n_midi = 0; int n_audio = 0; for (size_t i = 0; i < _ports.size (); ++i) { DummyPort* port = _ports[i]; if (port->is_input () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; case DataType::MIDI: ++n_midi; break; default: break; } } } ChanCount cc; cc.set (DataType::AUDIO, n_audio); cc.set (DataType::MIDI, n_midi); return cc; } /* Getting access to the data buffer for a port */ void* DummyAudioBackend::get_buffer (PortEngine::PortHandle port, pframes_t nframes) { assert (port); assert (valid_port (port)); return static_cast(port)->get_buffer (nframes); } /* Engine Process */ void * DummyAudioBackend::main_process_thread () { AudioEngine::thread_init_callback (this); _running = true; _processed_samples = 0; uint64_t clock1, clock2; clock1 = g_get_monotonic_time(); while (_running) { if (engine.process_callback (_samples_per_period)) { return 0; } _processed_samples += _samples_per_period; if (!_freewheeling) { clock2 = g_get_monotonic_time(); const int64_t elapsed_time = clock2 - clock1; const int64_t nomial_time = 1e6 * _samples_per_period / _samplerate; _dsp_load = elapsed_time / (float) nomial_time; if (elapsed_time < nomial_time) { Glib::usleep (nomial_time - elapsed_time); } else { Glib::usleep (100); // don't hog cpu } } else { _dsp_load = 1.0; Glib::usleep (100); // don't hog cpu } clock1 = g_get_monotonic_time(); if (!pthread_mutex_trylock (&_port_callback_mutex)) { while (!_port_connection_queue.empty ()) { PortConnectData *c = _port_connection_queue.back (); manager.connect_callback (c->a, c->b, c->c); _port_connection_queue.pop_back (); delete c; } pthread_mutex_unlock (&_port_callback_mutex); } } _running = false; return 0; } /******************************************************************************/ static boost::shared_ptr _instance; static boost::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); static ARDOUR::AudioBackendInfo _descriptor = { "Dummy", instantiate, deinstantiate, backend_factory, already_configured, }; static boost::shared_ptr backend_factory (AudioEngine& e) { if (!_instance) { _instance.reset (new DummyAudioBackend (e, _descriptor)); } return _instance; } static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; return 0; } static int deinstantiate () { _instance.reset (); return 0; } static bool already_configured () { return false; } extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; } /******************************************************************************/ DummyPort::DummyPort (DummyAudioBackend &b, const std::string& name, PortFlags flags) : _dummy_backend (b) , _name (name) , _flags (flags) { _capture_latency_range.min = 0; _capture_latency_range.max = 0; _playback_latency_range.min = 0; _playback_latency_range.max = 0; } DummyPort::~DummyPort () { disconnect_all (); } int DummyPort::connect (DummyPort *port) { if (!port) { PBD::error << _("DummyPort::connect (): invalid (null) port") << endmsg; return -1; } if (type () != port->type ()) { PBD::error << _("DummyPort::connect (): wrong port-type") << endmsg; return -1; } if (is_output () && port->is_output ()) { PBD::error << _("DummyPort::connect (): cannot inter-connect output ports.") << endmsg; return -1; } if (is_input () && port->is_input ()) { PBD::error << _("DummyPort::connect (): cannot inter-connect input ports.") << endmsg; return -1; } if (this == port) { PBD::error << _("DummyPort::connect (): cannot self-connect ports.") << endmsg; return -1; } if (is_connected (port)) { #if 0 // don't bother to warn about this for now. just ignore it PBD::error << _("DummyPort::connect (): ports are already connected:") << " (" << name () << ") -> (" << port->name () << ")" << endmsg; #endif return -1; } _connect (port, true); return 0; } void DummyPort::_connect (DummyPort *port, bool callback) { _connections.push_back (port); if (callback) { port->_connect (this, false); _dummy_backend.port_connect_callback (name(), port->name(), true); } } int DummyPort::disconnect (DummyPort *port) { if (!port) { PBD::error << _("DummyPort::disconnect (): invalid (null) port") << endmsg; return -1; } if (!is_connected (port)) { PBD::error << _("DummyPort::disconnect (): ports are not connected:") << " (" << name () << ") -> (" << port->name () << ")" << endmsg; return -1; } _disconnect (port, true); return 0; } void DummyPort::_disconnect (DummyPort *port, bool callback) { std::vector::iterator it = std::find (_connections.begin (), _connections.end (), port); assert (it != _connections.end ()); _connections.erase (it); if (callback) { port->_disconnect (this, false); _dummy_backend.port_connect_callback (name(), port->name(), false); } } void DummyPort::disconnect_all () { while (!_connections.empty ()) { _connections.back ()->_disconnect (this, false); _dummy_backend.port_connect_callback (name(), _connections.back ()->name(), false); _connections.pop_back (); } } bool DummyPort::is_connected (const DummyPort *port) const { return std::find (_connections.begin (), _connections.end (), port) != _connections.end (); } bool DummyPort::is_physically_connected () const { for (std::vector::const_iterator it = _connections.begin (); it != _connections.end (); ++it) { if ((*it)->is_physical ()) { return true; } } return false; } /******************************************************************************/ DummyAudioPort::DummyAudioPort (DummyAudioBackend &b, const std::string& name, PortFlags flags) : DummyPort (b, name, flags) { memset (_buffer, 0, sizeof (_buffer)); } DummyAudioPort::~DummyAudioPort () { } void* DummyAudioPort::get_buffer (pframes_t n_samples) { if (is_input ()) { std::vector::const_iterator it = get_connections ().begin (); if (it == get_connections ().end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { DummyAudioPort const * source = static_cast(*it); assert (source && source->is_output ()); memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); while (++it != get_connections ().end ()) { source = static_cast(*it); assert (source && source->is_output ()); Sample* dst = buffer (); const Sample* src = source->const_buffer (); for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) { *dst += *src; } } } } else if (is_output () && is_physical () && is_terminal()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } return _buffer; } DummyMidiPort::DummyMidiPort (DummyAudioBackend &b, const std::string& name, PortFlags flags) : DummyPort (b, name, flags) { _buffer.clear (); } DummyMidiPort::~DummyMidiPort () { } void* DummyMidiPort::get_buffer (pframes_t /* nframes */) { if (is_input ()) { _buffer.clear (); for (std::vector::const_iterator i = get_connections ().begin (); i != get_connections ().end (); ++i) { const DummyMidiBuffer src = static_cast(*i)->const_buffer (); for (DummyMidiBuffer::const_iterator it = src.begin (); it != src.end (); ++it) { _buffer.push_back (boost::shared_ptr(new DummyMidiEvent (**it))); } } std::sort (_buffer.begin (), _buffer.end ()); } else if (is_output () && is_physical () && is_terminal()) { _buffer.clear (); } return &_buffer; } DummyMidiEvent::DummyMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size) : _size (size) , _timestamp (timestamp) , _data (0) { if (size > 0) { _data = (uint8_t*) malloc (size); memcpy (_data, data, size); } } DummyMidiEvent::DummyMidiEvent (const DummyMidiEvent& other) : _size (other.size ()) , _timestamp (other.timestamp ()) , _data (0) { if (other.size () && other.const_data ()) { _data = (uint8_t*) malloc (other.size ()); memcpy (_data, other.const_data (), other.size ()); } }; DummyMidiEvent::~DummyMidiEvent () { free (_data); };