/* Copyright (C) 2013 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "canvas/curve.h" using namespace ArdourCanvas; using std::min; using std::max; Curve::Curve (Group* parent) : Item (parent) , PolyItem (parent) , Fill (parent) , n_samples (0) , n_segments (512) { set_n_samples (256); } /** Set the number of points to compute when we smooth the data points into a * curve. */ void Curve::set_n_samples (Points::size_type n) { /* this only changes our appearance rather than the bounding box, so we just need to schedule a redraw rather than notify the parent of any changes */ n_samples = n; samples.assign (n_samples, Duple (0.0, 0.0)); interpolate (); } /** When rendering the curve, we will always draw a fixed number of straight * line segments to span the x-axis extent of the curve. More segments: * smoother visual rendering. Less rendering: closer to a visibily poly-line * render. */ void Curve::set_n_segments (uint32_t n) { /* this only changes our appearance rather than the bounding box, so we just need to schedule a redraw rather than notify the parent of any changes */ n_segments = n; redraw (); } void Curve::compute_bounding_box () const { PolyItem::compute_bounding_box (); /* possibly add extents of any point indicators here if we ever do that */ } void Curve::set (Points const& p) { PolyItem::set (p); interpolate (); } void Curve::interpolate () { Points::size_type npoints = _points.size (); if (npoints < 3) { return; } Duple p; double boundary; const double xfront = _points.front().x; const double xextent = _points.back().x - xfront; /* initialize boundary curve points */ p = _points.front(); boundary = round (((p.x - xfront)/xextent) * (n_samples - 1)); for (Points::size_type i = 0; i < boundary; ++i) { samples[i] = Duple (i, p.y); } p = _points.back(); boundary = round (((p.x - xfront)/xextent) * (n_samples - 1)); for (Points::size_type i = boundary; i < n_samples; ++i) { samples[i] = Duple (i, p.y); } for (int i = 0; i < (int) npoints - 1; ++i) { Points::size_type p1, p2, p3, p4; p1 = max (i - 1, 0); p2 = i; p3 = i + 1; p4 = min (i + 2, (int) npoints - 1); smooth (p1, p2, p3, p4, xfront, xextent); } /* make sure that actual data points are used with their exact values */ for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) { uint32_t idx = (((*p).x - xfront)/xextent) * (n_samples - 1); samples[idx].y = (*p).y; } } /* * This function calculates the curve values between the control points * p2 and p3, taking the potentially existing neighbors p1 and p4 into * account. * * This function uses a cubic bezier curve for the individual segments and * calculates the necessary intermediate control points depending on the * neighbor curve control points. * */ void Curve::smooth (Points::size_type p1, Points::size_type p2, Points::size_type p3, Points::size_type p4, double xfront, double xextent) { int i; double x0, x3; double y0, y1, y2, y3; double dx, dy; double slope; /* the outer control points for the bezier curve. */ x0 = _points[p2].x; y0 = _points[p2].y; x3 = _points[p3].x; y3 = _points[p3].y; /* * the x values of the inner control points are fixed at * x1 = 2/3*x0 + 1/3*x3 and x2 = 1/3*x0 + 2/3*x3 * this ensures that the x values increase linearily with the * parameter t and enables us to skip the calculation of the x * values altogehter - just calculate y(t) evenly spaced. */ dx = x3 - x0; dy = y3 - y0; if (dx <= 0) { /* error? */ return; } if (p1 == p2 && p3 == p4) { /* No information about the neighbors, * calculate y1 and y2 to get a straight line */ y1 = y0 + dy / 3.0; y2 = y0 + dy * 2.0 / 3.0; } else if (p1 == p2 && p3 != p4) { /* only the right neighbor is available. Make the tangent at the * right endpoint parallel to the line between the left endpoint * and the right neighbor. Then point the tangent at the left towards * the control handle of the right tangent, to ensure that the curve * does not have an inflection point. */ slope = (_points[p4].y - y0) / (_points[p4].x - x0); y2 = y3 - slope * dx / 3.0; y1 = y0 + (y2 - y0) / 2.0; } else if (p1 != p2 && p3 == p4) { /* see previous case */ slope = (y3 - _points[p1].y) / (x3 - _points[p1].x); y1 = y0 + slope * dx / 3.0; y2 = y3 + (y1 - y3) / 2.0; } else /* (p1 != p2 && p3 != p4) */ { /* Both neighbors are available. Make the tangents at the endpoints * parallel to the line between the opposite endpoint and the adjacent * neighbor. */ slope = (y3 - _points[p1].y) / (x3 - _points[p1].x); y1 = y0 + slope * dx / 3.0; slope = (_points[p4].y - y0) / (_points[p4].x - x0); y2 = y3 - slope * dx / 3.0; } /* * finally calculate the y(t) values for the given bezier values. We can * use homogenously distributed values for t, since x(t) increases linearily. */ dx = dx / xextent; int limit = round (dx * (n_samples - 1)); const int idx_offset = round (((x0 - xfront)/xextent) * (n_samples - 1)); for (i = 0; i <= limit; i++) { double y, t; Points::size_type index; t = i / dx / (n_samples - 1); y = y0 * (1-t) * (1-t) * (1-t) + 3 * y1 * (1-t) * (1-t) * t + 3 * y2 * (1-t) * t * t + y3 * t * t * t; index = i + idx_offset; if (index < n_samples) { Duple d (i, max (y, 0.0)); samples[index] = d; } } } /** Given a fractional position within the x-axis range of the * curve, return the corresponding y-axis value */ double Curve::map_value (double x) const { if (x > 0.0 && x < 1.0) { double f; Points::size_type index; /* linearly interpolate between two of our smoothed "samples" */ x = x * (n_samples - 1); index = (Points::size_type) x; // XXX: should we explicitly use floor()? f = x - index; return (1.0 - f) * samples[index].y + f * samples[index+1].y; } else if (x >= 1.0) { return samples.back().y; } else { return samples.front().y; } } void Curve::render (Rect const & area, Cairo::RefPtr context) const { if (!_outline || _points.size() < 2) { return; } /* Our approach is to always draw n_segments across our total size. * * This is very inefficient if we are asked to only draw a small * section of the curve. For now we rely on cairo clipping to help * with this. */ double y; if (!_bounding_box) { return; } Rect draw = area; setup_outline_context (context); /* double r, g, b; r = (random() % 255) / 255.0; g = (random() % 255) / 255.0; b = (random() % 255) / 255.0; context->set_source_rgb (r, g, b); */ if (_points.size() == 2) { /* straight line */ Duple window_space; window_space = item_to_window (_points.front()); context->move_to (window_space.x, window_space.y); window_space = item_to_window (_points.back()); context->line_to (window_space.x, window_space.y); } else { /* curve of at least 3 points */ /* clamp actual draw to area bound by points, rather than our bounding box which is slightly different */ Duple w1 = item_to_window (Duple (_points.front().x, 0.0)); Duple w2 = item_to_window (Duple (_points.back().x, 0.0)); if (draw.x0 < w1.x) { draw.x0 = w1.x; } if (draw.x1 >= w2.x) { draw.x1 = w2.x; } std::cerr << "Draw " << draw << " win-x = " << w1 << " .. " << w2 << std::endl; /* full width of the curve */ const double xextent = _points.back().x - _points.front().x; /* Determine where the first drawn point will be */ Duple item_space = window_to_item (Duple (draw.x0, 0)); /* y value is irrelevant */ /* determine the fractional offset of this location into the overall extent of the curve */ const double xfract_offset = (item_space.x - _points.front().x)/xextent; const uint32_t pixels = draw.width (); Duple window_space; #if 1 std::cerr << "begin draw at " << draw.x0 << " (" << item_space.x << ") which is " << xfract_offset << " into " << w1.x << " .. " << w2.x << " I = " << _points.front().x << " .. " << _points.back().x << std::endl; #endif /* draw the first point */ std::cerr << this << " redraw " << pixels << " pixels from " << draw.x0 << " .. " << draw.x0 + pixels << std::endl; for (uint32_t pixel = 0; pixel < pixels; ++pixel) { /* fractional distance into the total horizontal extent of the curve */ double xfract = xfract_offset + (pixel / xextent); /* compute vertical coordinate (item-space) at that location */ y = map_value (xfract); /* convert to window space for drawing */ window_space = item_to_window (Duple (0.0, y)); /* x-value is irrelevant */ /* we are moving across the draw area pixel-by-pixel */ window_space.x = draw.x0 + pixel; /* plot this point */ if (pixel == 0) { context->move_to (window_space.x, window_space.y); } else { context->line_to (window_space.x, window_space.y); } std::cerr << window_space << ' '; } std::cerr << std::endl; } context->stroke (); #if 0 /* add points */ setup_fill_context (context); for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) { Duple window_space (item_to_window (*p)); context->arc (window_space.x, window_space.y, 5.0, 0.0, 2 * M_PI); context->stroke (); } #endif } bool Curve::covers (Duple const & pc) const { Duple point = canvas_to_item (pc); /* O(N) N = number of points, and not accurate */ for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) { const Coord dx = point.x - (*p).x; const Coord dy = point.y - (*p).y; const Coord dx2 = dx * dx; const Coord dy2 = dy * dy; if ((dx2 < 2.0 && dy2 < 2.0) || (dx2 + dy2 < 4.0)) { return true; } } return false; }