/* This file is part of Evoral. * Copyright (C) 2008 David Robillard * Copyright (C) 2000-2008 Paul Davis * * Evoral is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any later * version. * * Evoral is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include "evoral/Curve.hpp" #include "evoral/ControlList.hpp" using namespace std; using namespace sigc; namespace Evoral { Curve::Curve (const ControlList& cl) : _dirty (true) , _list (cl) { } void Curve::solve () { uint32_t npoints; if (!_dirty) { return; } if ((npoints = _list.events().size()) > 2) { /* Compute coefficients needed to efficiently compute a constrained spline curve. See "Constrained Cubic Spline Interpolation" by CJC Kruger (www.korf.co.uk/spline.pdf) for more details. */ double x[npoints]; double y[npoints]; uint32_t i; ControlList::EventList::const_iterator xx; for (i = 0, xx = _list.events().begin(); xx != _list.events().end(); ++xx, ++i) { x[i] = (double) (*xx)->when; y[i] = (double) (*xx)->value; } double lp0, lp1, fpone; lp0 = (x[1] - x[0])/(y[1] - y[0]); lp1 = (x[2] - x[1])/(y[2] - y[1]); if (lp0*lp1 < 0) { fpone = 0; } else { fpone = 2 / (lp1 + lp0); } double fplast = 0; for (i = 0, xx = _list.events().begin(); xx != _list.events().end(); ++xx, ++i) { double xdelta; /* gcc is wrong about possible uninitialized use */ double xdelta2; /* ditto */ double ydelta; /* ditto */ double fppL, fppR; double fpi; if (i > 0) { xdelta = x[i] - x[i-1]; xdelta2 = xdelta * xdelta; ydelta = y[i] - y[i-1]; } /* compute (constrained) first derivatives */ if (i == 0) { /* first segment */ fplast = ((3 * (y[1] - y[0]) / (2 * (x[1] - x[0]))) - (fpone * 0.5)); /* we don't store coefficients for i = 0 */ continue; } else if (i == npoints - 1) { /* last segment */ fpi = ((3 * ydelta) / (2 * xdelta)) - (fplast * 0.5); } else { /* all other segments */ double slope_before = ((x[i+1] - x[i]) / (y[i+1] - y[i])); double slope_after = (xdelta / ydelta); if (slope_after * slope_before < 0.0) { /* slope changed sign */ fpi = 0.0; } else { fpi = 2 / (slope_before + slope_after); } } /* compute second derivative for either side of control point `i' */ fppL = (((-2 * (fpi + (2 * fplast))) / (xdelta))) + ((6 * ydelta) / xdelta2); fppR = (2 * ((2 * fpi) + fplast) / xdelta) - ((6 * ydelta) / xdelta2); /* compute polynomial coefficients */ double b, c, d; d = (fppR - fppL) / (6 * xdelta); c = ((x[i] * fppL) - (x[i-1] * fppR))/(2 * xdelta); double xim12, xim13; double xi2, xi3; xim12 = x[i-1] * x[i-1]; /* "x[i-1] squared" */ xim13 = xim12 * x[i-1]; /* "x[i-1] cubed" */ xi2 = x[i] * x[i]; /* "x[i] squared" */ xi3 = xi2 * x[i]; /* "x[i] cubed" */ b = (ydelta - (c * (xi2 - xim12)) - (d * (xi3 - xim13))) / xdelta; /* store */ (*xx)->create_coeffs(); (*xx)->coeff[0] = y[i-1] - (b * x[i-1]) - (c * xim12) - (d * xim13); (*xx)->coeff[1] = b; (*xx)->coeff[2] = c; (*xx)->coeff[3] = d; fplast = fpi; } } _dirty = false; } bool Curve::rt_safe_get_vector (double x0, double x1, float *vec, int32_t veclen) { Glib::Threads::Mutex::Lock lm(_list.lock(), Glib::Threads::TRY_LOCK); if (!lm.locked()) { return false; } else { _get_vector (x0, x1, vec, veclen); return true; } } void Curve::get_vector (double x0, double x1, float *vec, int32_t veclen) { Glib::Threads::Mutex::Lock lm(_list.lock()); _get_vector (x0, x1, vec, veclen); } void Curve::_get_vector (double x0, double x1, float *vec, int32_t veclen) { double rx, lx, hx, max_x, min_x; int32_t i; int32_t original_veclen; int32_t npoints; if ((npoints = _list.events().size()) == 0) { for (i = 0; i < veclen; ++i) { vec[i] = _list.default_value(); } return; } /* events is now known not to be empty */ max_x = _list.events().back()->when; min_x = _list.events().front()->when; lx = max (min_x, x0); if (x1 < 0) { x1 = _list.events().back()->when; } hx = min (max_x, x1); original_veclen = veclen; if (x0 < min_x) { /* fill some beginning section of the array with the initial (used to be default) value */ double frac = (min_x - x0) / (x1 - x0); int64_t subveclen = (int64_t) floor (veclen * frac); subveclen = min (subveclen, veclen); for (i = 0; i < subveclen; ++i) { vec[i] = _list.events().front()->value; } veclen -= subveclen; vec += subveclen; } if (veclen && x1 > max_x) { /* fill some end section of the array with the default or final value */ double frac = (x1 - max_x) / (x1 - x0); int64_t subveclen = (int64_t) floor (original_veclen * frac); float val; subveclen = min (subveclen, veclen); val = _list.events().back()->value; i = veclen - subveclen; for (i = veclen - subveclen; i < veclen; ++i) { vec[i] = val; } veclen -= subveclen; } if (veclen == 0) { return; } if (npoints == 1) { for (i = 0; i < veclen; ++i) { vec[i] = _list.events().front()->value; } return; } if (npoints == 2) { /* linear interpolation between 2 points */ /* XXX: this numerator / denominator stuff is pretty grim, but it's the only way I could get the maths to be accurate; doing everything with pure doubles gives ~1e-17 errors in the vec[i] computation. */ /* gradient of the line */ double const m_num = _list.events().back()->value - _list.events().front()->value; double const m_den = _list.events().back()->when - _list.events().front()->when; /* y intercept of the line */ double const c = double (_list.events().back()->value) - (m_num * _list.events().back()->when / m_den); /* dx that we are using */ double dx_num = 0; double dx_den = 1; if (veclen > 1) { dx_num = hx - lx; dx_den = veclen - 1; } if (veclen > 1) { for (int i = 0; i < veclen; ++i) { vec[i] = (lx * (m_num / m_den) + m_num * i * dx_num / (m_den * dx_den)) + c; } } else { vec[0] = lx; } return; } if (_dirty) { solve (); } rx = lx; double dx = 0; if (veclen > 1) { dx = (hx - lx) / (veclen - 1); } for (i = 0; i < veclen; ++i, rx += dx) { vec[i] = multipoint_eval (rx); } } double Curve::unlocked_eval (double x) { // I don't see the point of this... if (_dirty) { solve (); } return _list.unlocked_eval (x); } double Curve::multipoint_eval (double x) { pair range; ControlList::LookupCache& lookup_cache = _list.lookup_cache(); if ((lookup_cache.left < 0) || ((lookup_cache.left > x) || (lookup_cache.range.first == _list.events().end()) || ((*lookup_cache.range.second)->when < x))) { ControlEvent cp (x, 0.0); lookup_cache.range = equal_range (_list.events().begin(), _list.events().end(), &cp, ControlList::time_comparator); } range = lookup_cache.range; /* EITHER a) x is an existing control point, so first == existing point, second == next point OR b) x is between control points, so range is empty (first == second, points to where to insert x) */ if (range.first == range.second) { /* x does not exist within the list as a control point */ lookup_cache.left = x; if (range.first == _list.events().begin()) { /* we're before the first point */ // return default_value; return _list.events().front()->value; } if (range.second == _list.events().end()) { /* we're after the last point */ return _list.events().back()->value; } double x2 = x * x; ControlEvent* ev = *range.second; return ev->coeff[0] + (ev->coeff[1] * x) + (ev->coeff[2] * x2) + (ev->coeff[3] * x2 * x); } /* x is a control point in the data */ /* invalidate the cached range because its not usable */ lookup_cache.left = -1; return (*range.first)->value; } } // namespace Evoral extern "C" { void curve_get_vector_from_c (void *arg, double x0, double x1, float* vec, int32_t vecsize) { static_cast(arg)->get_vector (x0, x1, vec, vecsize); } }