/* * Copyright (C) 2006-2009 David Robillard * Copyright (C) 2008-2018 Paul Davis * Copyright (C) 2009-2012 Carl Hetherington * Copyright (C) 2014-2019 Robin Gareus * Copyright (C) 2015-2016 Len Ovens * Copyright (C) 2016 Tim Mayberry * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include "pbd/error.h" #include "pbd/compose.h" #include "pbd/types_convert.h" #include "pbd/xml++.h" #include "midi++/types.h" // Added by JE - 06-01-2009. All instances of 'byte' changed to 'MIDI::byte' (for clarification) #include "midi++/port.h" #include "midi++/channel.h" #include "ardour/async_midi_port.h" #include "ardour/automation_control.h" #include "ardour/midi_ui.h" #include "ardour/debug.h" #include "ardour/stripable.h" #include "midicontrollable.h" #include "generic_midi_control_protocol.h" using namespace std; using namespace MIDI; using namespace PBD; using namespace ARDOUR; MIDIControllable::MIDIControllable (GenericMidiControlProtocol* s, MIDI::Parser& p, bool m) : _surface (s) , _parser (p) , _momentary (m) { _learned = false; /* from URI */ _ctltype = Ctl_Momentary; _encoder = No_enc; setting = false; last_value = 0; // got a better idea ? last_incoming = 256; // any out of band value last_controllable_value = 0.0f; control_type = none; control_rpn = -1; control_nrpn = -1; _control_description = "MIDI Control: none"; control_additional = (MIDI::byte) -1; } MIDIControllable::MIDIControllable (GenericMidiControlProtocol* s, MIDI::Parser& p, std::shared_ptr c, bool m) : _surface (s) , _parser (p) , _momentary (m) { set_controllable (c); _learned = true; /* from controllable */ _ctltype = Ctl_Momentary; _encoder = No_enc; setting = false; last_value = 0; // got a better idea ? last_controllable_value = 0.0f; control_type = none; control_rpn = -1; control_nrpn = -1; _control_description = "MIDI Control: none"; control_additional = (MIDI::byte) -1; } MIDIControllable::~MIDIControllable () { drop_external_control (); } int MIDIControllable::init (const std::string& s) { _current_uri = s; return 0; } void MIDIControllable::midi_forget () { /* stop listening for incoming messages, but retain our existing event + type information. */ midi_sense_connection[0].disconnect (); midi_sense_connection[1].disconnect (); midi_learn_connection.disconnect (); } void MIDIControllable::drop_external_control () { midi_forget (); control_rpn = -1; control_nrpn = -1; control_type = none; control_additional = (MIDI::byte) -1; } std::shared_ptr MIDIControllable::get_controllable () const { return _controllable; } void MIDIControllable::set_controllable (std::shared_ptr c) { Glib::Threads::Mutex::Lock lm (controllable_lock); if (c && c == _controllable) { return; } controllable_death_connection.disconnect (); if (c) { _controllable = c; last_controllable_value = control_to_midi (c->get_value()); } else { _controllable.reset(); last_controllable_value = 0.0f; // is there a better value? controllable_remapped_connection.disconnect (); } last_incoming = 256; if (c) { c->DropReferences.connect_same_thread (controllable_death_connection, std::bind (&MIDIControllable::drop_controllable, this)); } } void MIDIControllable::bind_remap (std::shared_ptr s) { controllable_remapped_connection.disconnect (); if (!s) { return; } s->MappedControlsChanged.connect (controllable_remapped_connection, MISSING_INVALIDATOR, std::bind (&MIDIControllable::lookup_controllable, this), _surface); } void MIDIControllable::midi_rebind (channel_t c) { if (c >= 0) { bind_midi (c, control_type, control_additional); } else { midi_forget (); } } void MIDIControllable::learn_about_external_control () { drop_external_control (); _parser.any.connect_same_thread (midi_learn_connection, std::bind (&MIDIControllable::midi_receiver, this, _1, _2, _3)); } void MIDIControllable::stop_learning () { midi_learn_connection.disconnect (); } int MIDIControllable::control_to_midi (float val) { if (!_controllable) { return 0; } if (_controllable->is_gain_like()) { return _controllable->internal_to_interface (val) * max_value_for_type (); } float control_min = _controllable->lower (); float control_max = _controllable->upper (); float control_range = control_max - control_min; if (_controllable->is_toggle()) { if (val >= (control_min + (control_range/2.0f))) { return max_value_for_type(); } else { return 0; } } else { std::shared_ptr actl = std::dynamic_pointer_cast (_controllable); if (actl) { control_min = actl->internal_to_interface(control_min); control_max = actl->internal_to_interface(control_max); control_range = control_max - control_min; val = actl->internal_to_interface(val); } } // fiddle value of max so value doesn't jump from 125 to 127 for 1.0 // otherwise decrement won't work. return (val - control_min) / control_range * (max_value_for_type () - 1); } float MIDIControllable::midi_to_control (int val) { if (!_controllable) { return 0; } /* fiddle with MIDI value so that we get an odd number of integer steps and can thus represent "middle" precisely as 0.5. this maps to the range 0..+1.0 (0 to 126) */ float fv = (val == 0 ? 0 : float (val - 1) / (max_value_for_type() - 1)); if (_controllable->is_gain_like()) { return _controllable->interface_to_internal (fv); } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Raw value %1 float %2\n", val, fv)); float control_min = _controllable->lower (); float control_max = _controllable->upper (); float control_range = control_max - control_min; DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Min %1 Max %2 Range %3\n", control_min, control_max, control_range)); std::shared_ptr actl = std::dynamic_pointer_cast (_controllable); if (actl) { if (fv == 0.f) return control_min; if (fv == 1.f) return control_max; control_min = actl->internal_to_interface(control_min); control_max = actl->internal_to_interface(control_max); control_range = control_max - control_min; return actl->interface_to_internal((fv * control_range) + control_min); } return (fv * control_range) + control_min; } void MIDIControllable::midi_sense_note_on (Parser &p, EventTwoBytes *tb) { midi_sense_note (p, tb, true); } void MIDIControllable::midi_sense_note_off (Parser &p, EventTwoBytes *tb) { midi_sense_note (p, tb, false); } int MIDIControllable::lookup_controllable() { if (_current_uri.empty()) { return -1; } controllable_remapped_connection.disconnect (); std::shared_ptr c = _surface->lookup_controllable (_current_uri, *this); if (!c) { set_controllable (std::shared_ptr()); return -1; } set_controllable (c); return 0; } void MIDIControllable::drop_controllable () { set_controllable (std::shared_ptr()); } void MIDIControllable::midi_sense_note (Parser &, EventTwoBytes *msg, bool /*is_on*/) { if (!_controllable) { if (lookup_controllable()) { return; } } assert (_controllable); _surface->maybe_start_touch (_controllable); if (!_controllable->is_toggle()) { if (control_additional == msg->note_number) { _controllable->set_value (midi_to_control (msg->velocity), Controllable::UseGroup); DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Note %1 value %2 %3\n", (int) msg->note_number, (float) midi_to_control (msg->velocity), current_uri() )); } } else { if (control_additional == msg->note_number) { float new_value = _controllable->get_value() > 0.5f ? 0.0f : 1.0f; _controllable->set_value (new_value, Controllable::UseGroup); DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Note %1 Value %2 %3\n", (int) msg->note_number, (float) new_value, current_uri())); } } last_value = (MIDI::byte) (_controllable->get_value() * 127.0); // to prevent feedback fights } void MIDIControllable::midi_sense_controller (Parser &, EventTwoBytes *msg) { if (control_additional != msg->controller_number) { return; } if (!_controllable) { if (lookup_controllable ()) { return; } } assert (_controllable); _surface->maybe_start_touch (_controllable); if (!_controllable->is_toggle()) { if (get_encoder() == No_enc) { float new_value = msg->value; float max_value = max(last_controllable_value, new_value); float min_value = min(last_controllable_value, new_value); float range = max_value - min_value; float threshold = (float) _surface->threshold (); bool const in_sync = ( range < threshold && _controllable->get_value() <= midi_to_control(max_value) && _controllable->get_value() >= midi_to_control(min_value) ); /* If the surface is not motorised, we try to prevent jumps when the MIDI controller and controllable are out of sync. There might be a better way of doing this. */ if (in_sync || _surface->motorised ()) { _controllable->set_value (midi_to_control (new_value), Controllable::UseGroup); } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI CC %1 value %2 %3\n", (int) msg->controller_number, (float) midi_to_control(new_value), current_uri() )); last_controllable_value = new_value; } else { uint32_t cur_val = control_to_midi(_controllable->get_value ()); int offset = (msg->value & 0x3f); switch (get_encoder()) { case Enc_L: if (msg->value & 0x40) { _controllable->set_value (midi_to_control (cur_val - offset), Controllable::UseGroup); } else { _controllable->set_value (midi_to_control (cur_val + offset + 1), Controllable::UseGroup); } break; case Enc_R: if (msg->value & 0x40) { _controllable->set_value (midi_to_control (cur_val + offset + 1), Controllable::UseGroup); } else { _controllable->set_value (midi_to_control (cur_val - offset), Controllable::UseGroup); } break; case Enc_2: // 0x40 is max pos offset if (msg->value > 0x40) { _controllable->set_value (midi_to_control (cur_val - (0x7f - msg->value)), Controllable::UseGroup); } else { _controllable->set_value (midi_to_control (cur_val + msg->value + 1), Controllable::UseGroup); } break; case Enc_B: if (msg->value > 0x40) { _controllable->set_value (midi_to_control (cur_val + offset + 1), Controllable::UseGroup); } else if (msg->value < 0x40) { _controllable->set_value (midi_to_control (cur_val - (0x40 - msg->value)), Controllable::UseGroup); } // 0x40 = 0 do nothing break; default: break; } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI CC %1 value %2 %3\n", (int) msg->controller_number, (int) cur_val, current_uri() )); } } else { switch (get_ctltype()) { case Ctl_Dial: /* toggle value whenever direction of knob motion changes */ if (last_incoming > 127) { /* relax ... first incoming message */ } else { if (msg->value > last_incoming) { _controllable->set_value (1.0, Controllable::UseGroup); } else { _controllable->set_value (0.0, Controllable::UseGroup); } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("dial Midi CC %1 value 1 %2\n", (int) msg->controller_number, current_uri())); } last_incoming = msg->value; break; case Ctl_Momentary: /* toggle it if over 64, otherwise leave it alone. This behaviour that works with buttons which send a value > 64 each * time they are pressed. */ if (msg->value >= 0x40) { _controllable->set_value (_controllable->get_value() >= 0.5 ? 0.0 : 1.0, Controllable::UseGroup); DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("toggle Midi CC %1 value 1 %2\n", (int) msg->controller_number, current_uri())); } break; case Ctl_Toggle: /* toggle if value is over 64, otherwise turn it off. This is behaviour designed for buttons which send a value > 64 when pressed, maintain state (i.e. they know they were pressed) and then send zero the next time. */ if (msg->value >= 0x40) { _controllable->set_value (_controllable->get_value() >= 0.5 ? 0.0 : 1.0, Controllable::UseGroup); } else { _controllable->set_value (0.0, Controllable::NoGroup); DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Midi CC %1 value 0 %2\n", (int) msg->controller_number, current_uri())); break; } } } } void MIDIControllable::midi_sense_program_change (Parser &, MIDI::byte msg) { if (msg != control_additional) { return; } if (!_controllable) { if (lookup_controllable ()) { return; } } assert (_controllable); _surface->maybe_start_touch (_controllable); if (!_controllable->is_toggle()) { _controllable->set_value (1.0, Controllable::UseGroup); DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI program %1 value 1.0 %3\n", (int) msg, current_uri() )); } else { float new_value = _controllable->get_value() > 0.5f ? 0.0f : 1.0f; _controllable->set_value (new_value, Controllable::UseGroup); DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI program %1 value %2 %3\n", (int) msg, (float) new_value, current_uri())); } last_value = (MIDI::byte) (_controllable->get_value() * 127.0); // to prevent feedback fights } void MIDIControllable::midi_sense_pitchbend (Parser &, pitchbend_t pb) { if (!_controllable) { if (lookup_controllable ()) { return; } } assert (_controllable); _surface->maybe_start_touch (_controllable); if (!_controllable->is_toggle()) { float new_value = pb; float max_value = max (last_controllable_value, new_value); float min_value = min (last_controllable_value, new_value); float range = max_value - min_value; float threshold = 128.f * _surface->threshold (); bool const in_sync = ( range < threshold && _controllable->get_value() <= midi_to_control (max_value) && _controllable->get_value() >= midi_to_control (min_value) ); if (in_sync || _surface->motorised ()) { _controllable->set_value (midi_to_control (pb), Controllable::UseGroup); } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI pitchbend %1 value %2 %3\n", (int) control_channel, (float) midi_to_control (pb), current_uri() )); last_controllable_value = new_value; } else { if (pb > 8065.0f) { _controllable->set_value (1, Controllable::UseGroup); DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Midi pitchbend %1 value 1 %2\n", (int) control_channel, current_uri())); } else { _controllable->set_value (0, Controllable::UseGroup); DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Midi pitchbend %1 value 0 %2\n", (int) control_channel, current_uri())); } } last_value = control_to_midi (_controllable->get_value ()); } void MIDIControllable::midi_receiver (Parser &, MIDI::byte *msg, size_t /*len*/) { /* we only respond to channel messages */ if ((msg[0] & 0xF0) < 0x80 || (msg[0] & 0xF0) > 0xE0) { return; } _surface->check_used_event(msg[0], msg[1]); bind_midi ((channel_t) (msg[0] & 0xf), eventType (msg[0] & 0xF0), msg[1]); if (_controllable) { _controllable->LearningFinished (); } } void MIDIControllable::rpn_value_change (Parser&, uint16_t rpn, float val) { if (control_rpn == rpn) { if (_controllable) { _controllable->set_value (val, Controllable::UseGroup); } } } void MIDIControllable::nrpn_value_change (Parser&, uint16_t nrpn, float val) { if (control_nrpn == nrpn) { if (_controllable) { _controllable->set_value (val, Controllable::UseGroup); } } } void MIDIControllable::rpn_change (Parser&, uint16_t rpn, int dir) { if (control_rpn == rpn) { if (_controllable) { /* XXX how to increment/decrement ? */ // _controllable->set_value (val); } } } void MIDIControllable::nrpn_change (Parser&, uint16_t nrpn, int dir) { if (control_nrpn == nrpn) { if (_controllable) { /* XXX how to increment/decrement ? */ // _controllable->set_value (val); } } } void MIDIControllable::bind_rpn_value (channel_t chn, uint16_t rpn) { int chn_i = chn; drop_external_control (); control_rpn = rpn; control_channel = chn; _parser.channel_rpn[chn_i].connect_same_thread (midi_sense_connection[0], std::bind (&MIDIControllable::rpn_value_change, this, _1, _2, _3)); } void MIDIControllable::bind_nrpn_value (channel_t chn, uint16_t nrpn) { int chn_i = chn; drop_external_control (); control_nrpn = nrpn; control_channel = chn; _parser.channel_nrpn[chn_i].connect_same_thread (midi_sense_connection[0], std::bind (&MIDIControllable::rpn_value_change, this, _1, _2, _3)); } void MIDIControllable::bind_nrpn_change (channel_t chn, uint16_t nrpn) { int chn_i = chn; drop_external_control (); control_nrpn = nrpn; control_channel = chn; _parser.channel_nrpn_change[chn_i].connect_same_thread (midi_sense_connection[0], std::bind (&MIDIControllable::rpn_change, this, _1, _2, _3)); } void MIDIControllable::bind_rpn_change (channel_t chn, uint16_t rpn) { int chn_i = chn; drop_external_control (); control_rpn = rpn; control_channel = chn; _parser.channel_rpn_change[chn_i].connect_same_thread (midi_sense_connection[0], std::bind (&MIDIControllable::nrpn_change, this, _1, _2, _3)); } void MIDIControllable::bind_midi (channel_t chn, eventType ev, MIDI::byte additional) { char buf[64]; drop_external_control (); control_type = ev; control_channel = chn; control_additional = additional; int chn_i = chn; switch (ev) { case MIDI::off: _parser.channel_note_off[chn_i].connect_same_thread (midi_sense_connection[0], std::bind (&MIDIControllable::midi_sense_note_off, this, _1, _2)); /* if this is a togglee, connect to noteOn as well, and we'll toggle back and forth between the two. */ if (_momentary) { _parser.channel_note_on[chn_i].connect_same_thread (midi_sense_connection[1], std::bind (&MIDIControllable::midi_sense_note_on, this, _1, _2)); } _control_description = "MIDI control: NoteOff"; break; case MIDI::on: _parser.channel_note_on[chn_i].connect_same_thread (midi_sense_connection[0], std::bind (&MIDIControllable::midi_sense_note_on, this, _1, _2)); if (_momentary) { _parser.channel_note_off[chn_i].connect_same_thread (midi_sense_connection[1], std::bind (&MIDIControllable::midi_sense_note_off, this, _1, _2)); } _control_description = "MIDI control: NoteOn"; break; case MIDI::controller: _parser.channel_controller[chn_i].connect_same_thread (midi_sense_connection[0], std::bind (&MIDIControllable::midi_sense_controller, this, _1, _2)); snprintf (buf, sizeof (buf), "MIDI control: Controller %d", control_additional); _control_description = buf; break; case MIDI::program: _parser.channel_program_change[chn_i].connect_same_thread (midi_sense_connection[0], std::bind (&MIDIControllable::midi_sense_program_change, this, _1, _2)); _control_description = "MIDI control: ProgramChange"; break; case MIDI::pitchbend: _parser.channel_pitchbend[chn_i].connect_same_thread (midi_sense_connection[0], std::bind (&MIDIControllable::midi_sense_pitchbend, this, _1, _2)); _control_description = "MIDI control: Pitchbend"; break; default: break; } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Controlable: bind_midi: %1 on Channel %2 value %3 \n", _control_description, chn_i + 1, (int) additional)); } MIDI::byte* MIDIControllable::write_feedback (MIDI::byte* buf, int32_t& bufsize, bool /*force*/) { Glib::Threads::Mutex::Lock lm (controllable_lock, Glib::Threads::TRY_LOCK); if (!lm.locked ()) { return buf; } if (!_controllable || !_surface->get_feedback ()) { return buf; } float val = _controllable->get_value (); /* Note that when sending RPN/NPRN we do two things: * * always send MSB first, then LSB * null/reset the parameter ID after sending. * * this follows recommendations found online, eg. http://www.philrees.co.uk/nrpnq.htm */ if (control_rpn >= 0) { if (bufsize < 13) { return buf; } int rpn_val = (int) lrintf (val * 16383.0); if (last_value == rpn_val) { return buf; } *buf++ = (0xb0) | control_channel; *buf++ = 0x62; *buf++ = (int) ((control_rpn) >> 7); *buf++ = 0x63; *buf++ = (int) (control_rpn & 0x7f); *buf++ = 0x06; *buf++ = (int) (rpn_val >> 7); *buf++ = 0x26; *buf++ = (int) (rpn_val & 0x7f); *buf++ = 0x62; *buf++ = 0x7f; *buf++ = 0x63; *buf++ = 0x7f; bufsize -= 13; last_value = rpn_val; DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI out: RPN %1 Channel %2 Value %3\n", control_rpn, (int) control_channel, val)); return buf; } if (control_nrpn >= 0) { int rpn_val = (int) lrintf (val * 16383.0); if (last_value == rpn_val) { return buf; } *buf++ = (0xb0) | control_channel; *buf++ = 0x64; *buf++ = (int) ((control_rpn) >> 7); *buf++ = 0x65; *buf++ = (int) (control_rpn & 0x7f); *buf++ = 0x06; *buf++ = (int) (rpn_val >> 7); *buf++ = 0x26; *buf++ = (int) (rpn_val & 0x7f); *buf++ = 0x64; *buf++ = 0x7f; *buf++ = 0x65; *buf++ = 0x7f; last_value = rpn_val; bufsize -= 13; DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI out: NRPN %1 Channel %2 Value %3\n", control_nrpn, (int) control_channel, val)); return buf; } if (control_type == none || bufsize <= 2) { return buf; } int const gm = control_to_midi (val); if (gm == last_value) { return buf; } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Feedback: %1 %2\n", control_description(), current_uri())); *buf++ = (0xF0 & control_type) | (0xF & control_channel); int ev_size = 3; switch (control_type) { case MIDI::pitchbend: *buf++ = int (gm) & 127; *buf++ = (int (gm) >> 7) & 127; break; case MIDI::program: *buf++ = control_additional; /* program number */ ev_size = 2; break; default: *buf++ = control_additional; /* controller number */ *buf++ = gm; break; } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("MIDI out: Type %1 Channel %2 Bytes %3 %4\n", (int) control_type, (int) control_channel , (int) *(buf - 2), (int) *(buf - 1))); last_value = gm; bufsize -= ev_size; return buf; } int MIDIControllable::set_state (const XMLNode& node, int /*version*/) { int xx; std::string str; if (node.get_property ("event", str)) { sscanf (str.c_str(), "0x%x", &xx); control_type = (MIDI::eventType) xx; } else { return -1; } if (node.get_property ("channel", xx)) { control_channel = xx; } else { return -1; } if (node.get_property ("additional", str)) { sscanf (str.c_str(), "0x%x", &xx); control_additional = (MIDI::byte) xx; } else { return -1; } bind_midi (control_channel, control_type, control_additional); return 0; } XMLNode& MIDIControllable::get_state () const { char buf[32]; XMLNode* node = new XMLNode ("MIDIControllable"); if (_current_uri.empty() && _controllable) { node->set_property ("id", _controllable->id ()); } else { node->set_property ("uri", _current_uri); } if (_controllable) { snprintf (buf, sizeof(buf), "0x%x", (int) control_type); node->set_property ("event", (const char *)buf); node->set_property ("channel", (int16_t)control_channel); snprintf (buf, sizeof(buf), "0x%x", (int) control_additional); node->set_property ("additional", (const char *)buf); } return *node; } /** @return the maximum value for a control value transmitted * using a given MIDI::eventType. */ int MIDIControllable::max_value_for_type () const { /* XXX: this is not complete */ if (control_type == MIDI::pitchbend) { return 16383; } return 127; }