/* Copyright (C) 2012 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "pbd/cartesian.h" #include "pbd/compose.h" #include "ardour/amp.h" #include "ardour/audio_buffer.h" #include "ardour/buffer_set.h" #include "ardour/pan_controllable.h" #include "ardour/pannable.h" #include "ardour/speakers.h" #include "vbap.h" #include "vbap_speakers.h" #include "i18n.h" using namespace PBD; using namespace ARDOUR; using namespace std; static PanPluginDescriptor _descriptor = { "VBAP 2D panner", -1, -1, VBAPanner::factory }; extern "C" ARDOURPANNER_API PanPluginDescriptor* panner_descriptor () { return &_descriptor; } VBAPanner::Signal::Signal (Session&, VBAPanner&, uint32_t, uint32_t n_speakers) { resize_gains (n_speakers); desired_gains[0] = desired_gains[1] = desired_gains[2] = 0; outputs[0] = outputs[1] = outputs[2] = -1; desired_outputs[0] = desired_outputs[1] = desired_outputs[2] = -1; } void VBAPanner::Signal::Signal::resize_gains (uint32_t n) { gains.assign (n, 0.0); } VBAPanner::VBAPanner (boost::shared_ptr p, boost::shared_ptr s) : Panner (p) , _speakers (new VBAPSpeakers (s)) { _pannable->pan_azimuth_control->Changed.connect_same_thread (*this, boost::bind (&VBAPanner::update, this)); _pannable->pan_width_control->Changed.connect_same_thread (*this, boost::bind (&VBAPanner::update, this)); update (); } VBAPanner::~VBAPanner () { clear_signals (); } void VBAPanner::clear_signals () { for (vector::iterator i = _signals.begin(); i != _signals.end(); ++i) { delete *i; } _signals.clear (); } void VBAPanner::configure_io (ChanCount in, ChanCount /* ignored - we use Speakers */) { uint32_t n = in.n_audio(); clear_signals (); for (uint32_t i = 0; i < n; ++i) { Signal* s = new Signal (_pannable->session(), *this, i, _speakers->n_speakers()); _signals.push_back (s); } update (); } void VBAPanner::update () { /* recompute signal directions based on panner azimuth and, if relevant, width (diffusion) parameters) */ /* panner azimuth control is [0 .. 1.0] which we interpret as [0 .. 360] degrees */ double center = _pannable->pan_azimuth_control->get_value() * 360.0; if (_signals.size() > 1) { /* panner width control is [-1.0 .. 1.0]; we ignore sign, and map to [0 .. 360] degrees so that a width of 1 corresponds to a signal equally present from all directions, and a width of zero corresponds to a point source from the "center" (above) point on the perimeter of the speaker array. */ double w = fabs (_pannable->pan_width_control->get_value()) * 360.0; double min_dir = center - (w/2.0); if (min_dir < 0) { min_dir = 360.0 + min_dir; // its already negative } min_dir = max (min (min_dir, 360.0), 0.0); double max_dir = center + (w/2.0); if (max_dir > 360.0) { max_dir = max_dir - 360.0; } max_dir = max (min (max_dir, 360.0), 0.0); if (max_dir < min_dir) { swap (max_dir, min_dir); } double degree_step_per_signal = (max_dir - min_dir) / (_signals.size() - 1); double signal_direction = min_dir; if (w >= 0.0) { /* positive width - normal order of signal spread */ for (vector::iterator s = _signals.begin(); s != _signals.end(); ++s) { Signal* signal = *s; signal->direction = AngularVector (signal_direction, 0.0); compute_gains (signal->desired_gains, signal->desired_outputs, signal->direction.azi, signal->direction.ele); signal_direction += degree_step_per_signal; } } else { /* inverted width - reverse order of signal spread */ for (vector::reverse_iterator s = _signals.rbegin(); s != _signals.rend(); ++s) { Signal* signal = *s; signal->direction = AngularVector (signal_direction, 0.0); compute_gains (signal->desired_gains, signal->desired_outputs, signal->direction.azi, signal->direction.ele); signal_direction += degree_step_per_signal; } } } else if (_signals.size() == 1) { /* width has no role to play if there is only 1 signal: VBAP does not do "diffusion" of a single channel */ Signal* s = _signals.front(); s->direction = AngularVector (center, 0); compute_gains (s->desired_gains, s->desired_outputs, s->direction.azi, s->direction.ele); } } void VBAPanner::compute_gains (double gains[3], int speaker_ids[3], int azi, int ele) { /* calculates gain factors using loudspeaker setup and given direction */ double cartdir[3]; double power; int i,j,k; double small_g; double big_sm_g, gtmp[3]; spherical_to_cartesian (azi, ele, 1.0, cartdir[0], cartdir[1], cartdir[2]); big_sm_g = -100000.0; gains[0] = gains[1] = gains[2] = 0; speaker_ids[0] = speaker_ids[1] = speaker_ids[2] = 0; for (i = 0; i < _speakers->n_tuples(); i++) { small_g = 10000000.0; for (j = 0; j < _speakers->dimension(); j++) { gtmp[j] = 0.0; for (k = 0; k < _speakers->dimension(); k++) { gtmp[j] += cartdir[k] * _speakers->matrix(i)[j*_speakers->dimension()+k]; } if (gtmp[j] < small_g) { small_g = gtmp[j]; } } if (small_g > big_sm_g) { big_sm_g = small_g; gains[0] = gtmp[0]; gains[1] = gtmp[1]; speaker_ids[0] = _speakers->speaker_for_tuple (i, 0); speaker_ids[1] = _speakers->speaker_for_tuple (i, 1); if (_speakers->dimension() == 3) { gains[2] = gtmp[2]; speaker_ids[2] = _speakers->speaker_for_tuple (i, 2); } else { gains[2] = 0.0; speaker_ids[2] = -1; } } } power = sqrt (gains[0]*gains[0] + gains[1]*gains[1] + gains[2]*gains[2]); if (power > 0) { gains[0] /= power; gains[1] /= power; gains[2] /= power; } } void VBAPanner::distribute (BufferSet& inbufs, BufferSet& obufs, gain_t gain_coefficient, pframes_t nframes) { uint32_t n; vector::iterator s; assert (inbufs.count().n_audio() == _signals.size()); for (s = _signals.begin(), n = 0; s != _signals.end(); ++s, ++n) { Signal* signal (*s); distribute_one (inbufs.get_audio (n), obufs, gain_coefficient, nframes, n); memcpy (signal->outputs, signal->desired_outputs, sizeof (signal->outputs)); } } void VBAPanner::distribute_one (AudioBuffer& srcbuf, BufferSet& obufs, gain_t gain_coefficient, pframes_t nframes, uint32_t which) { Sample* const src = srcbuf.data(); Signal* signal (_signals[which]); /* VBAP may distribute the signal across up to 3 speakers depending on the configuration of the speakers. But the set of speakers in use "this time" may be different from the set of speakers "the last time". So we have up to 6 speakers involved, and we have to interpolate so that those no longer in use are rapidly faded to silence and those newly in use are rapidly faded to their correct level. This prevents clicks as we change the set of speakers used to put the signal in a given position. However, the speakers are represented by output buffers, and other speakers may write to the same buffers, so we cannot use anything here that will simply assign new (sample) values to the output buffers - everything must be done via mixing functions and not assignment/copying. */ vector::size_type sz = signal->gains.size(); assert (sz == obufs.count().n_audio()); int8_t outputs[sz]; // on the stack, no malloc /* set initial state of each output "record" */ for (uint32_t o = 0; o < sz; ++o) { outputs[o] = 0; } /* for all outputs used this time and last time, change the output record to show what has happened. */ for (int o = 0; o < 3; ++o) { if (signal->outputs[o] != -1) { /* used last time */ outputs[signal->outputs[o]] |= 1; } if (signal->desired_outputs[o] != -1) { /* used this time */ outputs[signal->desired_outputs[o]] |= 1<<1; } } /* at this point, we can test a speaker's status: (outputs[o] & 1) <= in use before (outputs[o] & 2) <= in use this time (outputs[o] & 3) == 3 <= in use both times outputs[o] == 0 <= not in use either time */ for (int o = 0; o < 3; ++o) { pan_t pan; int output = signal->desired_outputs[o]; if (output == -1) { continue; } pan = gain_coefficient * signal->desired_gains[o]; if (pan == 0.0 && signal->gains[output] == 0.0) { /* nothing deing delivered to this output */ signal->gains[output] = 0.0; } else if (fabs (pan - signal->gains[output]) > 0.00001) { /* signal to this output but the gain coefficient has changed, so interpolate between them. */ AudioBuffer& buf (obufs.get_audio (output)); buf.accumulate_with_ramped_gain_from (srcbuf.data(), nframes, signal->gains[output], pan, 0); signal->gains[output] = pan; } else { /* signal to this output, same gain as before so just copy with gain */ mix_buffers_with_gain (obufs.get_audio (output).data(),src,nframes,pan); signal->gains[output] = pan; } } /* clean up the outputs that were used last time but not this time */ for (uint32_t o = 0; o < sz; ++o) { if (outputs[o] == 1) { /* take signal and deliver with a rapid fade out */ AudioBuffer& buf (obufs.get_audio (o)); buf.accumulate_with_ramped_gain_from (srcbuf.data(), nframes, signal->gains[o], 0.0, 0); signal->gains[o] = 0.0; } } /* note that the output buffers were all silenced at some point so anything we didn't write to with this signal (or any others) is just as it should be. */ } void VBAPanner::distribute_one_automated (AudioBuffer& /*src*/, BufferSet& /*obufs*/, framepos_t /*start*/, framepos_t /*end*/, pframes_t /*nframes*/, pan_t** /*buffers*/, uint32_t /*which*/) { /* XXX to be implemented */ } XMLNode& VBAPanner::get_state () { XMLNode& node (Panner::get_state()); node.add_property (X_("type"), _descriptor.name); return node; } Panner* VBAPanner::factory (boost::shared_ptr p, boost::shared_ptr s) { return new VBAPanner (p, s); } ChanCount VBAPanner::in() const { return ChanCount (DataType::AUDIO, _signals.size()); } ChanCount VBAPanner::out() const { return ChanCount (DataType::AUDIO, _speakers->n_speakers()); } std::set VBAPanner::what_can_be_automated() const { set s; s.insert (Evoral::Parameter (PanAzimuthAutomation)); if (_signals.size() > 1) { s.insert (Evoral::Parameter (PanWidthAutomation)); } return s; } string VBAPanner::describe_parameter (Evoral::Parameter p) { switch (p.type()) { case PanAzimuthAutomation: return _("Direction"); case PanWidthAutomation: return _("Diffusion"); default: return _pannable->describe_parameter (p); } } string VBAPanner::value_as_string (boost::shared_ptr ac) const { /* DO NOT USE LocaleGuard HERE */ double val = ac->get_value(); switch (ac->parameter().type()) { case PanAzimuthAutomation: /* direction */ return string_compose (_("%1"), int (rint (val * 360.0))); case PanWidthAutomation: /* diffusion */ return string_compose (_("%1%%"), (int) floor (100.0 * fabs(val))); default: return _pannable->value_as_string (ac); } } AngularVector VBAPanner::signal_position (uint32_t n) const { if (n < _signals.size()) { return _signals[n]->direction; } return AngularVector(); } boost::shared_ptr VBAPanner::get_speakers () const { return _speakers->parent(); } void VBAPanner::set_position (double p) { if (p < 0.0) { p = 1.0 + p; } if (p > 1.0) { p = fmod (p, 1.0); } _pannable->pan_azimuth_control->set_value (p); } void VBAPanner::set_width (double w) { _pannable->pan_width_control->set_value (min (1.0, max (-1.0, w))); } void VBAPanner::reset () { set_position (0); set_width (1); update (); }