/* a-comp * Copyright (C) 2016 Damien Zammit * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #ifdef LV2_EXTENDED #include #include "ardour/lv2_extensions.h" #endif #include "lv2/lv2plug.in/ns/lv2core/lv2.h" #define ACOMP_URI "urn:ardour:a-comp" #define ACOMP_STEREO_URI "urn:ardour:a-comp#stereo" #define RESET_PEAK_AFTER_SECONDS 3 #ifndef M_PI # define M_PI 3.14159265358979323846 #endif #ifdef COMPILER_MSVC #include #define isfinite_local(val) (bool)_finite((double)val) #else #define isfinite_local isfinite #endif typedef enum { ACOMP_ATTACK = 0, ACOMP_RELEASE, ACOMP_KNEE, ACOMP_RATIO, ACOMP_THRESHOLD, ACOMP_MAKEUP, ACOMP_GAINR, ACOMP_OUTLEVEL, ACOMP_INLEVEL, ACOMP_SIDECHAIN, ACOMP_ENABLE, ACOMP_A0, ACOMP_A1, ACOMP_A2, ACOMP_A3, ACOMP_A4, } PortIndex; typedef struct { float* attack; float* release; float* knee; float* ratio; float* thresdb; float* makeup; float* gainr; float* outlevel; float* inlevel; float* sidechain; float* enable; float* input0; float* input1; float* sc; float* output0; float* output1; float srate; float makeup_gain; #ifdef LV2_EXTENDED LV2_Inline_Display_Image_Surface surf; bool need_expose; cairo_surface_t* display; LV2_Inline_Display* queue_draw; uint32_t w, h; /* ports pointers are only valid during run so we'll * have to cache them for the display, besides * we do want to check for changes */ float v_knee; float v_ratio; float v_thresdb; float v_gainr; float v_makeup; float v_lvl_in; float v_lvl_out; float v_state_x; float v_peakdb; uint32_t peakdb_samples; #endif } AComp; static LV2_Handle instantiate(const LV2_Descriptor* descriptor, double rate, const char* bundle_path, const LV2_Feature* const* features) { AComp* acomp = (AComp*)calloc(1, sizeof(AComp)); for (int i=0; features[i]; ++i) { #ifdef LV2_EXTENDED if (!strcmp(features[i]->URI, LV2_INLINEDISPLAY__queue_draw)) { acomp->queue_draw = (LV2_Inline_Display*) features[i]->data; } #endif } acomp->srate = rate; acomp->makeup_gain = 1.f; #ifdef LV2_EXTENDED acomp->need_expose = true; acomp->v_lvl_out = -70.f; #endif return (LV2_Handle)acomp; } static void connect_port(LV2_Handle instance, uint32_t port, void* data) { AComp* acomp = (AComp*)instance; switch ((PortIndex)port) { case ACOMP_ATTACK: acomp->attack = (float*)data; break; case ACOMP_RELEASE: acomp->release = (float*)data; break; case ACOMP_KNEE: acomp->knee = (float*)data; break; case ACOMP_RATIO: acomp->ratio = (float*)data; break; case ACOMP_THRESHOLD: acomp->thresdb = (float*)data; break; case ACOMP_MAKEUP: acomp->makeup = (float*)data; break; case ACOMP_GAINR: acomp->gainr = (float*)data; break; case ACOMP_OUTLEVEL: acomp->outlevel = (float*)data; break; case ACOMP_INLEVEL: acomp->inlevel = (float*)data; break; case ACOMP_SIDECHAIN: acomp->sidechain = (float*)data; break; case ACOMP_ENABLE: acomp->enable = (float*)data; break; default: break; } } static void connect_mono(LV2_Handle instance, uint32_t port, void* data) { AComp* acomp = (AComp*)instance; connect_port (instance, port, data); switch ((PortIndex)port) { case ACOMP_A0: acomp->input0 = (float*)data; break; case ACOMP_A1: acomp->sc = (float*)data; break; case ACOMP_A2: acomp->output0 = (float*)data; break; default: break; } } static void connect_stereo(LV2_Handle instance, uint32_t port, void* data) { AComp* acomp = (AComp*)instance; connect_port (instance, port, data); switch ((PortIndex)port) { case ACOMP_A0: acomp->input0 = (float*)data; break; case ACOMP_A1: acomp->input1 = (float*)data; break; case ACOMP_A2: acomp->sc = (float*)data; break; case ACOMP_A3: acomp->output0 = (float*)data; break; case ACOMP_A4: acomp->output1 = (float*)data; break; default: break; } } // Force already-denormal float value to zero static inline float sanitize_denormal(float value) { if (!isnormal(value)) { value = 0.f; } return value; } static inline float from_dB(float gdb) { return (exp(gdb/20.f*log(10.f))); } static inline float to_dB(float g) { return (20.f*log10(g)); } static void activate(LV2_Handle instance) { AComp* acomp = (AComp*)instance; *(acomp->gainr) = 0.0f; *(acomp->outlevel) = -70.0f; *(acomp->inlevel) = -160.f; #ifdef LV2_EXTENDED acomp->v_peakdb = -160.f; acomp->peakdb_samples = 0; #endif } static void run_mono(LV2_Handle instance, uint32_t n_samples) { AComp* acomp = (AComp*)instance; const float* const input = acomp->input0; const float* const sc = acomp->sc; float* const output = acomp->output0; float srate = acomp->srate; float width = (6.f * *(acomp->knee)) + 0.01; float attack_coeff = exp(-1000.f/(*(acomp->attack) * srate)); float release_coeff = exp(-1000.f/(*(acomp->release) * srate)); float max = 0.f; float lgaininp = 0.f; float Lgain = 1.f; float Lxg, Lyg; float current_gainr; float old_gainr = *acomp->gainr; int usesidechain = (*(acomp->sidechain) <= 0.f) ? 0 : 1; uint32_t i; float ingain; float in0; float sc0; float ratio = *acomp->ratio; float thresdb = *acomp->thresdb; float makeup = *acomp->makeup; float makeup_target = from_dB(makeup); float makeup_gain = acomp->makeup_gain; const float tau = (1.0 - exp (-2.f * M_PI * n_samples * 25.f / acomp->srate)); if (*acomp->enable <= 0) { ratio = 1.f; thresdb = 0.f; makeup = 0.f; makeup_target = 1.f; } #ifdef LV2_EXTENDED if (acomp->v_knee != *acomp->knee) { acomp->v_knee = *acomp->knee; acomp->need_expose = true; } if (acomp->v_ratio != ratio) { acomp->v_ratio = ratio; acomp->need_expose = true; } if (acomp->v_thresdb != thresdb) { acomp->v_thresdb = thresdb; acomp->need_expose = true; } if (acomp->v_makeup != makeup) { acomp->v_makeup = makeup; acomp->need_expose = true; } #endif float in_peak_db = -160.f; float max_gainr = 0.f; for (i = 0; i < n_samples; i++) { in0 = input[i]; sc0 = sc[i]; ingain = usesidechain ? fabs(sc0) : fabs(in0); Lyg = 0.f; Lxg = (ingain==0.f) ? -160.f : to_dB(ingain); Lxg = sanitize_denormal(Lxg); if (Lxg > in_peak_db) { in_peak_db = Lxg; } if (2.f*(Lxg-thresdb) < -width) { Lyg = Lxg; } else if (2.f*(Lxg-thresdb) > width) { Lyg = thresdb + (Lxg-thresdb)/ratio; Lyg = sanitize_denormal(Lyg); } else { Lyg = Lxg + (1.f/ratio-1.f)*(Lxg-thresdb+width/2.f)*(Lxg-thresdb+width/2.f)/(2.f*width); } current_gainr = Lxg - Lyg; if (current_gainr < old_gainr) { current_gainr = release_coeff*old_gainr + (1.f-release_coeff)*current_gainr; } else if (current_gainr > old_gainr) { current_gainr = attack_coeff*old_gainr + (1.f-attack_coeff)*current_gainr; } current_gainr = sanitize_denormal(current_gainr); Lgain = from_dB(-current_gainr); old_gainr = current_gainr; *(acomp->gainr) = current_gainr; if (current_gainr > max_gainr) { max_gainr = current_gainr; } lgaininp = in0 * Lgain; output[i] = lgaininp * makeup_gain; max = (fabsf(output[i]) > max) ? fabsf(output[i]) : sanitize_denormal(max); } if ( fabsf(makeup_target - makeup_gain) < 1e-6 ) { makeup_gain = makeup_target; } else { makeup_gain += tau * (makeup_target - makeup_gain) + 1e-12; } *(acomp->outlevel) = (max < 0.0056f) ? -70.f : to_dB(max); *(acomp->inlevel) = in_peak_db; acomp->makeup_gain = makeup_gain; #ifdef LV2_EXTENDED acomp->v_gainr = max_gainr; if (in_peak_db > acomp->v_peakdb) { acomp->v_peakdb = in_peak_db; acomp->peakdb_samples = 0; } else { acomp->peakdb_samples += n_samples; if ((float)acomp->peakdb_samples/acomp->srate > RESET_PEAK_AFTER_SECONDS) { acomp->v_peakdb = in_peak_db; acomp->peakdb_samples = 0; acomp->need_expose = true; } } const float v_lvl_in = in_peak_db; const float v_lvl_out = *acomp->outlevel; float state_x; const float knee_lim_gr = (1.f - 1.f/ratio) * width/2.f; if (acomp->v_gainr > knee_lim_gr) { state_x = acomp->v_gainr / (1.f - 1.f/ratio) + thresdb; } else { state_x = sqrt ( (2.f*width*acomp->v_gainr) / (1.f-1.f/ratio) ) + thresdb - width/2.f; } if (fabsf (acomp->v_lvl_out - v_lvl_out) >= .1f || fabsf (acomp->v_lvl_in - v_lvl_in) >= .1f || fabsf (acomp->v_state_x - state_x) >= .1f ) { // >= 0.1dB difference acomp->need_expose = true; acomp->v_lvl_in = v_lvl_in; acomp->v_lvl_out = v_lvl_out; acomp->v_state_x = state_x; } if (acomp->need_expose && acomp->queue_draw) { acomp->need_expose = false; acomp->queue_draw->queue_draw (acomp->queue_draw->handle); } #endif } static void run_stereo(LV2_Handle instance, uint32_t n_samples) { AComp* acomp = (AComp*)instance; const float* const input0 = acomp->input0; const float* const input1 = acomp->input1; const float* const sc = acomp->sc; float* const output0 = acomp->output0; float* const output1 = acomp->output1; float srate = acomp->srate; float width = (6.f * *(acomp->knee)) + 0.01; float attack_coeff = exp(-1000.f/(*(acomp->attack) * srate)); float release_coeff = exp(-1000.f/(*(acomp->release) * srate)); float max = 0.f; float lgaininp = 0.f; float rgaininp = 0.f; float Lgain = 1.f; float Lxg, Lyg; float current_gainr; float old_gainr = *acomp->gainr; int usesidechain = (*(acomp->sidechain) <= 0.f) ? 0 : 1; uint32_t i; float ingain; float in0; float in1; float sc0; float maxabslr; float ratio = *acomp->ratio; float thresdb = *acomp->thresdb; float makeup = *acomp->makeup; float makeup_target = from_dB(makeup); float makeup_gain = acomp->makeup_gain; const float tau = (1.0 - exp (-2.f * M_PI * n_samples * 25.f / acomp->srate)); if (*acomp->enable <= 0) { ratio = 1.f; thresdb = 0.f; makeup = 0.f; makeup_target = 1.f; } #ifdef LV2_EXTENDED if (acomp->v_knee != *acomp->knee) { acomp->v_knee = *acomp->knee; acomp->need_expose = true; } if (acomp->v_ratio != ratio) { acomp->v_ratio = ratio; acomp->need_expose = true; } if (acomp->v_thresdb != thresdb) { acomp->v_thresdb = thresdb; acomp->need_expose = true; } if (acomp->v_makeup != makeup) { acomp->v_makeup = makeup; acomp->need_expose = true; } #endif float in_peak_db = -160.f; float max_gainr = 0.f; for (i = 0; i < n_samples; i++) { in0 = input0[i]; in1 = input1[i]; sc0 = sc[i]; maxabslr = fmaxf(fabs(in0), fabs(in1)); ingain = usesidechain ? fabs(sc0) : maxabslr; Lyg = 0.f; Lxg = (ingain==0.f) ? -160.f : to_dB(ingain); Lxg = sanitize_denormal(Lxg); if (Lxg > in_peak_db) { in_peak_db = Lxg; } if (2.f*(Lxg-thresdb) < -width) { Lyg = Lxg; } else if (2.f*(Lxg-thresdb) > width) { Lyg = thresdb + (Lxg-thresdb)/ratio; Lyg = sanitize_denormal(Lyg); } else { Lyg = Lxg + (1.f/ratio-1.f)*(Lxg-thresdb+width/2.f)*(Lxg-thresdb+width/2.f)/(2.f*width); } current_gainr = Lxg - Lyg; if (current_gainr < old_gainr) { current_gainr = release_coeff*old_gainr + (1.f-release_coeff)*current_gainr; } else if (current_gainr > old_gainr) { current_gainr = attack_coeff*old_gainr + (1.f-attack_coeff)*current_gainr; } current_gainr = sanitize_denormal(current_gainr); Lgain = from_dB(-current_gainr); old_gainr = current_gainr; *(acomp->gainr) = current_gainr; if (current_gainr > max_gainr) { max_gainr = current_gainr; } lgaininp = in0 * Lgain; rgaininp = in1 * Lgain; output0[i] = lgaininp * makeup_gain; output1[i] = rgaininp * makeup_gain; max = (fmaxf(fabs(output0[i]), fabs(output1[i])) > max) ? fmaxf(fabs(output0[i]), fabs(output1[i])) : sanitize_denormal(max); } if ( fabsf(makeup_target - makeup_gain) < 1e-6 ) { makeup_gain = makeup_target; } else { makeup_gain += tau * (makeup_target - makeup_gain) + 1e-12; } *(acomp->outlevel) = (max < 0.0056f) ? -70.f : to_dB(max); *(acomp->inlevel) = in_peak_db; acomp->makeup_gain = makeup_gain; #ifdef LV2_EXTENDED acomp->v_gainr = max_gainr; if (in_peak_db > acomp->v_peakdb) { acomp->v_peakdb = in_peak_db; acomp->peakdb_samples = 0; } else { acomp->peakdb_samples += n_samples; if ((float)acomp->peakdb_samples/acomp->srate > RESET_PEAK_AFTER_SECONDS) { acomp->v_peakdb = in_peak_db; acomp->peakdb_samples = 0; acomp->need_expose = true; } } const float v_lvl_in = in_peak_db; const float v_lvl_out = *acomp->outlevel; float state_x; const float knee_lim_gr = (1.f - 1.f/ratio) * width/2.f; if (acomp->v_gainr > knee_lim_gr) { state_x = acomp->v_gainr / (1.f - 1.f/ratio) + thresdb; } else { state_x = sqrt ( (2.f*width*acomp->v_gainr) / (1.f-1.f/ratio) ) + thresdb - width/2.f; } if (fabsf (acomp->v_lvl_out - v_lvl_out) >= .1f || fabsf (acomp->v_lvl_in - v_lvl_in) >= .1f || fabsf (acomp->v_state_x - state_x) >= .1f ) { // >= 0.1dB difference acomp->need_expose = true; acomp->v_lvl_in = v_lvl_in; acomp->v_lvl_out = v_lvl_out; acomp->v_state_x = state_x; } if (acomp->need_expose && acomp->queue_draw) { acomp->need_expose = false; acomp->queue_draw->queue_draw (acomp->queue_draw->handle); } #endif } static void deactivate(LV2_Handle instance) { activate(instance); } static void cleanup(LV2_Handle instance) { #ifdef LV2_EXTENDED AComp* acomp = (AComp*)instance; if (acomp->display) { cairo_surface_destroy (acomp->display); } #endif free(instance); } #ifndef MIN #define MIN(A,B) ((A) < (B)) ? (A) : (B) #endif #ifdef LV2_EXTENDED static float comp_curve (const AComp* self, float xg) { const float knee = self->v_knee; const float ratio = self->v_ratio; const float thresdb = self->v_thresdb; const float makeup = self->v_makeup; const float width = 6.f * knee + 0.01f; float yg = 0.f; if (2.f * (xg - thresdb) < -width) { yg = xg; } else if (2.f * (xg - thresdb) > width) { yg = thresdb + (xg - thresdb) / ratio; } else { yg = xg + (1.f / ratio - 1.f ) * (xg - thresdb + width / 2.f) * (xg - thresdb + width / 2.f) / (2.f * width); } yg += makeup; return yg; } static void render_inline_full (cairo_t* cr, const AComp* self) { const float w = self->w; const float h = self->h; const float makeup_thres = self->v_thresdb + self->v_makeup; // clear background cairo_rectangle (cr, 0, 0, w, h); cairo_set_source_rgba (cr, .2, .2, .2, 1.0); cairo_fill (cr); cairo_set_line_width(cr, 1.0); // draw grid 10dB steps const double dash1[] = {1, 2}; const double dash2[] = {1, 3}; cairo_save (cr); cairo_set_line_cap(cr, CAIRO_LINE_CAP_ROUND); cairo_set_dash(cr, dash2, 2, 2); cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 0.5); for (uint32_t d = 1; d < 7; ++d) { const float x = -.5 + floorf (w * (d * 10.f / 70.f)); const float y = -.5 + floorf (h * (d * 10.f / 70.f)); cairo_move_to (cr, x, 0); cairo_line_to (cr, x, h); cairo_stroke (cr); cairo_move_to (cr, 0, y); cairo_line_to (cr, w, y); cairo_stroke (cr); } cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 1.0); cairo_set_dash(cr, dash1, 2, 2); if (self->v_thresdb < 0) { const float y = -.5 + floorf (h * ((makeup_thres - 10.f) / -70.f)); cairo_move_to (cr, 0, y); cairo_line_to (cr, w, y); cairo_stroke (cr); } // diagonal unity cairo_move_to (cr, 0, h); cairo_line_to (cr, w, 0); cairo_stroke (cr); cairo_restore (cr); { // 0, 0 cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 0.5); const float x = -.5 + floorf (w * (60.f / 70.f)); const float y = -.5 + floorf (h * (10.f / 70.f)); cairo_move_to (cr, x, 0); cairo_line_to (cr, x, h); cairo_stroke (cr); cairo_move_to (cr, 0, y); cairo_line_to (cr, w, y); cairo_stroke (cr); } { // GR const float x = -.5 + floorf (w * (62.5f / 70.f)); const float y = -.5 + floorf (h * (10.0f / 70.f)); const float wd = floorf (w * (5.f / 70.f)); const float ht = floorf (h * (55.f / 70.f)); cairo_rectangle (cr, x, y, wd, ht); cairo_fill (cr); const float h_gr = fminf (ht, floorf (h * self->v_gainr / 70.f)); cairo_set_source_rgba (cr, 0.95, 0.0, 0.0, 1.0); cairo_rectangle (cr, x, y, wd, h_gr); cairo_fill (cr); cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 0.5); cairo_rectangle (cr, x, y, wd, ht); cairo_set_source_rgba (cr, 0.75, 0.75, 0.75, 1.0); cairo_stroke (cr); } // draw state cairo_set_source_rgba (cr, .8, .8, .8, 1.0); const float state_x = w * (1.f - (10.f-self->v_state_x)/70.f); const float state_y = h * (comp_curve (self, self->v_state_x) - 10.f) / -70.f; cairo_arc (cr, state_x, state_y, 3.f, 0.f, 2.f*M_PI); cairo_fill (cr); // draw curve cairo_set_source_rgba (cr, .8, .8, .8, 1.0); cairo_move_to (cr, 0, h); for (uint32_t x = 0; x < w; ++x) { // plot -60..+10 dB const float x_db = 70.f * (-1.f + x / (float)w) + 10.f; const float y_db = comp_curve (self, x_db) - 10.f; const float y = h * (y_db / -70.f); cairo_line_to (cr, x, y); } cairo_stroke_preserve (cr); cairo_line_to (cr, w, h); cairo_close_path (cr); cairo_clip (cr); // draw signal level & reduction/gradient const float top = comp_curve (self, 0) - 10.f; cairo_pattern_t* pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, h); if (top > makeup_thres - 10.f) { cairo_pattern_add_color_stop_rgba (pat, 0.0, 0.8, 0.1, 0.1, 0.5); cairo_pattern_add_color_stop_rgba (pat, top / -70.f, 0.8, 0.1, 0.1, 0.5); } if (self->v_knee > 0) { cairo_pattern_add_color_stop_rgba (pat, ((makeup_thres -10.f) / -70.f), 0.7, 0.7, 0.2, 0.5); cairo_pattern_add_color_stop_rgba (pat, ((makeup_thres - self->v_knee - 10.f) / -70.f), 0.5, 0.5, 0.5, 0.5); } else { cairo_pattern_add_color_stop_rgba (pat, ((makeup_thres - 10.f)/ -70.f), 0.7, 0.7, 0.2, 0.5); cairo_pattern_add_color_stop_rgba (pat, ((makeup_thres - 10.01f) / -70.f), 0.5, 0.5, 0.5, 0.5); } cairo_pattern_add_color_stop_rgba (pat, 1.0, 0.5, 0.5, 0.5, 0.5); // maybe cut off at x-position? const float x = w * (self->v_lvl_in + 60) / 70.f; const float y = x + h*self->v_makeup; cairo_rectangle (cr, 0, h - y, x, y); if (self->v_ratio > 1.0) { cairo_set_source (cr, pat); } else { cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 0.5); } cairo_fill (cr); cairo_pattern_destroy (pat); // TODO cache pattern } static void render_inline_only_bars (cairo_t* cr, const AComp* self) { const float w = self->w; const float h = self->h; cairo_rectangle (cr, 0, 0, w, h); cairo_set_source_rgba (cr, .2, .2, .2, 1.0); cairo_fill (cr); cairo_save (cr); const float ht = 0.25f * h; const float x1 = w*0.05; const float wd = w - 2.0f*x1; const float y1 = 0.17*h; const float y2 = h - y1 - ht; cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 0.5); cairo_rectangle (cr, x1, y1, wd, ht); cairo_fill (cr); cairo_rectangle (cr, x1, y2, wd, ht); cairo_fill (cr); cairo_set_source_rgba (cr, 0.75, 0.0, 0.0, 1.0); const float w_gr = (self->v_gainr > 60.f) ? wd : wd * self->v_gainr * (1.f/60.f); cairo_rectangle (cr, x1+wd-w_gr, y2, w_gr, ht); cairo_fill (cr); if (self->v_lvl_in > -60.f) { if (self->v_lvl_out > 6.f) { cairo_set_source_rgba (cr, 0.75, 0.0, 0.0, 1.0); } else if (self->v_lvl_out > 0.f) { cairo_set_source_rgba (cr, 0.66, 0.66, 0.0, 1.0); } else { cairo_set_source_rgba (cr, 0.0, 0.66, 0.0, 1.0); } const float w_g = (self->v_lvl_in > 10.f) ? wd : wd * (60.f+self->v_lvl_in) / 70.f; cairo_rectangle (cr, x1, y1, w_g, ht); cairo_fill (cr); } cairo_set_source_rgba (cr, 1.0, 1.0, 1.0, 1.0); const float tck = 0.33*ht; cairo_set_line_width (cr, .5); for (uint32_t d = 1; d < 7; ++d) { const float x = x1 + (d * wd * (10.f / 70.f)); cairo_move_to (cr, x, y1); cairo_line_to (cr, x, y1+tck); cairo_move_to (cr, x, y1+ht); cairo_line_to (cr, x, y1+ht-tck); cairo_move_to (cr, x, y2); cairo_line_to (cr, x, y2+tck); cairo_move_to (cr, x, y2+ht); cairo_line_to (cr, x, y2+ht-tck); } cairo_stroke (cr); const float x_0dB = x1 + wd*(60.f/70.f); cairo_move_to (cr, x_0dB, y1); cairo_line_to (cr, x_0dB, y1+ht); cairo_rectangle (cr, x1, y1, wd, ht); cairo_rectangle (cr, x1, y2, wd, ht); cairo_stroke (cr); cairo_set_line_width (cr, 2.0); // visualize threshold const float tr = x1 + wd * (60.f+self->v_thresdb) / 70.f; cairo_set_source_rgba (cr, 0.95, 0.95, 0.0, 1.0); cairo_move_to (cr, tr, y1); cairo_line_to (cr, tr, y1+ht); cairo_stroke (cr); // visualize ratio const float reduced_0dB = self->v_thresdb * (1.f - 1.f/self->v_ratio); const float rt = x1 + wd * (60.f+reduced_0dB) / 70.f; cairo_set_source_rgba (cr, 0.95, 0.0, 0.0, 1.0); cairo_move_to (cr, rt, y1); cairo_line_to (cr, rt, y1+ht); cairo_stroke (cr); // visualize in peak if (self->v_peakdb > -60.f) { cairo_set_source_rgba (cr, 0.0, 1.0, 0.0, 1.0); const float pk = (self->v_peakdb > 10.f) ? x1+wd : wd * (60.f+self->v_peakdb) / 70.f; cairo_move_to (cr, pk, y1); cairo_line_to (cr, pk, y1+ht); cairo_stroke (cr); } } static LV2_Inline_Display_Image_Surface * render_inline (LV2_Handle instance, uint32_t w, uint32_t max_h) { AComp* self = (AComp*)instance; uint32_t h = MIN (w, max_h); if (w < 200) { h = 40; } if (!self->display || self->w != w || self->h != h) { if (self->display) cairo_surface_destroy(self->display); self->display = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, w, h); self->w = w; self->h = h; } cairo_t* cr = cairo_create (self->display); if (w >= 200) { render_inline_full (cr, self); } else { render_inline_only_bars (cr, self); } cairo_destroy (cr); cairo_surface_flush (self->display); self->surf.width = cairo_image_surface_get_width (self->display); self->surf.height = cairo_image_surface_get_height (self->display); self->surf.stride = cairo_image_surface_get_stride (self->display); self->surf.data = cairo_image_surface_get_data (self->display); return &self->surf; } #endif static const void* extension_data(const char* uri) { #ifdef LV2_EXTENDED static const LV2_Inline_Display_Interface display = { render_inline }; if (!strcmp(uri, LV2_INLINEDISPLAY__interface)) { return &display; } #endif return NULL; } static const LV2_Descriptor descriptor_mono = { ACOMP_URI, instantiate, connect_mono, activate, run_mono, deactivate, cleanup, extension_data }; static const LV2_Descriptor descriptor_stereo = { ACOMP_STEREO_URI, instantiate, connect_stereo, activate, run_stereo, deactivate, cleanup, extension_data }; LV2_SYMBOL_EXPORT const LV2_Descriptor* lv2_descriptor(uint32_t index) { switch (index) { case 0: return &descriptor_mono; case 1: return &descriptor_stereo; default: return NULL; } }