/* Copyright (C) 2011-2013 Paul Davis Author: Carl Hetherington This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include "gtkmm2ext/utils.h" #include "gtkmm2ext/gui_thread.h" #include "pbd/base_ui.h" #include "pbd/compose.h" #include "pbd/convert.h" #include "pbd/signals.h" #include "pbd/stacktrace.h" #include "ardour/types.h" #include "ardour/dB.h" #include "ardour/lmath.h" #include "ardour/audioregion.h" #include "ardour/audiosource.h" #include "ardour/session.h" #include "canvas/canvas.h" #include "canvas/colors.h" #include "canvas/debug.h" #include "canvas/utils.h" #include "canvas/wave_view.h" #include "evoral/Range.hpp" #include #include "gtkmm2ext/gui_thread.h" using namespace std; using namespace ARDOUR; using namespace PBD; using namespace ArdourCanvas; double WaveView::_global_gradient_depth = 0.6; bool WaveView::_global_logscaled = false; WaveView::Shape WaveView::_global_shape = WaveView::Normal; bool WaveView::_global_show_waveform_clipping = true; double WaveView::_clip_level = 0.98853; WaveViewCache* WaveView::images = 0; gint WaveView::drawing_thread_should_quit = 0; Glib::Threads::Mutex WaveView::request_queue_lock; Glib::Threads::Cond WaveView::request_cond; Glib::Threads::Thread* WaveView::_drawing_thread = 0; WaveView::DrawingRequestQueue WaveView::request_queue; PBD::Signal0 WaveView::VisualPropertiesChanged; PBD::Signal0 WaveView::ClipLevelChanged; WaveView::WaveView (Canvas* c, boost::shared_ptr region) : Item (c) , _region (region) , _channel (0) , _samples_per_pixel (0) , _height (64) , _show_zero (false) , _zero_color (0xff0000ff) , _clip_color (0xff0000ff) , _logscaled (_global_logscaled) , _shape (_global_shape) , _gradient_depth (_global_gradient_depth) , _shape_independent (false) , _logscaled_independent (false) , _gradient_depth_independent (false) , _amplitude_above_axis (1.0) , _region_amplitude (region->scale_amplitude ()) , _start_shift (0.0) , _region_start (region->start()) , get_image_in_thread (false) , always_get_image_in_thread (false) , rendered (false) { if (!images) { images = new WaveViewCache; } VisualPropertiesChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_visual_property_change, this)); ClipLevelChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_clip_level_change, this)); ImageReady.connect (image_ready_connection, invalidator (*this), boost::bind (&WaveView::image_ready, this), gui_context()); } WaveView::WaveView (Item* parent, boost::shared_ptr region) : Item (parent) , _region (region) , _channel (0) , _samples_per_pixel (0) , _height (64) , _show_zero (false) , _zero_color (0xff0000ff) , _clip_color (0xff0000ff) , _logscaled (_global_logscaled) , _shape (_global_shape) , _gradient_depth (_global_gradient_depth) , _shape_independent (false) , _logscaled_independent (false) , _gradient_depth_independent (false) , _amplitude_above_axis (1.0) , _region_amplitude (region->scale_amplitude ()) , _start_shift (0.0) , _region_start (region->start()) , get_image_in_thread (false) , always_get_image_in_thread (false) , rendered (false) { if (!images) { images = new WaveViewCache; } VisualPropertiesChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_visual_property_change, this)); ClipLevelChanged.connect_same_thread (invalidation_connection, boost::bind (&WaveView::handle_clip_level_change, this)); ImageReady.connect (image_ready_connection, invalidator (*this), boost::bind (&WaveView::image_ready, this), gui_context()); } WaveView::~WaveView () { invalidate_image_cache (); if (images ) { images->clear_cache (); } } string WaveView::debug_name() const { return _region->name() + string (":") + PBD::to_string (_channel+1, std::dec); } void WaveView::image_ready () { DEBUG_TRACE (DEBUG::WaveView, string_compose ("queue draw for %1 at %2 (vis = %3 CR %4)\n", this, g_get_monotonic_time(), visible(), current_request)); redraw (); } void WaveView::set_always_get_image_in_thread (bool yn) { always_get_image_in_thread = yn; } void WaveView::handle_visual_property_change () { bool changed = false; if (!_shape_independent && (_shape != global_shape())) { _shape = global_shape(); changed = true; } if (!_logscaled_independent && (_logscaled != global_logscaled())) { _logscaled = global_logscaled(); changed = true; } if (!_gradient_depth_independent && (_gradient_depth != global_gradient_depth())) { _gradient_depth = global_gradient_depth(); changed = true; } if (changed) { begin_visual_change (); invalidate_image_cache (); end_visual_change (); } } void WaveView::handle_clip_level_change () { begin_visual_change (); invalidate_image_cache (); end_visual_change (); } void WaveView::set_fill_color (Color c) { if (c != _fill_color) { begin_visual_change (); invalidate_image_cache (); Fill::set_fill_color (c); end_visual_change (); } } void WaveView::set_outline_color (Color c) { if (c != _outline_color) { begin_visual_change (); invalidate_image_cache (); Outline::set_outline_color (c); end_visual_change (); } } void WaveView::set_samples_per_pixel (double samples_per_pixel) { if (samples_per_pixel != _samples_per_pixel) { begin_change (); invalidate_image_cache (); _samples_per_pixel = samples_per_pixel; _bounding_box_dirty = true; end_change (); } } static inline float _log_meter (float power, double lower_db, double upper_db, double non_linearity) { return (power < lower_db ? 0.0 : pow((power-lower_db)/(upper_db-lower_db), non_linearity)); } static inline float alt_log_meter (float power) { return _log_meter (power, -192.0, 0.0, 8.0); } void WaveView::set_clip_level (double dB) { const double clip_level = dB_to_coefficient (dB); if (clip_level != _clip_level) { _clip_level = clip_level; ClipLevelChanged (); } } void WaveView::invalidate_image_cache () { DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 invalidates image cache and cancels current request\n", this)); cancel_my_render_request (); _current_image.reset (); } void WaveView::compute_tips (PeakData const & peak, WaveView::LineTips& tips) const { const double effective_height = _height; /* remember: canvas (and cairo) coordinate space puts the origin at the upper left. So, a sample value of 1.0 (0dbFS) will be computed as: (1.0 - 1.0) * 0.5 * effective_height which evaluates to 0, or the top of the image. A sample value of -1.0 will be computed as (1.0 + 1.0) * 0.5 * effective height which evaluates to effective height, or the bottom of the image. */ const double pmax = (1.0 - peak.max) * 0.5 * effective_height; const double pmin = (1.0 - peak.min) * 0.5 * effective_height; /* remember that the bottom of the image (pmin) has larger y-coordinates than the top (pmax). */ double spread = (pmin - pmax) * 0.5; /* find the nearest pixel to the nominal center. */ const double center = round (pmin - spread); if (spread < 1.0) { /* minimum distance between line ends is 1 pixel, and we want it "centered" on a pixel, as per cairo single-pixel line issues. NOTE: the caller will not draw a line between these two points if the spread is less than 2 pixels. So only the tips.top value matters, which is where we will draw a single pixel as part of the outline. */ tips.top = center; tips.bot = center + 1.0; } else { /* round spread above and below center to an integer number of pixels */ spread = round (spread); /* top and bottom are located equally either side of the center */ tips.top = center - spread; tips.bot = center + spread; } tips.top = min (effective_height, max (0.0, tips.top)); tips.bot = min (effective_height, max (0.0, tips.bot)); } Coord WaveView::y_extent (double s) const { assert (_shape == Rectified); return floor ((1.0 - s) * _height); } void WaveView::draw_absent_image (Cairo::RefPtr& image, PeakData* _peaks, int n_peaks) const { Cairo::RefPtr stripe = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height); Cairo::RefPtr stripe_context = Cairo::Context::create (stripe); stripe_context->set_antialias (Cairo::ANTIALIAS_NONE); uint32_t stripe_separation = 150; double start = - floor (_height / stripe_separation) * stripe_separation; int stripe_x = 0; while (start < n_peaks) { stripe_context->move_to (start, 0); stripe_x = start + _height; stripe_context->line_to (stripe_x, _height); start += stripe_separation; } stripe_context->set_source_rgba (1.0, 1.0, 1.0, 1.0); stripe_context->set_line_cap (Cairo::LINE_CAP_SQUARE); stripe_context->set_line_width(50); stripe_context->stroke(); Cairo::RefPtr context = Cairo::Context::create (image); context->set_source_rgba (1.0, 1.0, 0.0, 0.3); context->mask (stripe, 0, 0); context->fill (); } struct ImageSet { Cairo::RefPtr wave; Cairo::RefPtr outline; Cairo::RefPtr clip; Cairo::RefPtr zero; ImageSet() : wave (0), outline (0), clip (0), zero (0) {} }; void WaveView::draw_image (Cairo::RefPtr& image, PeakData* _peaks, int n_peaks, boost::shared_ptr req) const { ImageSet images; images.wave = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height); images.outline = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height); images.clip = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height); images.zero = Cairo::ImageSurface::create (Cairo::FORMAT_A8, n_peaks, _height); Cairo::RefPtr wave_context = Cairo::Context::create (images.wave); Cairo::RefPtr outline_context = Cairo::Context::create (images.outline); Cairo::RefPtr clip_context = Cairo::Context::create (images.clip); Cairo::RefPtr zero_context = Cairo::Context::create (images.zero); wave_context->set_antialias (Cairo::ANTIALIAS_NONE); outline_context->set_antialias (Cairo::ANTIALIAS_NONE); clip_context->set_antialias (Cairo::ANTIALIAS_NONE); zero_context->set_antialias (Cairo::ANTIALIAS_NONE); boost::scoped_array tips (new LineTips[n_peaks]); /* Clip level nominally set to -0.9dBFS to account for inter-sample interpolation possibly clipping (value may be too low). We adjust by the region's own gain (but note: not by any gain automation or its gain envelope) so that clip indicators are closer to providing data about on-disk data. This multiplication is needed because the data we get from AudioRegion::read_peaks() has been scaled by scale_amplitude() already. */ const double clip_level = _clip_level * _region_amplitude; if (_shape == WaveView::Rectified) { /* each peak is a line from the bottom of the waveview * to a point determined by max (_peaks[i].max, * _peaks[i].min) */ if (_logscaled) { for (int i = 0; i < n_peaks; ++i) { tips[i].bot = height() - 1.0; const double p = alt_log_meter (fast_coefficient_to_dB (max (fabs (_peaks[i].max), fabs (_peaks[i].min)))); tips[i].top = y_extent (p); tips[i].spread = p * _height; if (_peaks[i].max >= clip_level) { tips[i].clip_max = true; } if (-(_peaks[i].min) >= clip_level) { tips[i].clip_min = true; } } } else { for (int i = 0; i < n_peaks; ++i) { tips[i].bot = height() - 1.0; const double p = max(fabs (_peaks[i].max), fabs (_peaks[i].min)); tips[i].top = y_extent (p); tips[i].spread = p * _height; if (p >= clip_level) { tips[i].clip_max = true; } } } } else { if (_logscaled) { for (int i = 0; i < n_peaks; ++i) { PeakData p; p.max = _peaks[i].max; p.min = _peaks[i].min; if (_peaks[i].max >= clip_level) { tips[i].clip_max = true; } if (-(_peaks[i].min) >= clip_level) { tips[i].clip_min = true; } if (p.max > 0.0) { p.max = alt_log_meter (fast_coefficient_to_dB (p.max)); } else if (p.max < 0.0) { p.max =-alt_log_meter (fast_coefficient_to_dB (-p.max)); } else { p.max = 0.0; } if (p.min > 0.0) { p.min = alt_log_meter (fast_coefficient_to_dB (p.min)); } else if (p.min < 0.0) { p.min = -alt_log_meter (fast_coefficient_to_dB (-p.min)); } else { p.min = 0.0; } compute_tips (p, tips[i]); tips[i].spread = tips[i].bot - tips[i].top; } } else { for (int i = 0; i < n_peaks; ++i) { if (_peaks[i].max >= clip_level) { tips[i].clip_max = true; } if (-(_peaks[i].min) >= clip_level) { tips[i].clip_min = true; } compute_tips (_peaks[i], tips[i]); tips[i].spread = tips[i].bot - tips[i].top; } } } if (req->should_stop()) { return; } Color alpha_one = rgba_to_color (0, 0, 0, 1.0); set_source_rgba (wave_context, alpha_one); set_source_rgba (outline_context, alpha_one); set_source_rgba (clip_context, alpha_one); set_source_rgba (zero_context, alpha_one); /* ensure single-pixel lines */ wave_context->set_line_width (1.0); wave_context->translate (0.5, 0.5); outline_context->set_line_width (1.0); outline_context->translate (0.5, 0.5); clip_context->set_line_width (1.0); clip_context->translate (0.5, 0.5); zero_context->set_line_width (1.0); zero_context->translate (0.5, 0.5); /* the height of the clip-indicator should be at most 7 pixels, * or 5% of the height of the waveview item. */ const double clip_height = min (7.0, ceil (_height * 0.05)); /* There are 3 possible components to draw at each x-axis position: the waveform "line", the zero line and an outline/clip indicator. We have to decide which of the 3 to draw at each position, pixel by pixel. This makes the rendering less efficient but it is the only way I can see to do this correctly. To avoid constant source swapping and stroking, we draw the components separately onto four alpha only image surfaces for use as a mask. With only 1 pixel of spread between the top and bottom of the line, we just draw the upper outline/clip indicator. With 2 pixels of spread, we draw the upper and lower outline clip indicators. With 3 pixels of spread we draw the upper and lower outline/clip indicators and at least 1 pixel of the waveform line. With 5 pixels of spread, we draw all components. We can do rectified as two separate passes because we have a much easier decision regarding whether to draw the waveform line. We always draw the clip/outline indicators. */ if (_shape == WaveView::Rectified) { for (int i = 0; i < n_peaks; ++i) { /* waveform line */ if (tips[i].spread >= 1.0) { wave_context->move_to (i, tips[i].top); wave_context->line_to (i, tips[i].bot); } /* clip indicator */ if (_global_show_waveform_clipping && (tips[i].clip_max || tips[i].clip_min)) { clip_context->move_to (i, tips[i].top); /* clip-indicating upper terminal line */ clip_context->rel_line_to (0, min (clip_height, ceil(tips[i].spread + .5))); } else { outline_context->move_to (i, tips[i].top); /* normal upper terminal dot */ outline_context->rel_line_to (0, -1.0); } } wave_context->stroke (); clip_context->stroke (); outline_context->stroke (); } else { const int height_zero = floor( _height * .5); for (int i = 0; i < n_peaks; ++i) { /* waveform line */ if (tips[i].spread >= 2.0) { wave_context->move_to (i, tips[i].top); wave_context->line_to (i, tips[i].bot); } /* draw square waves and other discontiguous points clearly */ if (i > 0) { if (tips[i-1].top + 2 < tips[i].top) { wave_context->move_to (i-1, tips[i-1].top); wave_context->line_to (i-1, (tips[i].bot + tips[i-1].top)/2); wave_context->move_to (i, (tips[i].bot + tips[i-1].top)/2); wave_context->line_to (i, tips[i].top); } else if (tips[i-1].bot > tips[i].bot + 2) { wave_context->move_to (i-1, tips[i-1].bot); wave_context->line_to (i-1, (tips[i].top + tips[i-1].bot)/2); wave_context->move_to (i, (tips[i].top + tips[i-1].bot)/2); wave_context->line_to (i, tips[i].bot); } } /* zero line, show only if there is enough spread or the waveform line does not cross zero line */ if (show_zero_line() && ((tips[i].spread >= 5.0) || (tips[i].top > height_zero ) || (tips[i].bot < height_zero)) ) { zero_context->move_to (i, height_zero); zero_context->rel_line_to (1.0, 0); } if (tips[i].spread > 1.0) { bool clipped = false; /* outline/clip indicators */ if (_global_show_waveform_clipping && tips[i].clip_max) { clip_context->move_to (i, tips[i].top); /* clip-indicating upper terminal line */ clip_context->rel_line_to (0, min (clip_height, ceil(tips[i].spread + 0.5))); clipped = true; } if (_global_show_waveform_clipping && tips[i].clip_min) { clip_context->move_to (i, tips[i].bot); /* clip-indicating lower terminal line */ clip_context->rel_line_to (0, - min (clip_height, ceil(tips[i].spread + 0.5))); clipped = true; } if (!clipped && tips[i].spread > 2.0) { /* only draw the outline if the spread implies 3 or more pixels (so that we see 1 white pixel in the middle). */ outline_context->move_to (i, tips[i].bot); /* normal lower terminal dot; line moves up */ outline_context->rel_line_to (0, -1.0); outline_context->move_to (i, tips[i].top); /* normal upper terminal dot, line moves down */ outline_context->rel_line_to (0, 1.0); } } else { bool clipped = false; /* outline/clip indicator */ if (_global_show_waveform_clipping && (tips[i].clip_max || tips[i].clip_min)) { clip_context->move_to (i, tips[i].top); /* clip-indicating upper / lower terminal line */ clip_context->rel_line_to (0, 1.0); clipped = true; } if (!clipped) { /* special case where only 1 pixel of * the waveform line is drawn (and * nothing else). * * we draw a 1px "line", pretending * that the span is 1.0 (whether it is * zero or 1.0) */ wave_context->move_to (i, tips[i].top); wave_context->rel_line_to (0, 1.0); } } } wave_context->stroke (); outline_context->stroke (); clip_context->stroke (); zero_context->stroke (); } if (req->should_stop()) { return; } Cairo::RefPtr context = Cairo::Context::create (image); /* Here we set a source colour and use the various components as a mask. */ if (gradient_depth() != 0.0) { Cairo::RefPtr gradient (Cairo::LinearGradient::create (0, 0, 0, _height)); double stops[3]; double r, g, b, a; if (_shape == Rectified) { stops[0] = 0.1; stops[1] = 0.3; stops[2] = 0.9; } else { stops[0] = 0.1; stops[1] = 0.5; stops[2] = 0.9; } color_to_rgba (_fill_color, r, g, b, a); gradient->add_color_stop_rgba (stops[1], r, g, b, a); /* generate a new color for the middle of the gradient */ double h, s, v; color_to_hsv (_fill_color, h, s, v); /* change v towards white */ v *= 1.0 - gradient_depth(); Color center = hsva_to_color (h, s, v, a); color_to_rgba (center, r, g, b, a); gradient->add_color_stop_rgba (stops[0], r, g, b, a); gradient->add_color_stop_rgba (stops[2], r, g, b, a); context->set_source (gradient); } else { set_source_rgba (context, _fill_color); } if (req->should_stop()) { return; } context->mask (images.wave, 0, 0); context->fill (); set_source_rgba (context, _outline_color); context->mask (images.outline, 0, 0); context->fill (); set_source_rgba (context, _clip_color); context->mask (images.clip, 0, 0); context->fill (); set_source_rgba (context, _zero_color); context->mask (images.zero, 0, 0); context->fill (); } boost::shared_ptr WaveView::cache_request_result (boost::shared_ptr req) const { boost::shared_ptr ret (new WaveViewCache::Entry (req->channel, req->height, req->amplitude, req->fill_color, req->samples_per_pixel, req->start, req->end, req->image)); images->add (_region->audio_source (_channel), ret); /* consolidate cache first (removes fully-contained * duplicate images) */ images->consolidate_image_cache (_region->audio_source (_channel), req->channel, req->height, req->amplitude, req->fill_color, req->samples_per_pixel); return ret; } boost::shared_ptr WaveView::get_image (framepos_t start, framepos_t end, bool& full_image) const { boost::shared_ptr ret; full_image = true; /* this is called from a ::render() call, when we need an image to draw with. */ DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 needs image from %2 .. %3\n", name, start, end)); { Glib::Threads::Mutex::Lock lmq (request_queue_lock); /* if there's a draw request outstanding, check to see if we * have an image there. if so, use it (and put it in the cache * while we're here. */ DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 CR %2 stop? %3 image %4\n", this, current_request, (current_request ? current_request->should_stop() : false), (current_request ? current_request->image : 0))); if (current_request && !current_request->should_stop() && current_request->image) { /* put the image into the cache so that other * WaveViews can use it if it is useful */ if (current_request->start <= start && current_request->end >= end) { ret.reset (new WaveViewCache::Entry (current_request->channel, current_request->height, current_request->amplitude, current_request->fill_color, current_request->samples_per_pixel, current_request->start, current_request->end, current_request->image)); cache_request_result (current_request); DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1: got image from completed request, spans %2..%3\n", name, current_request->start, current_request->end)); } /* drop our handle on the current request */ current_request.reset (); } } if (!ret) { /* no current image draw request, so look in the cache */ ret = get_image_from_cache (start, end, full_image); DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1: lookup from cache gave %2 (full %3)\n", name, ret, full_image)); } if (!ret || !full_image) { if ((rendered && get_image_in_thread) || always_get_image_in_thread) { DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1: generating image in caller thread\n", name)); boost::shared_ptr req (new WaveViewThreadRequest); req->type = WaveViewThreadRequest::Draw; req->start = start; req->end = end; req->samples_per_pixel = _samples_per_pixel; req->region = _region; /* weak ptr, to avoid storing a reference in the request queue */ req->channel = _channel; req->height = _height; req->fill_color = _fill_color; req->amplitude = _region_amplitude * _amplitude_above_axis; req->width = desired_image_width (); /* draw image in this (the GUI thread) */ generate_image (req, false); /* cache the result */ ret = cache_request_result (req); /* reset this so that future missing images are * generated in a a worker thread. */ get_image_in_thread = false; } else { queue_get_image (_region, start, end); } } if (ret) { DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 got an image from %2 .. %3 (full ? %4)\n", name, ret->start, ret->end, full_image)); } else { DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 no useful image available\n", name)); } return ret; } boost::shared_ptr WaveView::get_image_from_cache (framepos_t start, framepos_t end, bool& full) const { if (!images) { return boost::shared_ptr(); } return images->lookup_image (_region->audio_source (_channel), start, end, _channel, _height, _region_amplitude * _amplitude_above_axis, _fill_color, _samples_per_pixel, full); } framecnt_t WaveView::desired_image_width () const { /* compute how wide the image should be, in samples. * * We want at least 1 canvas width's worth, but if that * represents less than 1/10th of a second, use 1/10th of * a second instead. */ framecnt_t canvas_width_samples = _canvas->visible_area().width() * _samples_per_pixel; const framecnt_t one_tenth_of_second = _region->session().frame_rate() / 10; if (canvas_width_samples > one_tenth_of_second) { return canvas_width_samples; } return one_tenth_of_second; } void WaveView::queue_get_image (boost::shared_ptr region, framepos_t start, framepos_t end) const { boost::shared_ptr req (new WaveViewThreadRequest); req->type = WaveViewThreadRequest::Draw; req->start = start; req->end = end; req->samples_per_pixel = _samples_per_pixel; req->region = _region; /* weak ptr, to avoid storing a reference in the request queue */ req->channel = _channel; req->height = _height; req->fill_color = _fill_color; req->amplitude = _region_amplitude * _amplitude_above_axis; req->width = desired_image_width (); if (current_request) { /* this will stop rendering in progress (which might otherwise be long lived) for any current request. */ current_request->cancel (); } start_drawing_thread (); /* swap requests (protected by lock) */ { Glib::Threads::Mutex::Lock lm (request_queue_lock); current_request = req; DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 now has current request %2\n", this, req)); if (request_queue.insert (this).second) { /* this waveview was not already in the request queue, make sure we wake the rendering thread in case it is asleep. */ request_cond.signal (); } } } void WaveView::generate_image (boost::shared_ptr req, bool in_render_thread) const { if (!req->should_stop()) { /* sample position is canonical here, and we want to generate * an image that spans about 3x the canvas width. We get to that * width by using an image sample count of the screen width added * on each side of the desired image center. */ const framepos_t center = req->start + ((req->end - req->start) / 2); const framecnt_t image_samples = req->width; /* we can request data from anywhere in the Source, between 0 and its length */ framepos_t sample_start = max (_region_start, (center - image_samples)); framepos_t sample_end = min (center + image_samples, region_end()); const int n_peaks = llrintf ((sample_end - sample_start)/ (req->samples_per_pixel)); boost::scoped_array peaks (new PeakData[n_peaks]); /* Note that Region::read_peaks() takes a start position based on an offset into the Region's **SOURCE**, rather than an offset into the Region itself. */ framecnt_t peaks_read = _region->read_peaks (peaks.get(), n_peaks, sample_start, sample_end - sample_start, req->channel, req->samples_per_pixel); req->image = Cairo::ImageSurface::create (Cairo::FORMAT_ARGB32, n_peaks, req->height); /* make sure we record the sample positions that were actually used */ req->start = sample_start; req->end = sample_end; if (peaks_read > 0) { /* region amplitude will have been used to generate the * peak values already, but not the visual-only * amplitude_above_axis. So apply that here before * rendering. */ if (_amplitude_above_axis != 1.0) { for (framecnt_t i = 0; i < n_peaks; ++i) { peaks[i].max *= _amplitude_above_axis; peaks[i].min *= _amplitude_above_axis; } } draw_image (req->image, peaks.get(), n_peaks, req); } else { draw_absent_image (req->image, peaks.get(), n_peaks); } } if (in_render_thread && !req->should_stop()) { DEBUG_TRACE (DEBUG::WaveView, string_compose ("done with request for %1 at %2 CR %3 req %4 range %5 .. %6\n", this, g_get_monotonic_time(), current_request, req, req->start, req->end)); const_cast(this)->ImageReady (); /* emit signal */ } return; } /** Given a waveform that starts at window x-coordinate @param wave_origin * and the first pixel that we will actually draw @param draw_start, return * the offset into an image of the entire waveform that we will need to use. * * Note: most of our cached images are NOT of the entire waveform, this is just * computationally useful when determining which the sample range span for * the image we need. */ static inline double window_to_image (double wave_origin, double image_start) { return image_start - wave_origin; } void WaveView::render (Rect const & area, Cairo::RefPtr context) const { assert (_samples_per_pixel != 0); if (!_region) { return; } DEBUG_TRACE (DEBUG::WaveView, string_compose ("render %1 at %2\n", this, g_get_monotonic_time())); /* a WaveView is intimately connected to an AudioRegion. It will * display the waveform within the region, anywhere from the start of * the region to its end. * * the area we've been aked to render may overlap with area covered * by the region in any of the normal ways: * * - it may begin and end within the area covered by the region * - it may start before and end after the area covered by region * - it may start before and end within the area covered by the region * - it may start within and end after the area covered by the region * - it may be precisely coincident with the area covered by region. * * So let's start by determining the area covered by the region, in * window coordinates. It begins at zero (in item coordinates for this * waveview, and extends to region_length() / _samples_per_pixel. */ Rect self = item_to_window (Rect (0.0, 0.0, region_length() / _samples_per_pixel, _height)); // cerr << name << " RENDER " << area << " self = " << self << endl; /* Now lets get the intersection with the area we've been asked to draw */ boost::optional d = self.intersection (area); if (!d) { return; } Rect draw = d.get(); /* "draw" is now a rectangle that defines the rectangle we need to * update/render the waveview into, in window coordinate space. */ /* window coordinates - pixels where x=0 is the left edge of the canvas * window. We round down in case we were asked to * draw "between" pixels at the start and/or end. */ double draw_start = floor (draw.x0); const double draw_end = floor (draw.x1); // cerr << "Need to draw " << draw_start << " .. " << draw_end << " vs. " << area << " and self = " << self << endl; /* image coordnates: pixels where x=0 is the start of this waveview, * wherever it may be positioned. thus image_start=N means "an image * that begins N pixels after the start of region that this waveview is * representing. */ const framepos_t image_start = window_to_image (self.x0, draw_start); const framepos_t image_end = window_to_image (self.x0, draw_end); // cerr << "Image/WV space: " << image_start << " .. " << image_end << endl; /* sample coordinates - note, these are not subject to rounding error * * "sample_start = N" means "the first sample we need to represent is N * samples after the first sample of the region" */ framepos_t sample_start = _region_start + (image_start * _samples_per_pixel); framepos_t sample_end = _region_start + (image_end * _samples_per_pixel); // cerr << "Sample space: " << sample_start << " .. " << sample_end << " @ " << _samples_per_pixel << " rs = " << _region_start << endl; /* sample_start and sample_end are bounded by the region * limits. sample_start, because of the was just computed, must already * be greater than or equal to the _region_start value. */ sample_end = min (region_end(), sample_end); // cerr << debug_name() << " will need image spanning " << sample_start << " .. " << sample_end << " region spans " << _region_start << " .. " << region_end() << endl; double image_origin_in_self_coordinates; boost::shared_ptr image_to_draw; if (_current_image) { /* check it covers the right sample range */ if (_current_image->start > sample_start || _current_image->end < sample_end) { /* doesn't cover the area we need ... reset */ _current_image.reset (); } else { /* timestamp our continuing use of this image/cache entry */ images->use (_region->audio_source (_channel), _current_image); image_to_draw = _current_image; } } if (!image_to_draw) { /* look it up */ bool full_image; image_to_draw = get_image (sample_start, sample_end, full_image); DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 image to draw = %2 (full? %3)\n", name, image_to_draw, full_image)); if (!image_to_draw) { /* image not currently available. A redraw will be scheduled when it is ready. */ return; } if (full_image) { /* found an image that covers our entire sample range, * so keep a reference to it. */ _current_image = image_to_draw; } } /* compute the first pixel of the image that should be used when we * render the specified range. */ image_origin_in_self_coordinates = (image_to_draw->start - _region_start) / _samples_per_pixel; if (_start_shift && (sample_start == _region_start) && (self.x0 == draw.x0)) { /* we are going to draw the first pixel for this region, but we may not want this to overlap a border around the waveform. If so, _start_shift will be set. */ //cerr << name.substr (23) << " ss = " << sample_start << " rs = " << _region_start << " sf = " << _start_shift << " ds = " << draw_start << " self = " << self << " draw = " << draw << endl; //draw_start += _start_shift; //image_origin_in_self_coordinates += _start_shift; } /* the image may only be a best-effort ... it may not span the entire * range requested, though it is guaranteed to cover the start. So * determine how many pixels we can actually draw. */ double draw_width; if (image_to_draw != _current_image) { /* the image is guaranteed to start at or before * draw_start. But if it starts before draw_start, that reduces * the maximum available width we can render with. * * so .. clamp the draw width to the smaller of what we need to * draw or the available width of the image. */ draw_width = min ((double) image_to_draw->image->get_width() - (draw_start - image_to_draw->start), (draw_end - draw_start)); DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 draw just %2 of %3 (iwidth %4 off %5 img @ %6 rs @ %7)\n", name, draw_width, (draw_end - draw_start), image_to_draw->image->get_width(), image_origin_in_self_coordinates, image_to_draw->start, _region_start)); } else { draw_width = draw_end - draw_start; DEBUG_TRACE (DEBUG::WaveView, string_compose ("use current image, span entire render width %1..%2\n", draw_start, draw_end)); } context->rectangle (draw_start, draw.y0, draw_width, draw.height()); /* round image origin position to an exact pixel in device space to * avoid blurring */ double x = self.x0 + image_origin_in_self_coordinates; double y = self.y0; context->user_to_device (x, y); x = round (x); y = round (y); context->device_to_user (x, y); /* the coordinates specify where in "user coordinates" (i.e. what we * generally call "canvas coordinates" in this code) the image origin * will appear. So specifying (10,10) will put the upper left corner of * the image at (10,10) in user space. */ context->set_source (image_to_draw->image, x, y); context->fill (); /* image obtained, some of it painted to display: we are rendered. Future calls to get_image_in_thread are now meaningful. */ rendered = true; } void WaveView::compute_bounding_box () const { if (_region) { _bounding_box = Rect (0.0, 0.0, region_length() / _samples_per_pixel, _height); } else { _bounding_box = boost::optional (); } _bounding_box_dirty = false; } void WaveView::set_height (Distance height) { if (height != _height) { begin_change (); invalidate_image_cache (); _height = height; get_image_in_thread = true; _bounding_box_dirty = true; end_change (); } } void WaveView::set_channel (int channel) { if (channel != _channel) { begin_change (); invalidate_image_cache (); _channel = channel; _bounding_box_dirty = true; end_change (); } } void WaveView::set_logscaled (bool yn) { if (_logscaled != yn) { begin_visual_change (); invalidate_image_cache (); _logscaled = yn; end_visual_change (); } } void WaveView::gain_changed () { begin_visual_change (); invalidate_image_cache (); _region_amplitude = _region->scale_amplitude (); get_image_in_thread = true; end_visual_change (); } void WaveView::set_zero_color (Color c) { if (_zero_color != c) { begin_visual_change (); invalidate_image_cache (); _zero_color = c; end_visual_change (); } } void WaveView::set_clip_color (Color c) { if (_clip_color != c) { begin_visual_change (); invalidate_image_cache (); _clip_color = c; end_visual_change (); } } void WaveView::set_show_zero_line (bool yn) { if (_show_zero != yn) { begin_visual_change (); invalidate_image_cache (); _show_zero = yn; end_visual_change (); } } void WaveView::set_shape (Shape s) { if (_shape != s) { begin_visual_change (); invalidate_image_cache (); _shape = s; end_visual_change (); } } void WaveView::set_amplitude_above_axis (double a) { if (fabs (_amplitude_above_axis - a) > 0.01) { begin_visual_change (); invalidate_image_cache (); _amplitude_above_axis = a; get_image_in_thread = true; end_visual_change (); } } void WaveView::set_global_shape (Shape s) { if (_global_shape != s) { _global_shape = s; if (images) { images->clear_cache (); } VisualPropertiesChanged (); /* EMIT SIGNAL */ } } void WaveView::set_global_logscaled (bool yn) { if (_global_logscaled != yn) { _global_logscaled = yn; if (images) { images->clear_cache (); } VisualPropertiesChanged (); /* EMIT SIGNAL */ } } framecnt_t WaveView::region_length() const { return _region->length() - (_region_start - _region->start()); } framepos_t WaveView::region_end() const { return _region_start + region_length(); } void WaveView::set_region_start (frameoffset_t start) { if (!_region) { return; } if (_region_start == start) { return; } begin_change (); _region_start = start; _bounding_box_dirty = true; end_change (); } void WaveView::region_resized () { /* Called when the region start or end (thus length) has changed. */ if (!_region) { return; } begin_change (); _region_start = _region->start(); _bounding_box_dirty = true; end_change (); } void WaveView::set_global_gradient_depth (double depth) { if (_global_gradient_depth != depth) { _global_gradient_depth = depth; VisualPropertiesChanged (); /* EMIT SIGNAL */ } } void WaveView::set_global_show_waveform_clipping (bool yn) { if (_global_show_waveform_clipping != yn) { _global_show_waveform_clipping = yn; ClipLevelChanged (); } } void WaveView::set_start_shift (double pixels) { if (pixels < 0) { return; } begin_visual_change (); _start_shift = pixels; end_visual_change (); } void WaveView::cancel_my_render_request () const { if (!images) { return; } /* try to stop any current rendering of the request, or prevent it from * ever starting up. */ if (current_request) { current_request->cancel (); } Glib::Threads::Mutex::Lock lm (request_queue_lock); /* now remove it from the queue and reset our request pointer so that have no outstanding request (that we know about) */ request_queue.erase (this); current_request.reset (); DEBUG_TRACE (DEBUG::WaveView, string_compose ("%1 now has no request %2\n", this)); } void WaveView::set_image_cache_size (uint64_t sz) { if (!images) { images = new WaveViewCache; } images->set_image_cache_threshold (sz); } /*-------------------------------------------------*/ void WaveView::start_drawing_thread () { if (!_drawing_thread) { _drawing_thread = Glib::Threads::Thread::create (sigc::ptr_fun (WaveView::drawing_thread)); } } void WaveView::stop_drawing_thread () { if (_drawing_thread) { Glib::Threads::Mutex::Lock lm (request_queue_lock); g_atomic_int_set (&drawing_thread_should_quit, 1); request_cond.signal (); } } void WaveView::drawing_thread () { using namespace Glib::Threads; WaveView const * requestor; Mutex::Lock lm (request_queue_lock); bool run = true; while (run) { /* remember that we hold the lock at this point, no matter what */ if (g_atomic_int_get (&drawing_thread_should_quit)) { break; } if (request_queue.empty()) { request_cond.wait (request_queue_lock); } /* remove the request from the queue (remember: the "request" * is just a pointer to a WaveView object) */ requestor = *(request_queue.begin()); request_queue.erase (request_queue.begin()); DEBUG_TRACE (DEBUG::WaveView, string_compose ("start request for %1 at %2\n", requestor, g_get_monotonic_time())); boost::shared_ptr req = requestor->current_request; if (!req) { continue; } /* Generate an image. Unlock the request queue lock * while we do this, so that other things can happen * as we do rendering. */ request_queue_lock.unlock (); /* some RAII would be good here */ try { requestor->generate_image (req, true); } catch (...) { req->image.clear(); /* just in case it was set before the exception, whatever it was */ } request_queue_lock.lock (); req.reset (); /* drop/delete request as appropriate */ } /* thread is vanishing */ _drawing_thread = 0; } /*-------------------------------------------------*/ WaveViewCache::WaveViewCache () : image_cache_size (0) , _image_cache_threshold (100 * 1048576) /* bytes */ { } WaveViewCache::~WaveViewCache () { } boost::shared_ptr WaveViewCache::lookup_image (boost::shared_ptr src, framepos_t start, framepos_t end, int channel, Coord height, float amplitude, Color fill_color, double samples_per_pixel, bool& full_coverage) { ImageCache::iterator x; if ((x = cache_map.find (src)) == cache_map.end ()) { /* nothing in the cache for this audio source at all */ return boost::shared_ptr (); } CacheLine& caches = x->second; boost::shared_ptr best_partial; framecnt_t max_coverage = 0; /* Find a suitable ImageSurface, if it exists. */ for (CacheLine::iterator c = caches.begin(); c != caches.end(); ++c) { boost::shared_ptr e (*c); if (channel != e->channel || height != e->height || amplitude != e->amplitude || samples_per_pixel != e->samples_per_pixel || fill_color != e->fill_color) { continue; } switch (Evoral::coverage (start, end, e->start, e->end)) { case Evoral::OverlapExternal: /* required range is inside image range */ DEBUG_TRACE (DEBUG::WaveView, string_compose ("found image spanning %1..%2 covers %3..%4\n", e->start, e->end, start, end)); use (src, e); full_coverage = true; return e; case Evoral::OverlapStart: /* required range start is covered by image range */ if ((e->end - start) > max_coverage) { best_partial = e; max_coverage = e->end - start; } break; case Evoral::OverlapNone: case Evoral::OverlapEnd: case Evoral::OverlapInternal: break; } } if (best_partial) { DEBUG_TRACE (DEBUG::WaveView, string_compose ("found PARTIAL image spanning %1..%2 partially covers %3..%4\n", best_partial->start, best_partial->end, start, end)); use (src, best_partial); full_coverage = false; return best_partial; } return boost::shared_ptr (); } void WaveViewCache::consolidate_image_cache (boost::shared_ptr src, int channel, Coord height, float amplitude, Color fill_color, double samples_per_pixel) { list deletion_list; uint32_t other_entries = 0; ImageCache::iterator x; /* MUST BE CALLED FROM (SINGLE) GUI THREAD */ if ((x = cache_map.find (src)) == cache_map.end ()) { return; } CacheLine& caches = x->second; for (CacheLine::iterator c1 = caches.begin(); c1 != caches.end(); ) { CacheLine::iterator nxt = c1; ++nxt; boost::shared_ptr e1 (*c1); if (channel != e1->channel || height != e1->height || amplitude != e1->amplitude || samples_per_pixel != e1->samples_per_pixel || fill_color != e1->fill_color) { /* doesn't match current properties, ignore and move on * to the next one. */ other_entries++; c1 = nxt; continue; } /* c1 now points to a cached image entry that matches current * properties. Check all subsequent cached imaged entries to * see if there are others that also match but represent * subsets of the range covered by this one. */ for (CacheLine::iterator c2 = c1; c2 != caches.end(); ) { CacheLine::iterator nxt2 = c2; ++nxt2; boost::shared_ptr e2 (*c2); if (e1 == e2 || channel != e2->channel || height != e2->height || amplitude != e2->amplitude || samples_per_pixel != e2->samples_per_pixel || fill_color != e2->fill_color) { /* properties do not match, ignore for the * purposes of consolidation. */ c2 = nxt2; continue; } if (e2->start >= e1->start && e2->end <= e1->end) { /* c2 is fully contained by c1, so delete it */ caches.erase (c2); /* and re-start the whole iteration */ nxt = caches.begin (); break; } c2 = nxt2; } c1 = nxt; } } void WaveViewCache::use (boost::shared_ptr src, boost::shared_ptr ce) { ce->timestamp = g_get_monotonic_time (); } void WaveViewCache::add (boost::shared_ptr src, boost::shared_ptr ce) { /* MUST BE CALLED FROM (SINGLE) GUI THREAD */ Cairo::RefPtr img (ce->image); image_cache_size += img->get_height() * img->get_width () * 4; /* 4 = bytes per FORMAT_ARGB32 pixel */ if (cache_full()) { cache_flush (); } ce->timestamp = g_get_monotonic_time (); cache_map[src].push_back (ce); } uint64_t WaveViewCache::compute_image_cache_size() { uint64_t total = 0; for (ImageCache::iterator s = cache_map.begin(); s != cache_map.end(); ++s) { CacheLine& per_source_cache (s->second); for (CacheLine::iterator c = per_source_cache.begin(); c != per_source_cache.end(); ++c) { Cairo::RefPtr img ((*c)->image); total += img->get_height() * img->get_width() * 4; /* 4 = bytes per FORMAT_ARGB32 pixel */ } } return total; } bool WaveViewCache::cache_full() { return image_cache_size > _image_cache_threshold; } void WaveViewCache::cache_flush () { /* Build a sortable list of all cache entries */ CacheList cache_list; for (ImageCache::const_iterator cm = cache_map.begin(); cm != cache_map.end(); ++cm) { for (CacheLine::const_iterator cl = cm->second.begin(); cl != cm->second.end(); ++cl) { cache_list.push_back (make_pair (cm->first, *cl)); } } /* sort list in LRU order */ SortByTimestamp sorter; sort (cache_list.begin(), cache_list.end(), sorter); while (image_cache_size > _image_cache_threshold && !cache_map.empty() && !cache_list.empty()) { ListEntry& le (cache_list.front()); ImageCache::iterator x; if ((x = cache_map.find (le.first)) != cache_map.end ()) { CacheLine& cl = x->second; for (CacheLine::iterator c = cl.begin(); c != cl.end(); ++c) { if (*c == le.second) { DEBUG_TRACE (DEBUG::WaveView, string_compose ("Removing cache line entry for %1\n", x->first->name())); /* Remove this entry from this cache line */ cl.erase (c); if (cl.empty()) { /* remove cache line from main cache: no more entries */ cache_map.erase (x); } break; } } Cairo::RefPtr img (le.second->image); uint64_t size = img->get_height() * img->get_width() * 4; /* 4 = bytes per FORMAT_ARGB32 pixel */ if (image_cache_size > size) { image_cache_size -= size; } else { image_cache_size = 0; } DEBUG_TRACE (DEBUG::WaveView, string_compose ("cache shrunk to %1\n", image_cache_size)); } /* Remove from the linear list, even if we didn't find it in * the actual cache_mao */ cache_list.erase (cache_list.begin()); } } void WaveViewCache::clear_cache () { DEBUG_TRACE (DEBUG::WaveView, "clear cache\n"); const uint64_t image_cache_threshold = _image_cache_threshold; _image_cache_threshold = 0; cache_flush (); _image_cache_threshold = image_cache_threshold; } void WaveViewCache::set_image_cache_threshold (uint64_t sz) { DEBUG_TRACE (DEBUG::WaveView, string_compose ("new image cache size %1\n", sz)); _image_cache_threshold = sz; cache_flush (); }