/* * Copyright (C) 2019 Robin Gareus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include "pbd/compose.h" #include "pbd/error.h" #include "pbd/file_utils.h" #include "pbd/pthread_utils.h" #include "ardour/port_manager.h" #include "pulseaudio_backend.h" #include "pbd/i18n.h" using namespace ARDOUR; static std::string s_instance_name; const size_t PulseAudioBackend::_max_buffer_size = 8192; #define N_CHANNELS (2) PulseAudioBackend::PulseAudioBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , p_stream (0) , p_context (0) , p_mainloop (0) , _run (false) , _active (false) , _freewheel (false) , _freewheeling (false) , _last_process_start (0) , _samplerate (48000) , _samples_per_period (1024) , _systemic_audio_output_latency (0) , _dsp_load (0) , _processed_samples (0) , _port_change_flag (false) { _instance_name = s_instance_name; pthread_mutex_init (&_port_callback_mutex, 0); } PulseAudioBackend::~PulseAudioBackend () { pthread_mutex_destroy (&_port_callback_mutex); } /* Pulseaudio */ void PulseAudioBackend::close_pulse (bool unlock) { if (p_mainloop) { if (unlock) { pa_threaded_mainloop_unlock (p_mainloop); } pa_threaded_mainloop_stop (p_mainloop); } if (p_stream) { pa_stream_disconnect (p_stream); pa_stream_unref (p_stream); p_stream = NULL; } if (p_context) { pa_context_disconnect (p_context); pa_context_unref (p_context); p_context = NULL; } if (p_mainloop) { pa_threaded_mainloop_free (p_mainloop); p_mainloop = NULL; } } int PulseAudioBackend::sync_pulse (pa_operation* op) { /* wait for async operation to complete */ if (!op) { pa_threaded_mainloop_unlock (p_mainloop); return 0; } pa_operation_state_t state = pa_operation_get_state (op); while (PA_OPERATION_RUNNING == state) { pa_threaded_mainloop_wait (p_mainloop); state = pa_operation_get_state (op); } pa_operation_unref (op); pa_threaded_mainloop_unlock (p_mainloop); return PA_OPERATION_DONE == state; } bool PulseAudioBackend::cork_pulse (bool pause) { pa_threaded_mainloop_lock (p_mainloop); _operation_succeeded = false; return sync_pulse (pa_stream_cork (p_stream, pause ? 1 : 0, stream_operation_cb, this)) && _operation_succeeded; } void PulseAudioBackend::context_state_cb (pa_context* c, void* arg) { PulseAudioBackend* d = static_cast (arg); switch (pa_context_get_state (c)) { case PA_CONTEXT_READY: case PA_CONTEXT_TERMINATED: case PA_CONTEXT_FAILED: pa_threaded_mainloop_signal (d->p_mainloop, 0); break; case PA_CONTEXT_UNCONNECTED: case PA_CONTEXT_CONNECTING: case PA_CONTEXT_AUTHORIZING: case PA_CONTEXT_SETTING_NAME: break; } } void PulseAudioBackend::stream_state_cb (pa_stream* s, void* arg) { PulseAudioBackend* d = static_cast (arg); switch (pa_stream_get_state (s)) { case PA_STREAM_READY: case PA_STREAM_FAILED: case PA_STREAM_TERMINATED: pa_threaded_mainloop_signal (d->p_mainloop, 0); break; case PA_STREAM_UNCONNECTED: case PA_STREAM_CREATING: break; } } void PulseAudioBackend::stream_operation_cb (pa_stream*, int ok, void* arg) { PulseAudioBackend* d = static_cast (arg); d->_operation_succeeded = ok; pa_threaded_mainloop_signal (d->p_mainloop, 0); } void PulseAudioBackend::stream_request_cb (pa_stream*, size_t length, void* arg) { PulseAudioBackend* d = static_cast (arg); pa_threaded_mainloop_signal (d->p_mainloop, 0); // XXX perhaps do processing here instead of waking up main callback thread. // compare to coreaudio backend } void PulseAudioBackend::stream_latency_update_cb (pa_stream* s, void* arg) { PulseAudioBackend* d = static_cast (arg); pa_usec_t latency; int negative; // XXX this needs PA_STREAM_AUTO_TIMING_UPDATE if (0 == pa_stream_get_latency (s, &latency, &negative)) { if (negative) { d->_systemic_audio_output_latency = 0; } else { d->_systemic_audio_output_latency = floorf (latency * d->_samplerate / 1000000.f); } // XXX garbage value printf ("Pulse latency update %d\n", d->_systemic_audio_output_latency); d->update_latencies (); } pa_threaded_mainloop_signal (d->p_mainloop, 0); } void PulseAudioBackend::stream_xrun_cb (pa_stream*, void* arg) { PulseAudioBackend* d = static_cast (arg); d->engine.Xrun (); } int PulseAudioBackend::init_pulse () { pa_sample_spec ss; pa_buffer_attr ba; ss.channels = N_CHANNELS; ss.rate = _samplerate; ss.format = PA_SAMPLE_FLOAT32LE; /* https://freedesktop.org/software/pulseaudio/doxygen/structpa__buffer__attr.html */ ba.minreq = _samples_per_period * N_CHANNELS * sizeof (float); ba.maxlength = 2 * ba.minreq; ba.prebuf = (uint32_t)-1; ba.tlength = (uint32_t)-1; ba.fragsize = 0; // capture only if (!pa_sample_spec_valid (&ss)) { return AudioDeviceInvalidError; } if (!(p_mainloop = pa_threaded_mainloop_new ())) { PBD::error << _("PulseAudioBackend: Failed to allocate main loop") << endmsg; close_pulse (); return BackendInitializationError; } if (!(p_context = pa_context_new (pa_threaded_mainloop_get_api (p_mainloop), PROGRAM_NAME))) { PBD::error << _("PulseAudioBackend: Failed to allocate context") << endmsg; close_pulse (); return BackendInitializationError; } pa_context_set_state_callback (p_context, PulseAudioBackend::context_state_cb, this); if (pa_context_connect (p_context, NULL, PA_CONTEXT_NOFLAGS, NULL) < 0) { PBD::error << _("PulseAudioBackend: Failed to allocate context") << endmsg; close_pulse (); return AudioDeviceOpenError; } pa_threaded_mainloop_lock (p_mainloop); if (pa_threaded_mainloop_start (p_mainloop) < 0) { PBD::error << _("PulseAudioBackend: Failed to start main loop") << endmsg; close_pulse (true); return AudioDeviceOpenError; } /* Wait until the context is ready, context_state_cb will trigger this */ pa_threaded_mainloop_wait (p_mainloop); if (pa_context_get_state (p_context) != PA_CONTEXT_READY) { PBD::error << _("PulseAudioBackend: Failed to create context") << endmsg; close_pulse (true); return AudioDeviceOpenError; } if (!(p_stream = pa_stream_new (p_context, "master", &ss, NULL))) { PBD::error << _("PulseAudioBackend: Failed to create new stream") << endmsg; close_pulse (true); return AudioDeviceOpenError; } pa_stream_set_state_callback (p_stream, PulseAudioBackend::stream_state_cb, this); pa_stream_set_write_callback (p_stream, PulseAudioBackend::stream_request_cb, this); pa_stream_set_latency_update_callback (p_stream, stream_latency_update_cb, this); pa_stream_set_underflow_callback (p_stream, PulseAudioBackend::stream_xrun_cb, this); pa_stream_set_overflow_callback (p_stream, PulseAudioBackend::stream_xrun_cb, this); /* https://freedesktop.org/software/pulseaudio/doxygen/def_8h.html#a6966d809483170bc6d2e6c16188850fc */ pa_stream_flags_t sf = (pa_stream_flags_t) ( (int)PA_STREAM_START_CORKED | (int)PA_STREAM_FAIL_ON_SUSPEND /* | (int)PA_STREAM_ADJUST_LATENCY | (int)PA_STREAM_AUTO_TIMING_UPDATE | (int)PA_STREAM_INTERPOLATE_TIMING */ ); if (pa_stream_connect_playback (p_stream, NULL, &ba, sf, NULL, NULL) < 0) { PBD::error << _("PulseAudioBackend: Failed to connect playback stream") << endmsg; close_pulse (true); return AudioDeviceOpenError; } /* Wait until the stream is ready */ pa_threaded_mainloop_wait (p_mainloop); if (pa_stream_get_state (p_stream) != PA_STREAM_READY) { PBD::error << _("PulseAudioBackend: Failed to start stream") << endmsg; close_pulse (true); return AudioDeviceOpenError; } pa_threaded_mainloop_unlock (p_mainloop); return 0; } /* AUDIOBACKEND API */ std::string PulseAudioBackend::name () const { return X_("Pulseaudio"); } bool PulseAudioBackend::is_realtime () const { return true; } std::vector PulseAudioBackend::enumerate_devices () const { std::vector devices; devices.push_back (DeviceStatus (_("Default Playback"), true)); return devices; } std::vector PulseAudioBackend::available_sample_rates (const std::string&) const { std::vector sr; sr.push_back (8000.0); sr.push_back (22050.0); sr.push_back (24000.0); sr.push_back (44100.0); sr.push_back (48000.0); sr.push_back (88200.0); sr.push_back (96000.0); sr.push_back (176400.0); sr.push_back (192000.0); return sr; } std::vector PulseAudioBackend::available_buffer_sizes (const std::string&) const { std::vector bs; bs.push_back (64); bs.push_back (128); bs.push_back (256); bs.push_back (512); bs.push_back (1024); bs.push_back (2048); bs.push_back (4096); bs.push_back (8192); return bs; } uint32_t PulseAudioBackend::available_input_channel_count (const std::string&) const { return 0; } uint32_t PulseAudioBackend::available_output_channel_count (const std::string&) const { return N_CHANNELS; } bool PulseAudioBackend::can_change_sample_rate_when_running () const { return false; } bool PulseAudioBackend::can_change_buffer_size_when_running () const { return false; } int PulseAudioBackend::set_device_name (const std::string& d) { return 0; } int PulseAudioBackend::set_sample_rate (float sr) { if (sr <= 0) { return -1; } _samplerate = sr; engine.sample_rate_change (sr); return 0; } int PulseAudioBackend::set_buffer_size (uint32_t bs) { if (bs <= 0 || bs > _max_buffer_size) { return -1; } _samples_per_period = bs; engine.buffer_size_change (bs); return 0; } int PulseAudioBackend::set_interleaved (bool yn) { if (!yn) { return 0; } return -1; } int PulseAudioBackend::set_input_channels (uint32_t cc) { return 0; } int PulseAudioBackend::set_output_channels (uint32_t cc) { return 0; } int PulseAudioBackend::set_systemic_input_latency (uint32_t sl) { return 0; } int PulseAudioBackend::set_systemic_output_latency (uint32_t sl) { return 0; } /* Retrieving parameters */ std::string PulseAudioBackend::device_name () const { return _("Default Playback"); } float PulseAudioBackend::sample_rate () const { return _samplerate; } uint32_t PulseAudioBackend::buffer_size () const { return _samples_per_period; } bool PulseAudioBackend::interleaved () const { return false; } uint32_t PulseAudioBackend::input_channels () const { return 0; } uint32_t PulseAudioBackend::output_channels () const { return N_CHANNELS; } uint32_t PulseAudioBackend::systemic_input_latency () const { return 0; } uint32_t PulseAudioBackend::systemic_output_latency () const { return _systemic_audio_output_latency; } /* MIDI */ std::vector PulseAudioBackend::enumerate_midi_options () const { std::vector midi_options; midi_options.push_back (get_standard_device_name (DeviceNone)); return midi_options; } std::vector PulseAudioBackend::enumerate_midi_devices () const { return std::vector (); } int PulseAudioBackend::set_midi_option (const std::string& opt) { return 0; } std::string PulseAudioBackend::midi_option () const { return get_standard_device_name (DeviceNone); } /* External control app */ std::string PulseAudioBackend::control_app_name () const { std::string ignored; if (PBD::find_file (PBD::Searchpath (Glib::getenv("PATH")), X_("pavucontrol"), ignored)) { return "pavucontrol"; } return ""; } void PulseAudioBackend::launch_control_app () { #ifdef NO_VFORK (void) system ("pavucontrol"); #else if (::vfork () == 0) { ::execlp ("pavucontrol", "pavucontrol", (char*)NULL); exit (EXIT_SUCCESS); } #endif } /* State Control */ static void* pthread_process (void* arg) { PulseAudioBackend* d = static_cast (arg); d->main_process_thread (); pthread_exit (0); return 0; } int PulseAudioBackend::_start (bool /*for_latency_measurement*/) { if (!_active && _run) { PBD::error << _("PulseAudioBackend: already active.") << endmsg; /* recover from 'halted', reap threads */ stop (); } if (_active || _run) { PBD::info << _("PulseAudioBackend: already active.") << endmsg; return BackendReinitializationError; } if (_ports.size () || _portmap.size ()) { PBD::warning << _("PulseAudioBackend: recovering from unclean shutdown, port registry is not empty.") << endmsg; _system_outputs.clear (); _ports.clear (); _portmap.clear (); } /* reset internal state */ _dsp_load = 0; _freewheeling = false; _freewheel = false; _last_process_start = 0; _systemic_audio_output_latency = 0; /* connect to pulse-server and prepare stream */ int err = init_pulse (); if (err) { return err; } if (register_system_ports ()) { PBD::error << _("PulseAudioBackend: failed to register system ports.") << endmsg; close_pulse (); return PortRegistrationError; } engine.sample_rate_change (_samplerate); engine.buffer_size_change (_samples_per_period); if (engine.reestablish_ports ()) { PBD::error << _("PulseAudioBackend: Could not re-establish ports.") << endmsg; close_pulse (); return PortReconnectError; } engine.reconnect_ports (); _run = true; _port_change_flag = false; if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, -20, 100000, &_main_thread, pthread_process, this)) { if (pthread_create (&_main_thread, NULL, pthread_process, this)) { PBD::error << _("PulseAudioBackend: failed to create process thread.") << endmsg; stop (); _run = false; return ProcessThreadStartError; } else { PBD::warning << _("PulseAudioBackend: cannot acquire realtime permissions.") << endmsg; } } int timeout = 5000; while (!_active && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_active) { PBD::error << _("PulseAudioBackend: failed to start process thread.") << endmsg; _run = false; close_pulse (); return ProcessThreadStartError; } return NoError; } int PulseAudioBackend::stop () { void* status; if (!_run) { return 0; } _run = false; pa_threaded_mainloop_lock (p_mainloop); sync_pulse (pa_stream_flush (p_stream, stream_operation_cb, this)); if (pthread_join (_main_thread, &status)) { PBD::error << _("PulseAudioBackend: failed to terminate.") << endmsg; return -1; } unregister_ports (); close_pulse (); return (_active == false) ? 0 : -1; } int PulseAudioBackend::freewheel (bool onoff) { _freewheeling = onoff; return 0; } float PulseAudioBackend::dsp_load () const { return 100.f * _dsp_load; } size_t PulseAudioBackend::raw_buffer_size (DataType t) { switch (t) { case DataType::AUDIO: return _samples_per_period * sizeof (Sample); case DataType::MIDI: return _max_buffer_size; } return 0; } /* Process time */ samplepos_t PulseAudioBackend::sample_time () { return _processed_samples; } samplepos_t PulseAudioBackend::sample_time_at_cycle_start () { return _processed_samples; } pframes_t PulseAudioBackend::samples_since_cycle_start () { if (!_active || !_run || _freewheeling || _freewheel) { return 0; } if (_last_process_start == 0) { return 0; } const int64_t elapsed_time_us = g_get_monotonic_time () - _last_process_start; return std::max ((pframes_t)0, (pframes_t)rint (1e-6 * elapsed_time_us * _samplerate)); } void* PulseAudioBackend::pulse_process_thread (void* arg) { ThreadData* td = reinterpret_cast (arg); boost::function f = td->f; delete td; f (); return 0; } int PulseAudioBackend::create_process_thread (boost::function func) { pthread_t thread_id; pthread_attr_t attr; size_t stacksize = 100000; ThreadData* td = new ThreadData (this, func, stacksize); if (pbd_realtime_pthread_create (PBD_SCHED_FIFO, -22, stacksize, &thread_id, pulse_process_thread, td)) { pthread_attr_init (&attr); pthread_attr_setstacksize (&attr, stacksize); if (pthread_create (&thread_id, &attr, pulse_process_thread, td)) { PBD::error << _("AudioEngine: cannot create process thread.") << endmsg; pthread_attr_destroy (&attr); return -1; } pthread_attr_destroy (&attr); } _threads.push_back (thread_id); return 0; } int PulseAudioBackend::join_process_threads () { int rv = 0; for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { void* status; if (pthread_join (*i, &status)) { PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg; rv -= 1; } } _threads.clear (); return rv; } bool PulseAudioBackend::in_process_thread () { if (pthread_equal (_main_thread, pthread_self ()) != 0) { return true; } for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { return true; } } return false; } uint32_t PulseAudioBackend::process_thread_count () { return _threads.size (); } void PulseAudioBackend::update_latencies () { /* trigger latency callback in RT thread (locked graph) */ port_connect_add_remove_callback (); } /* PORTENGINE API */ void* PulseAudioBackend::private_handle () const { return NULL; } const std::string& PulseAudioBackend::my_name () const { return _instance_name; } uint32_t PulseAudioBackend::port_name_size () const { return 256; } int PulseAudioBackend::set_port_name (PortEngine::PortHandle port, const std::string& name) { std::string newname (_instance_name + ":" + name); if (!valid_port (port)) { PBD::error << _("PulseBackend::set_port_name: Invalid Port(s)") << endmsg; return -1; } if (find_port (newname)) { PBD::error << _("PulseBackend::set_port_name: Port with given name already exists") << endmsg; return -1; } PulsePort* p = static_cast (port); _portmap.erase (p->name ()); _portmap.insert (make_pair (newname, p)); return p->set_name (newname); } std::string PulseAudioBackend::get_port_name (PortEngine::PortHandle port) const { if (!valid_port (port)) { PBD::error << _("PulseBackend::get_port_name: Invalid Port(s)") << endmsg; return std::string (); } return static_cast (port)->name (); } PortFlags PulseAudioBackend::get_port_flags (PortEngine::PortHandle port) const { if (!valid_port (port)) { PBD::error << _("PulseBackend::get_port_flags: Invalid Port(s)") << endmsg; return PortFlags (0); } return static_cast (port)->flags (); } int PulseAudioBackend::get_port_property (PortHandle port, const std::string& key, std::string& value, std::string& type) const { if (!valid_port (port)) { PBD::warning << _("PulseBackend::get_port_property: Invalid Port(s)") << endmsg; return -1; } if (key == "http://jackaudio.org/metadata/pretty-name") { type = ""; value = static_cast (port)->pretty_name (); if (!value.empty ()) { return 0; } } return -1; } int PulseAudioBackend::set_port_property (PortHandle port, const std::string& key, const std::string& value, const std::string& type) { if (!valid_port (port)) { PBD::warning << _("PulseBackend::set_port_property: Invalid Port(s)") << endmsg; return -1; } if (key == "http://jackaudio.org/metadata/pretty-name" && type.empty ()) { static_cast (port)->set_pretty_name (value); return 0; } return -1; } PortEngine::PortHandle PulseAudioBackend::get_port_by_name (const std::string& name) const { PortHandle port = (PortHandle)find_port (name); return port; } int PulseAudioBackend::get_ports ( const std::string& port_name_pattern, DataType type, PortFlags flags, std::vector& port_names) const { int rv = 0; regex_t port_regex; bool use_regexp = false; if (port_name_pattern.size () > 0) { if (!regcomp (&port_regex, port_name_pattern.c_str (), REG_EXTENDED | REG_NOSUB)) { use_regexp = true; } } for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) { PulsePort* port = *i; if ((port->type () == type) && flags == (port->flags () & flags)) { if (!use_regexp || !regexec (&port_regex, port->name ().c_str (), 0, NULL, 0)) { port_names.push_back (port->name ()); ++rv; } } } if (use_regexp) { regfree (&port_regex); } return rv; } DataType PulseAudioBackend::port_data_type (PortEngine::PortHandle port) const { if (!valid_port (port)) { return DataType::NIL; } return static_cast (port)->type (); } PortEngine::PortHandle PulseAudioBackend::register_port ( const std::string& name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { if (name.size () == 0) { return 0; } if (flags & IsPhysical) { return 0; } return add_port (_instance_name + ":" + name, type, flags); } PortEngine::PortHandle PulseAudioBackend::add_port ( const std::string& name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { assert (name.size ()); if (find_port (name)) { PBD::error << _("PulseBackend::register_port: Port already exists:") << " (" << name << ")" << endmsg; return 0; } PulsePort* port = NULL; switch (type) { case DataType::AUDIO: port = new PulseAudioPort (*this, name, flags); break; case DataType::MIDI: port = new PulseMidiPort (*this, name, flags); break; default: PBD::error << _("PulseBackend::register_port: Invalid Data Type.") << endmsg; return 0; } _ports.insert (port); _portmap.insert (make_pair (name, port)); return port; } void PulseAudioBackend::unregister_port (PortEngine::PortHandle port_handle) { if (!_run) { return; } PulsePort* port = static_cast (port_handle); PortIndex::iterator i = std::find (_ports.begin (), _ports.end (), static_cast (port_handle)); if (i == _ports.end ()) { PBD::error << _("PulseBackend::unregister_port: Failed to find port") << endmsg; return; } disconnect_all (port_handle); _portmap.erase (port->name ()); _ports.erase (i); delete port; } int PulseAudioBackend::register_system_ports () { LatencyRange lr; /* audio ports */ lr.min = lr.max = _systemic_audio_output_latency; for (int i = 1; i <= N_CHANNELS; ++i) { char tmp[64]; snprintf (tmp, sizeof (tmp), "system:playback_%d", i); PortHandle p = add_port (std::string (tmp), DataType::AUDIO, static_cast (IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); PulsePort* ap = static_cast (p); //ap->set_pretty_name ("") _system_outputs.push_back (ap); } return 0; } void PulseAudioBackend::unregister_ports (bool system_only) { _system_outputs.clear (); for (PortIndex::iterator i = _ports.begin (); i != _ports.end ();) { PortIndex::iterator cur = i++; PulsePort* port = *cur; if (!system_only || (port->is_physical () && port->is_terminal ())) { port->disconnect_all (); _portmap.erase (port->name ()); delete port; _ports.erase (cur); } } } void PulseAudioBackend::update_system_port_latecies () { for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) { (*it)->update_connected_latency (false); } } int PulseAudioBackend::connect (const std::string& src, const std::string& dst) { PulsePort* src_port = find_port (src); PulsePort* dst_port = find_port (dst); if (!src_port) { PBD::error << _("PulseBackend::connect: Invalid Source port:") << " (" << src << ")" << endmsg; return -1; } if (!dst_port) { PBD::error << _("PulseBackend::connect: Invalid Destination port:") << " (" << dst << ")" << endmsg; return -1; } return src_port->connect (dst_port); } int PulseAudioBackend::disconnect (const std::string& src, const std::string& dst) { PulsePort* src_port = find_port (src); PulsePort* dst_port = find_port (dst); if (!src_port || !dst_port) { PBD::error << _("PulseBackend::disconnect: Invalid Port(s)") << endmsg; return -1; } return src_port->disconnect (dst_port); } int PulseAudioBackend::connect (PortEngine::PortHandle src, const std::string& dst) { PulsePort* dst_port = find_port (dst); if (!valid_port (src)) { PBD::error << _("PulseBackend::connect: Invalid Source Port Handle") << endmsg; return -1; } if (!dst_port) { PBD::error << _("PulseBackend::connect: Invalid Destination Port") << " (" << dst << ")" << endmsg; return -1; } return static_cast (src)->connect (dst_port); } int PulseAudioBackend::disconnect (PortEngine::PortHandle src, const std::string& dst) { PulsePort* dst_port = find_port (dst); if (!valid_port (src) || !dst_port) { PBD::error << _("PulseBackend::disconnect: Invalid Port(s)") << endmsg; return -1; } return static_cast (src)->disconnect (dst_port); } int PulseAudioBackend::disconnect_all (PortEngine::PortHandle port) { if (!valid_port (port)) { PBD::error << _("PulseBackend::disconnect_all: Invalid Port") << endmsg; return -1; } static_cast (port)->disconnect_all (); return 0; } bool PulseAudioBackend::connected (PortEngine::PortHandle port, bool /* process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("PulseBackend::disconnect_all: Invalid Port") << endmsg; return false; } return static_cast (port)->is_connected (); } bool PulseAudioBackend::connected_to (PortEngine::PortHandle src, const std::string& dst, bool /*process_callback_safe*/) { PulsePort* dst_port = find_port (dst); #ifndef NDEBUG if (!valid_port (src) || !dst_port) { PBD::error << _("PulseBackend::connected_to: Invalid Port") << endmsg; return false; } #endif return static_cast (src)->is_connected (dst_port); } bool PulseAudioBackend::physically_connected (PortEngine::PortHandle port, bool /*process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("PulseBackend::physically_connected: Invalid Port") << endmsg; return false; } return static_cast (port)->is_physically_connected (); } int PulseAudioBackend::get_connections (PortEngine::PortHandle port, std::vector& names, bool /*process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("PulseBackend::get_connections: Invalid Port") << endmsg; return -1; } assert (0 == names.size ()); const std::set& connected_ports = static_cast (port)->get_connections (); for (std::set::const_iterator i = connected_ports.begin (); i != connected_ports.end (); ++i) { names.push_back ((*i)->name ()); } return (int)names.size (); } /* MIDI */ int PulseAudioBackend::midi_event_get ( pframes_t& timestamp, size_t& size, uint8_t const** buf, void* port_buffer, uint32_t event_index) { assert (buf && port_buffer); PulseMidiBuffer& source = *static_cast (port_buffer); if (event_index >= source.size ()) { return -1; } PulseMidiEvent* const event = source[event_index].get (); timestamp = event->timestamp (); size = event->size (); *buf = event->data (); return 0; } int PulseAudioBackend::midi_event_put ( void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size) { assert (buffer && port_buffer); PulseMidiBuffer& dst = *static_cast (port_buffer); dst.push_back (boost::shared_ptr (new PulseMidiEvent (timestamp, buffer, size))); return 0; } uint32_t PulseAudioBackend::get_midi_event_count (void* port_buffer) { assert (port_buffer); return static_cast (port_buffer)->size (); } void PulseAudioBackend::midi_clear (void* port_buffer) { assert (port_buffer); PulseMidiBuffer* buf = static_cast (port_buffer); assert (buf); buf->clear (); } /* Monitoring */ bool PulseAudioBackend::can_monitor_input () const { return false; } int PulseAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool) { return -1; } int PulseAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool) { return -1; } bool PulseAudioBackend::monitoring_input (PortEngine::PortHandle) { return false; } /* Latency management */ void PulseAudioBackend::set_latency_range (PortEngine::PortHandle port, bool for_playback, LatencyRange latency_range) { if (!valid_port (port)) { PBD::error << _("PulsePort::set_latency_range (): invalid port.") << endmsg; } static_cast (port)->set_latency_range (latency_range, for_playback); } LatencyRange PulseAudioBackend::get_latency_range (PortEngine::PortHandle port, bool for_playback) { LatencyRange r; if (!valid_port (port)) { PBD::error << _("PulsePort::get_latency_range (): invalid port.") << endmsg; r.min = 0; r.max = 0; return r; } PulsePort* p = static_cast (port); assert (p); r = p->latency_range (for_playback); if (p->is_physical () && p->is_terminal ()) { if (p->is_input () && for_playback) { r.min += _samples_per_period + _systemic_audio_output_latency; r.max += _samples_per_period + _systemic_audio_output_latency; } if (p->is_output () && !for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } } return r; } /* Discovering physical ports */ bool PulseAudioBackend::port_is_physical (PortEngine::PortHandle port) const { if (!valid_port (port)) { PBD::error << _("PulsePort::port_is_physical (): invalid port.") << endmsg; return false; } return static_cast (port)->is_physical (); } void PulseAudioBackend::get_physical_outputs (DataType type, std::vector& port_names) { for (PortIndex::iterator i = _ports.begin (); i != _ports.end (); ++i) { PulsePort* port = *i; if ((port->type () == type) && port->is_input () && port->is_physical ()) { port_names.push_back (port->name ()); } } } void PulseAudioBackend::get_physical_inputs (DataType type, std::vector& port_names) { for (PortIndex::iterator i = _ports.begin (); i != _ports.end (); ++i) { PulsePort* port = *i; if ((port->type () == type) && port->is_output () && port->is_physical ()) { port_names.push_back (port->name ()); } } assert (port_names.size () == 0); } ChanCount PulseAudioBackend::n_physical_outputs () const { int n_midi = 0; int n_audio = 0; for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) { PulsePort* port = *i; if (port->is_output () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; case DataType::MIDI: ++n_midi; break; default: break; } } } ChanCount cc; cc.set (DataType::AUDIO, n_audio); cc.set (DataType::MIDI, n_midi); return cc; } ChanCount PulseAudioBackend::n_physical_inputs () const { int n_midi = 0; int n_audio = 0; for (PortIndex::const_iterator i = _ports.begin (); i != _ports.end (); ++i) { PulsePort* port = *i; if (port->is_input () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; case DataType::MIDI: ++n_midi; break; default: break; } } } ChanCount cc; cc.set (DataType::AUDIO, n_audio); cc.set (DataType::MIDI, n_midi); return cc; } /* Getting access to the data buffer for a port */ void* PulseAudioBackend::get_buffer (PortEngine::PortHandle port, pframes_t nframes) { assert (port); assert (valid_port (port)); return static_cast (port)->get_buffer (nframes); } /* Engine Process */ void* PulseAudioBackend::main_process_thread () { AudioEngine::thread_init_callback (this); _active = true; _processed_samples = 0; manager.registration_callback (); manager.graph_order_callback (); manager.registration_callback (); manager.graph_order_callback (); /* flush stream */ pa_threaded_mainloop_lock (p_mainloop); sync_pulse (pa_stream_flush (p_stream, stream_operation_cb, this)); /* begin streaming */ if (!cork_pulse (false)) { _active = false; if (_run) { engine.halted_callback ("PulseAudio: cannot uncork stream"); } } stream_latency_update_cb (p_stream, this); while (_run) { if (_freewheeling != _freewheel) { _freewheel = _freewheeling; engine.freewheel_callback (_freewheel); /* drain stream freewheeling */ pa_threaded_mainloop_lock (p_mainloop); _operation_succeeded = false; if (!sync_pulse (pa_stream_drain (p_stream, stream_operation_cb, this)) || !_operation_succeeded) { break; } /* suspend output while freewheeling, re-anable after */ if (!cork_pulse (_freewheel)) { break; } if (!_freewheel) { pa_threaded_mainloop_lock (p_mainloop); _operation_succeeded = false; if (!sync_pulse (pa_stream_flush (p_stream, stream_operation_cb, this)) || !_operation_succeeded) { break; } } } if (!_freewheel) { pa_threaded_mainloop_lock (p_mainloop); size_t bytes_to_write = sizeof (float) * _samples_per_period * N_CHANNELS; if (pa_stream_writable_size (p_stream) < bytes_to_write) { /* wait until stream_request_cb triggers */ pa_threaded_mainloop_wait (p_mainloop); } if (pa_stream_get_state (p_stream) != PA_STREAM_READY) { pa_threaded_mainloop_unlock (p_mainloop); break; } int64_t clock1 = g_get_monotonic_time (); /* call engine process callback */ _last_process_start = g_get_monotonic_time (); if (engine.process_callback (_samples_per_period)) { pa_threaded_mainloop_unlock (p_mainloop); _active = false; return 0; } /* write back audio */ uint32_t i = 0; float buf[_max_buffer_size * N_CHANNELS]; assert (_system_outputs.size () == N_CHANNELS); /* interleave */ for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it, ++i) { const float* src = (const float*)(*it)->get_buffer (_samples_per_period); for (size_t n = 0; n < _samples_per_period; ++n) { buf[N_CHANNELS * n + i] = src[n]; } } if (pa_stream_write (p_stream, buf, bytes_to_write, NULL, 0, PA_SEEK_RELATIVE) < 0) { pa_threaded_mainloop_unlock (p_mainloop); break; } pa_threaded_mainloop_unlock (p_mainloop); _processed_samples += _samples_per_period; _dsp_load_calc.set_max_time (_samplerate, _samples_per_period); _dsp_load_calc.set_start_timestamp_us (clock1); _dsp_load_calc.set_stop_timestamp_us (g_get_monotonic_time ()); _dsp_load = _dsp_load_calc.get_dsp_load (); } else { /* Freewheelin' */ _last_process_start = 0; if (engine.process_callback (_samples_per_period)) { _active = false; return 0; } _dsp_load = 1.0f; Glib::usleep (100); // don't hog cpu } bool connections_changed = false; bool ports_changed = false; if (!pthread_mutex_trylock (&_port_callback_mutex)) { if (_port_change_flag) { ports_changed = true; _port_change_flag = false; } if (!_port_connection_queue.empty ()) { connections_changed = true; } while (!_port_connection_queue.empty ()) { PortConnectData* c = _port_connection_queue.back (); manager.connect_callback (c->a, c->b, c->c); _port_connection_queue.pop_back (); delete c; } pthread_mutex_unlock (&_port_callback_mutex); } if (ports_changed) { manager.registration_callback (); } if (connections_changed) { manager.graph_order_callback (); } if (connections_changed || ports_changed) { update_system_port_latecies (); engine.latency_callback (false); engine.latency_callback (true); } } _active = false; if (_run) { engine.halted_callback ("PulseAudio I/O error."); } return 0; } /******************************************************************************/ static boost::shared_ptr _instance; static boost::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { _("Pulseaudio"), instantiate, deinstantiate, backend_factory, already_configured, available }; static boost::shared_ptr backend_factory (AudioEngine& e) { if (!_instance) { _instance.reset (new PulseAudioBackend (e, _descriptor)); } return _instance; } static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; return 0; } static int deinstantiate () { _instance.reset (); return 0; } static bool already_configured () { return false; } static bool available () { return true; } extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; } /******************************************************************************/ PulsePort::PulsePort (PulseAudioBackend& b, const std::string& name, PortFlags flags) : _pulse_backend (b) , _name (name) , _flags (flags) { _capture_latency_range.min = 0; _capture_latency_range.max = 0; _playback_latency_range.min = 0; _playback_latency_range.max = 0; _pulse_backend.port_connect_add_remove_callback (); // XXX -> RT } PulsePort::~PulsePort () { disconnect_all (); _pulse_backend.port_connect_add_remove_callback (); // XXX -> RT } int PulsePort::connect (PulsePort* port) { if (!port) { PBD::error << _("PulsePort::connect (): invalid (null) port") << endmsg; return -1; } if (type () != port->type ()) { PBD::error << _("PulsePort::connect (): wrong port-type") << endmsg; return -1; } if (is_output () && port->is_output ()) { PBD::error << _("PulsePort::connect (): cannot inter-connect output ports.") << endmsg; return -1; } if (is_input () && port->is_input ()) { PBD::error << _("PulsePort::connect (): cannot inter-connect input ports.") << endmsg; return -1; } if (this == port) { PBD::error << _("PulsePort::connect (): cannot self-connect ports.") << endmsg; return -1; } if (is_connected (port)) { return -1; } _connect (port, true); return 0; } void PulsePort::_connect (PulsePort* port, bool callback) { _connections.insert (port); if (callback) { port->_connect (this, false); _pulse_backend.port_connect_callback (name (), port->name (), true); } } int PulsePort::disconnect (PulsePort* port) { if (!port) { PBD::error << _("PulsePort::disconnect (): invalid (null) port") << endmsg; return -1; } if (!is_connected (port)) { PBD::error << _("PulsePort::disconnect (): ports are not connected:") << " (" << name () << ") -> (" << port->name () << ")" << endmsg; return -1; } _disconnect (port, true); return 0; } void PulsePort::_disconnect (PulsePort* port, bool callback) { std::set::iterator it = _connections.find (port); assert (it != _connections.end ()); _connections.erase (it); if (callback) { port->_disconnect (this, false); _pulse_backend.port_connect_callback (name (), port->name (), false); } } void PulsePort::disconnect_all () { while (!_connections.empty ()) { std::set::iterator it = _connections.begin (); (*it)->_disconnect (this, false); _pulse_backend.port_connect_callback (name (), (*it)->name (), false); _connections.erase (it); } } bool PulsePort::is_connected (const PulsePort* port) const { return _connections.find (const_cast (port)) != _connections.end (); } bool PulsePort::is_physically_connected () const { for (std::set::const_iterator it = _connections.begin (); it != _connections.end (); ++it) { if ((*it)->is_physical ()) { return true; } } return false; } void PulsePort::set_latency_range (const LatencyRange& latency_range, bool for_playback) { if (for_playback) { _playback_latency_range = latency_range; } else { _capture_latency_range = latency_range; } for (std::set::const_iterator it = _connections.begin (); it != _connections.end (); ++it) { if ((*it)->is_physical ()) { (*it)->update_connected_latency (is_input ()); } } } void PulsePort::update_connected_latency (bool for_playback) { LatencyRange lr; lr.min = lr.max = 0; for (std::set::const_iterator it = _connections.begin (); it != _connections.end (); ++it) { LatencyRange l; l = (*it)->latency_range (for_playback); lr.min = std::max (lr.min, l.min); lr.max = std::max (lr.max, l.max); } set_latency_range (lr, for_playback); } /******************************************************************************/ PulseAudioPort::PulseAudioPort (PulseAudioBackend& b, const std::string& name, PortFlags flags) : PulsePort (b, name, flags) { memset (_buffer, 0, sizeof (_buffer)); mlock (_buffer, sizeof (_buffer)); } PulseAudioPort::~PulseAudioPort () { } void* PulseAudioPort::get_buffer (pframes_t n_samples) { if (is_input ()) { const std::set& connections = get_connections (); std::set::const_iterator it = connections.begin (); if (it == connections.end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { PulseAudioPort* source = static_cast (*it); assert (source && source->is_output ()); memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); while (++it != connections.end ()) { source = static_cast (*it); assert (source && source->is_output ()); Sample* dst = buffer (); const Sample* src = source->const_buffer (); for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) { *dst += *src; } } } } return _buffer; } PulseMidiPort::PulseMidiPort (PulseAudioBackend& b, const std::string& name, PortFlags flags) : PulsePort (b, name, flags) { _buffer.clear (); _buffer.reserve (256); } PulseMidiPort::~PulseMidiPort () { } struct MidiEventSorter { bool operator() (const boost::shared_ptr& a, const boost::shared_ptr& b) { return *a < *b; } }; void* PulseMidiPort::get_buffer (pframes_t /*n_samples*/) { if (is_input ()) { _buffer.clear (); const std::set& connections = get_connections (); for (std::set::const_iterator i = connections.begin (); i != connections.end (); ++i) { const PulseMidiBuffer* src = static_cast (*i)->const_buffer (); for (PulseMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { _buffer.push_back (*it); } } std::stable_sort (_buffer.begin (), _buffer.end (), MidiEventSorter ()); } return &_buffer; } PulseMidiEvent::PulseMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size) : _size (size) , _timestamp (timestamp) { if (size > 0 && size < MaxPulseMidiEventSize) { memcpy (_data, data, size); } } PulseMidiEvent::PulseMidiEvent (const PulseMidiEvent& other) : _size (other.size ()) , _timestamp (other.timestamp ()) { if (other.size () && other.const_data ()) { assert (other._size < MaxPulseMidiEventSize); memcpy (_data, other._data, other._size); } };