/* * Copyright (C) 2021 Paul Davis * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "pbd/debug.h" #include "pbd/error.h" #include "pbd/i18n.h" #include "pbd/unwind.h" #include "canvas/debug.h" #include "canvas/table.h" using namespace ArdourCanvas; using namespace PBD; using std::cerr; using std::endl; Table::Table (Canvas* canvas) : Rectangle (canvas) , collapse_on_hide (false) , homogenous (true) , draw_hgrid (false) , draw_vgrid (false) { set_layout_sensitive (true); } Table::Table (Item* item) : Rectangle (item) , collapse_on_hide (false) , homogenous (true) , draw_hgrid (false) , draw_vgrid (false) { set_layout_sensitive (true); } void Table::attach (Item* item, Coord ulx, Coord uly, Coord lrx, Coord lry, PackOptions row_options, PackOptions col_options, FourDimensions pad) { /* XXX maybe use z-axis to stack elements if the insert fails? Would * involve making Index 3D and using an actual hash function */ std::pair res = cells.insert ({ Index (ulx, uly), CellInfo (item, row_options, col_options, Index (ulx, uly), Index (lrx, lry), pad) }); if (!res.second) { cerr << "Failed to attach at " << ulx << ", " << uly << " " << lrx << ", " << lry << endl; } _add (item); item->size_request (res.first->second.natural_size.x, res.first->second.natural_size.y); if (lrx > col_info.size()) { col_info.resize (lrx); } if (lry > row_info.size()) { row_info.resize (lry); } } void Table::child_changed (bool bbox_changed) { if (ignore_child_changes) { return; } Item::child_changed (bbox_changed); size_allocate_children (_allocation); } void Table::compute_bounding_box() const { _bounding_box = Rect(); if (cells.empty()) { bb_clean (); return; } if ((*cells.begin()).second.natural_size == Duple()) { /* force basic computation of natural size */ Duple ns = const_cast(this)->compute (Rect()); _bounding_box = Rect (0, 0, ns.x, ns.y); } else { for (auto const & cell : cells) { if (_bounding_box) { _bounding_box = _bounding_box.extend (cell.second.full_size); } else { _bounding_box = cell.second.full_size; } } } DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("bounding box computed as %1\n", _bounding_box)); bb_clean (); } void Table::set_row_size (uint32_t row, Distance size) { if (row_info.size() <= row) { row_info.resize (row+1); } row_info[row].user_size = size; } void Table::set_col_size (uint32_t col, Distance size) { if (col_info.size() <= col) { col_info.resize (col+1); } col_info[col].user_size = size; } void Table::size_request (Distance& w, Distance& h) const { Duple d = const_cast(this)->compute (Rect()); w = d.x; h = d.y; } void Table::layout () { cerr << "\n\nLAYOUT\n\n"; size_allocate_children (_allocation); } void Table::size_allocate_children (Rect const & within) { (void) compute (within); } Duple Table::compute (Rect const & within) { DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("\n\nCompute table within rect: %1\n", within)); if (cells.empty()) { return Duple (0, 0); } uint32_t rows = row_info.size(); uint32_t cols = col_info.size(); for (auto & ai : row_info) { ai.reset (); } for (auto & ai : col_info) { ai.reset (); } DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("cell coordinates indicate rows %1 cols %2 from %3 cells\n", rows, cols, cells.size())); for (auto & ci : cells) { CellInfo c (ci.second); DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("for cell %1,%2 - %3,%4, contents natural size = %5\n", c.upper_left.x, c.upper_left.y, c.lower_right.x, c.lower_right.y, c.natural_size)); const float hspan = c.lower_right.x - c.upper_left.x; const float vspan = c.lower_right.y - c.upper_left.y; /* for every col that this cell occupies, count the number of * expanding/shrinking items, and compute the largest width * for the column (cells) */ for (uint32_t col = c.upper_left.x; col != c.lower_right.x; ++col) { if (c.col_options & PackExpand) { col_info[col].expanders++; } if (c.col_options & PackShrink) { col_info[col].shrinkers++; } /* columns have a natural width */ Distance total_width = (c.natural_size.x / hspan) + c.padding.left + c.padding.right; col_info[col].natural_size = std::max (col_info[col].natural_size, total_width); col_info[col].occupied = true; } /* for every row that this cell occupies, count the number of * expanding/shrinking items, and compute the largest height * for the row (cells) */ for (uint32_t row = c.upper_left.y; row != c.lower_right.y; ++row) { /* rows have a natural height */ Distance total_height = (c.natural_size.y / vspan) + c.padding.up + c.padding.down; row_info[row].natural_size = std::max (row_info[row].natural_size, total_height); row_info[row].occupied = true; if (c.row_options & PackExpand) { row_info[row].expanders++; } if (c.row_options & PackShrink) { row_info[row].shrinkers++; } } } /* rows with nothing in them are still counted as existing. This is a * design decision, not a logic inevitability. */ /* Find the tallest column and widest row. This will give us our * "natural size" */ Distance natural_width = 0.; Distance natural_height = 0.; Distance fixed_width = 0; Distance fixed_height = 0; uint32_t total_width_expanders = 0; uint32_t total_height_expanders = 0; uint32_t fixed_size_rows = 0; uint32_t fixed_size_cols = 0; for (auto & ai : row_info) { if (ai.expanders) { total_height_expanders++; } ai.natural_size += ai.spacing; if (ai.user_size) { natural_height = std::max (natural_height, ai.user_size); fixed_height += ai.user_size; fixed_size_cols++; } else { natural_height = std::max (natural_height, ai.natural_size); } } for (auto & ai : col_info) { if (ai.expanders) { total_width_expanders++; } ai.natural_size += ai.spacing; if (ai.user_size) { natural_width = std::max (natural_width, ai.user_size); fixed_width += ai.user_size; fixed_size_cols++; } else { natural_width = std::max (natural_width, ai.natural_size); } } #ifndef NDEBUG if (DEBUG_ENABLED(DEBUG::CanvasTable)) { DEBUG_STR_DECL(a); int n = 0; for (auto& ai : row_info) { DEBUG_STR_APPEND(a, string_compose ("row %1: height %2\n", n+1, ai.natural_size)); ++n; } DEBUG_TRACE (DEBUG::CanvasTable, DEBUG_STR(a).str()); DEBUG_STR_DECL(b); n = 0; for (auto& ai : col_info) { DEBUG_STR_APPEND(b, string_compose ("col %1: width %2\n", n, ai.natural_size)); ++n; } DEBUG_TRACE (DEBUG::CanvasTable, DEBUG_STR(b).str()); } #endif DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("natural width x height = %1 x %2\n", natural_width, natural_height)); if (!within) { /* within is empty, so this is just for a size request */ return Duple (natural_width, natural_height); } /* actually doing allocation, so prevent endless loop between here and * ::child_changed() */ PBD::Unwinder uw (ignore_child_changes, true); /* step two: compare the natural size to the size we've been given * * If the natural size is less than the allocated size, then find the * difference, divide it by the number of expanding items per * (row|col). Divide the total size by the number of (rows|cols), then * iterate. Allocate expanders the per-cell size plus the extra for * expansion. Allocate shrinkers/default just the per-cell size. * * If the natural size if greated than the allocated size, find the * difference, divide it by the number of shrinking items per * (row|col). Divide the total size by the number of (rows|cols), then * iterate. Allocate shrinkers the per-cell size minus the excess for * shrinking. Allocate expanders/default just the per-cell size. * */ uint32_t variable_size_rows = rows - fixed_size_rows; uint32_t variable_size_cols = rows - fixed_size_cols; Distance variable_col_width = 0; Distance variable_row_height = 0; if (variable_size_cols) { variable_col_width = (within.width() - fixed_width) / variable_size_cols; } if (variable_size_rows) { variable_row_height = (within.height() - fixed_height) / variable_size_rows; } for (auto & ci : cells) { CellInfo & c (ci.second); const float hspan = c.lower_right.x - c.upper_left.x; const float vspan = c.lower_right.y - c.upper_left.y; AxisInfo& col (col_info[c.upper_left.y]); AxisInfo& row (col_info[c.upper_left.x]); Distance w; Distance h; if (col.user_size) { w = col.user_size; } else if (c.row_options & PackExpand) { w = hspan * variable_col_width; } else if (c.row_options & PackShrink) { w = hspan * variable_col_width; } else { /* normal col, not expanding or shrinking */ w = c.natural_size.x; } if (row.user_size) { h = col.user_size; } else if (c.row_options & PackExpand) { h = vspan * variable_row_height; } else if (c.row_options & PackShrink) { h = vspan * variable_row_height; } else { /* normal row, not expanding or shrinking */ h = c.natural_size.y; } w -= c.padding.left + c.padding.right; w -= col.spacing; h -= c.padding.up + c.padding.down; h -= row.spacing; DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("Cell @ %1,%2 - %3,%4 (hspan %7 vspan %8) allocated %5 x %6\n", ci.first.x, ci.first.y, ci.second.lower_right.x, ci.second.lower_right.y, w, h, hspan, vspan)); c.allocate_size = Duple (w, h); } /* final pass: actually allocate position for each cell. Do this in a * row,col order so that we can set up position based on all cells * above and left of whichever one we are working on. */ Distance hdistance = 0.; Distance vdistance = 0.; for (uint32_t r = 0; r < rows; ++r) { Distance vshift = 0; hdistance = 0; for (uint32_t c = 0; c < cols; ++c) { Index idx (c, r); Cells::iterator ci = cells.find (idx); if (ci != cells.end()) { hdistance += ci->second.padding.left; Rect rect = Rect (hdistance, vdistance + ci->second.padding.up, hdistance + ci->second.allocate_size.x, vdistance + ci->second.allocate_size.y); DEBUG_TRACE (DEBUG::CanvasTable, string_compose ("Item @ %1,%2 - %3,%4 size-allocate %5\n", ci->second.upper_left.x, ci->second.upper_left.y, ci->second.lower_right.x, ci->second.lower_right.y, rect)); ci->second.content->size_allocate (rect); ci->second.full_size = rect; hdistance += rect.width() + ci->second.padding.right; hdistance += col_info[c].spacing; const Distance total_cell_height = rect.height() + ci->second.padding.up + ci->second.padding.down; vshift = std::max (vshift, total_cell_height); } else { /* this cell (r, c) has no item starting within it */ } } vshift += row_info[r].spacing; vdistance += vshift; } return Duple (hdistance, vdistance); } void Table::add (Item*) { fatal << _("programming error: add() cannot be used with Canvas::Table; use attach() instead") << endmsg; } void Table::add_front (Item*) { fatal << _("programming error: add_front() cannot be used with Canvas::Table; use attach() instead") << endmsg; } void Table::remove (Item*) { fatal << _("programming error: remove() cannot be used with Canvas::Table; use detach() instead") << endmsg; } void Table::_add (Item* i) { if (!i) { return; } Item::add (i); queue_resize (); } void Table::_add_front (Item* i) { if (!i) { return; } Item::add_front (i); queue_resize (); } void Table::_remove (Item* i) { if (!i) { return; } Item::remove (i); queue_resize (); }