/* * Copyright (C) 2015-2018 Robin Gareus * Copyright (C) 2016-2018 Paul Davis * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #undef nil #include #include "coreaudio_backend.h" #include "pbd/compose.h" #include "pbd/error.h" #include "pbd/file_utils.h" #include "pbd/pthread_utils.h" #include "ardour/debug.h" #include "ardour/filesystem_paths.h" #include "ardour/port_manager.h" #include "pbd/i18n.h" using namespace ARDOUR; static std::string s_instance_name; size_t CoreAudioBackend::_max_buffer_size = 8192; std::vector CoreAudioBackend::_midi_options; std::vector CoreAudioBackend::_duplex_audio_device_status; std::vector CoreAudioBackend::_input_audio_device_status; std::vector CoreAudioBackend::_output_audio_device_status; /* static class instance access */ static void hw_changed_callback_ptr (void *arg) { CoreAudioBackend *d = static_cast (arg); d->hw_changed_callback(); } static void error_callback_ptr (void *arg) { CoreAudioBackend *d = static_cast (arg); d->error_callback(); } static void halted_callback_ptr (void *arg) { CoreAudioBackend *d = static_cast (arg); d->halted_callback(); } static void xrun_callback_ptr (void *arg) { CoreAudioBackend *d = static_cast (arg); d->xrun_callback(); } static void buffer_size_callback_ptr (void *arg) { CoreAudioBackend *d = static_cast (arg); d->buffer_size_callback(); } static void sample_rate_callback_ptr (void *arg) { CoreAudioBackend *d = static_cast (arg); d->sample_rate_callback(); } static void midi_port_change (void *arg) { CoreAudioBackend *d = static_cast(arg); d->coremidi_rediscover (); } CoreAudioBackend::CoreAudioBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , PortEngineSharedImpl (e, s_instance_name) , _run (false) , _active_ca (false) , _active_fw (false) , _freewheeling (false) , _freewheel (false) , _freewheel_ack (false) , _reinit_thread_callback (false) , _measure_latency (false) , _last_process_start (0) , _input_audio_device("") , _output_audio_device("") , _midi_driver_option(_("CoreMidi")) , _samplerate (48000) , _samples_per_period (1024) , _systemic_audio_input_latency (0) , _systemic_audio_output_latency (0) , _hw_audio_input_latency (0) , _hw_audio_output_latency (0) , _dsp_load (0) , _processed_samples (0) { _instance_name = s_instance_name; pthread_mutex_init (&_process_callback_mutex, 0); pthread_mutex_init (&_freewheel_mutex, 0); pthread_cond_init (&_freewheel_signal, 0); _port_connection_queue.reserve (128); _pcmio = new CoreAudioPCM (); _midiio = new CoreMidiIo (); _pcmio->set_hw_changed_callback (hw_changed_callback_ptr, this); _pcmio->discover(); } CoreAudioBackend::~CoreAudioBackend () { delete _pcmio; _pcmio = 0; delete _midiio; _midiio = 0; clear_ports (); pthread_mutex_destroy (&_process_callback_mutex); pthread_mutex_destroy (&_freewheel_mutex); pthread_cond_destroy (&_freewheel_signal); } /* AUDIOBACKEND API */ std::string CoreAudioBackend::name () const { return X_("CoreAudio"); } bool CoreAudioBackend::is_realtime () const { return true; } std::vector CoreAudioBackend::enumerate_devices () const { _duplex_audio_device_status.clear(); std::map devices; _pcmio->duplex_device_list(devices); for (std::map::const_iterator i = devices.begin (); i != devices.end(); ++i) { if (_input_audio_device == "") _input_audio_device = i->second; if (_output_audio_device == "") _output_audio_device = i->second; _duplex_audio_device_status.push_back (DeviceStatus (i->second, true)); } return _duplex_audio_device_status; } std::vector CoreAudioBackend::enumerate_input_devices () const { _input_audio_device_status.clear(); std::map devices; _pcmio->input_device_list(devices); _input_audio_device_status.push_back (DeviceStatus (get_standard_device_name(DeviceNone), true)); for (std::map::const_iterator i = devices.begin (); i != devices.end(); ++i) { if (_input_audio_device == "") _input_audio_device = i->second; _input_audio_device_status.push_back (DeviceStatus (i->second, true)); } return _input_audio_device_status; } std::vector CoreAudioBackend::enumerate_output_devices () const { _output_audio_device_status.clear(); std::map devices; _pcmio->output_device_list(devices); _output_audio_device_status.push_back (DeviceStatus (get_standard_device_name(DeviceNone), true)); for (std::map::const_iterator i = devices.begin (); i != devices.end(); ++i) { if (_output_audio_device == "") _output_audio_device = i->second; _output_audio_device_status.push_back (DeviceStatus (i->second, true)); } return _output_audio_device_status; } std::vector CoreAudioBackend::available_sample_rates (const std::string& device) const { std::vector sr; _pcmio->available_sample_rates (name_to_id (device), sr); return sr; } std::vector CoreAudioBackend::available_sample_rates2 (const std::string& input_device, const std::string& output_device) const { std::vector sr; std::vector sr_in; std::vector sr_out; const uint32_t inp = name_to_id (input_device, Input); const uint32_t out = name_to_id (output_device, Output); if (inp == UINT32_MAX && out == UINT32_MAX) { return sr; } else if (inp == UINT32_MAX) { _pcmio->available_sample_rates (out, sr_out); return sr_out; } else if (out == UINT32_MAX) { _pcmio->available_sample_rates (inp, sr_in); return sr_in; } else { _pcmio->available_sample_rates (inp, sr_in); _pcmio->available_sample_rates (out, sr_out); // TODO allow to use different SR per device, tweak aggregate std::set_intersection (sr_in.begin(), sr_in.end(), sr_out.begin(), sr_out.end(), std::back_inserter(sr)); return sr; } } std::vector CoreAudioBackend::available_buffer_sizes (const std::string& device) const { std::vector bs; _pcmio->available_buffer_sizes (name_to_id (device), bs); return bs; } std::vector CoreAudioBackend::available_buffer_sizes2 (const std::string& input_device, const std::string& output_device) const { std::vector bs; std::vector bs_in; std::vector bs_out; const uint32_t inp = name_to_id (input_device, Input); const uint32_t out = name_to_id (output_device, Output); if (inp == UINT32_MAX && out == UINT32_MAX) { return bs; } else if (inp == UINT32_MAX) { _pcmio->available_buffer_sizes (out, bs_out); return bs_out; } else if (out == UINT32_MAX) { _pcmio->available_buffer_sizes (inp, bs_in); return bs_in; } else { _pcmio->available_buffer_sizes (inp, bs_in); _pcmio->available_buffer_sizes (out, bs_out); std::set_intersection (bs_in.begin(), bs_in.end(), bs_out.begin(), bs_out.end(), std::back_inserter(bs)); return bs; } } bool CoreAudioBackend::can_change_sample_rate_when_running () const { return false; } bool CoreAudioBackend::can_change_buffer_size_when_running () const { return true; } int CoreAudioBackend::set_device_name (const std::string& d) { int rv = 0; rv |= set_input_device_name (d); rv |= set_output_device_name (d); return rv; } int CoreAudioBackend::set_input_device_name (const std::string& d) { _input_audio_device = d; const float sr = _pcmio->current_sample_rate(name_to_id(_input_audio_device, Input)); if (sr > 0) { set_sample_rate(sr); } return 0; } int CoreAudioBackend::set_output_device_name (const std::string& d) { _output_audio_device = d; // TODO check SR. const float sr = _pcmio->current_sample_rate(name_to_id(_output_audio_device, Output)); if (sr > 0) { set_sample_rate(sr); } return 0; } int CoreAudioBackend::set_sample_rate (float sr) { std::vector srs = available_sample_rates2 (_input_audio_device, _output_audio_device); if (std::find(srs.begin(), srs.end(), sr) == srs.end()) { return -1; } _samplerate = sr; engine.sample_rate_change (sr); return 0; } int CoreAudioBackend::set_buffer_size (uint32_t bs) { if (bs <= 0 || bs >= _max_buffer_size) { return -1; } if (!_run) { _samples_per_period = bs; engine.buffer_size_change (bs); } _pcmio->set_samples_per_period(bs); if (_run) { pbd_mach_set_realtime_policy (_main_thread, 1e9 * bs / _samplerate, true); } for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { pbd_mach_set_realtime_policy (*i, 1e9 * bs / _samplerate, false); } return 0; } int CoreAudioBackend::set_interleaved (bool yn) { if (!yn) { return 0; } return -1; } int CoreAudioBackend::set_systemic_input_latency (uint32_t sl) { _systemic_audio_input_latency = sl; return 0; } int CoreAudioBackend::set_systemic_output_latency (uint32_t sl) { _systemic_audio_output_latency = sl; return 0; } /* Retrieving parameters */ std::string CoreAudioBackend::device_name () const { return ""; } std::string CoreAudioBackend::input_device_name () const { return _input_audio_device; } std::string CoreAudioBackend::output_device_name () const { return _output_audio_device; } float CoreAudioBackend::sample_rate () const { return _samplerate; } uint32_t CoreAudioBackend::buffer_size () const { return _samples_per_period; } bool CoreAudioBackend::interleaved () const { return false; } uint32_t CoreAudioBackend::systemic_input_latency () const { return _systemic_audio_input_latency; } uint32_t CoreAudioBackend::systemic_output_latency () const { return _systemic_audio_output_latency; } /* MIDI */ std::vector CoreAudioBackend::enumerate_midi_options () const { if (_midi_options.empty()) { _midi_options.push_back (_("CoreMidi")); _midi_options.push_back (get_standard_device_name(DeviceNone)); } return _midi_options; } int CoreAudioBackend::set_midi_option (const std::string& opt) { if (opt != get_standard_device_name(DeviceNone) && opt != _("CoreMidi")) { return -1; } _midi_driver_option = opt; return 0; } std::string CoreAudioBackend::midi_option () const { return _midi_driver_option; } void CoreAudioBackend::launch_control_app () { if (name_to_id (_input_audio_device) != UINT32_MAX) { _pcmio->launch_control_app(name_to_id(_input_audio_device, Input)); } if (name_to_id (_output_audio_device) != UINT32_MAX) { _pcmio->launch_control_app(name_to_id(_output_audio_device, Output)); } } /* State Control */ static void * pthread_freewheel (void *arg) { CoreAudioBackend *d = static_cast(arg); pthread_set_name ("CAFreewheel"); d->freewheel_thread (); pthread_exit (0); return 0; } static int process_callback_ptr (void *arg, const uint32_t n_samples, const uint64_t host_time) { CoreAudioBackend *d = static_cast (arg); return d->process_callback(n_samples, host_time); } int CoreAudioBackend::_start (bool for_latency_measurement) { AudioBackend::ErrorCode error_code = NoError; if ((!_active_ca || !_active_fw) && _run) { // recover from 'halted', reap threads stop(); } if (_active_ca || _active_fw || _run) { PBD::error << _("CoreAudioBackend: already active.") << endmsg; return BackendReinitializationError; } clear_ports (); uint32_t device1 = name_to_id(_input_audio_device, Input); uint32_t device2 = name_to_id(_output_audio_device, Output); assert(_active_ca == false); assert(_active_fw == false); _freewheel_ack = false; _reinit_thread_callback = true; _last_process_start = 0; _pcmio->set_error_callback (error_callback_ptr, this); _pcmio->set_halted_callback (halted_callback_ptr, this); _pcmio->set_buffer_size_callback (buffer_size_callback_ptr, this); _pcmio->set_sample_rate_callback (sample_rate_callback_ptr, this); _pcmio->pcm_start (device1, device2, _samplerate, _samples_per_period, process_callback_ptr, this, dsp_stats[AudioBackend::DeviceWait]); #ifndef NDEBUG printf("STATE: %d\n", _pcmio->state ()); #endif switch (_pcmio->state ()) { case 0: /* OK */ break; case -1: PBD::error << _("CoreAudioBackend: Invalid Device ID.") << endmsg; error_code = AudioDeviceInvalidError; break; case -2: PBD::error << _("CoreAudioBackend: Failed to resolve Device-Component by ID.") << endmsg; error_code = AudioDeviceNotAvailableError; break; case -3: PBD::error << _("CoreAudioBackend: failed to open device.") << endmsg; error_code = AudioDeviceOpenError; break; case -4: PBD::error << _("CoreAudioBackend: cannot set requested sample rate.") << endmsg; error_code = SampleRateNotSupportedError; break; case -5: PBD::error << _("CoreAudioBackend: cannot configure requested buffer size.") << endmsg; error_code = PeriodSizeNotSupportedError; break; case -6: PBD::error << _("CoreAudioBackend: unsupported sample format.") << endmsg; error_code = SampleFormatNotSupportedError; break; case -7: PBD::error << _("CoreAudioBackend: Failed to enable Device.") << endmsg; error_code = BackendInitializationError; // XXX break; case -8: PBD::error << _("CoreAudioBackend: Cannot allocate buffers, out-of-memory.") << endmsg; error_code = OutOfMemoryError; break; case -9: PBD::error << _("CoreAudioBackend: Failed to set device-property listeners.") << endmsg; error_code = BackendInitializationError; // XXX break; case -10: PBD::error << _("CoreAudioBackend: Setting Process Callback failed.") << endmsg; error_code = AudioDeviceIOError; break; case -11: PBD::error << _("CoreAudioBackend: cannot use requested period size.") << endmsg; error_code = PeriodSizeNotSupportedError; break; case -12: PBD::error << _("CoreAudioBackend: cannot create aggregate device.") << endmsg; error_code = DeviceConfigurationNotSupportedError; break; default: PBD::error << _("CoreAudioBackend: initialization failure.") << endmsg; error_code = BackendInitializationError; break; } if (_pcmio->state ()) { return error_code; } if (_pcmio->sample_rate() != _samplerate) { _samplerate = _pcmio->sample_rate(); engine.sample_rate_change (_samplerate); PBD::warning << _("CoreAudioBackend: sample rate does not match.") << endmsg; } _hw_audio_input_latency = _hw_audio_output_latency = 0; if (device1 != UINT32_MAX) { _hw_audio_input_latency = _pcmio->get_latency(device1, true); } if (device2 != UINT32_MAX) { _hw_audio_output_latency = _pcmio->get_latency(device2, false); } _measure_latency = for_latency_measurement; _preinit = true; _run = true; _port_change_flag.store (0); if (_midi_driver_option == _("CoreMidi")) { _midiio->set_enabled(true); _midiio->set_port_changed_callback(midi_port_change, this); _midiio->start(); // triggers port discovery, callback coremidi_rediscover() } if (register_system_audio_ports()) { PBD::error << _("CoreAudioBackend: failed to register system ports.") << endmsg; _run = false; return PortRegistrationError; } engine.sample_rate_change (_samplerate); engine.buffer_size_change (_samples_per_period); if (engine.reestablish_ports ()) { PBD::error << _("CoreAudioBackend: Could not re-establish ports.") << endmsg; _run = false; return PortReconnectError; } if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &_freeewheel_thread, pthread_freewheel, this)) { PBD::error << _("CoreAudioBackend: failed to create process thread.") << endmsg; delete _pcmio; _pcmio = 0; _run = false; return ProcessThreadStartError; } int timeout = 5000; while ((!_active_ca || !_active_fw) && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0) { PBD::error << _("CoreAudioBackend: failed to start.") << endmsg; } if (!_active_fw) { PBD::error << _("CoreAudioBackend: failed to start freewheeling thread.") << endmsg; _run = false; _pcmio->pcm_stop(); unregister_ports(); _active_ca = false; _active_fw = false; return FreewheelThreadStartError; } if (!_active_ca) { PBD::error << _("CoreAudioBackend: failed to start coreaudio.") << endmsg; stop(); _run = false; return ProcessThreadStartError; } engine.reconnect_ports (); // force an initial registration_callback() & latency re-compute _port_change_flag.store (1); _dsp_load_calc.reset (); // all systems go. _pcmio->set_xrun_callback (xrun_callback_ptr, this); _preinit = false; return NoError; } int CoreAudioBackend::stop () { void *status; if (!_run) { return 0; } _run = false; _pcmio->pcm_stop(); _midiio->set_port_changed_callback(NULL, NULL); _midiio->stop(); pthread_mutex_lock (&_freewheel_mutex); pthread_cond_signal (&_freewheel_signal); pthread_mutex_unlock (&_freewheel_mutex); if (pthread_join (_freeewheel_thread, &status)) { PBD::error << _("CoreAudioBackend: failed to terminate.") << endmsg; return -1; } unregister_ports(); _active_ca = false; _active_fw = false; // ?? return 0; } int CoreAudioBackend::freewheel (bool onoff) { if (onoff == _freewheeling) { return 0; } _freewheeling = onoff; // wake up freewheeling thread if (0 == pthread_mutex_trylock (&_freewheel_mutex)) { pthread_cond_signal (&_freewheel_signal); pthread_mutex_unlock (&_freewheel_mutex); } return 0; } float CoreAudioBackend::dsp_load () const { return 100.f * _dsp_load; } size_t CoreAudioBackend::raw_buffer_size (DataType t) { switch (t) { case DataType::AUDIO: return _samples_per_period * sizeof(Sample); case DataType::MIDI: return _max_buffer_size; // XXX not really limited } return 0; } /* Process time */ samplepos_t CoreAudioBackend::sample_time () { return _processed_samples; } samplepos_t CoreAudioBackend::sample_time_at_cycle_start () { return _processed_samples; } pframes_t CoreAudioBackend::samples_since_cycle_start () { if (!_active_ca || !_run || _freewheeling || _freewheel) { return 0; } if (_last_process_start == 0) { return 0; } const uint64_t now = AudioGetCurrentHostTime (); const int64_t elapsed_time_ns = AudioConvertHostTimeToNanos(now - _last_process_start); return std::max((pframes_t)0, (pframes_t)rint(1e-9 * elapsed_time_ns * _samplerate)); } uint32_t CoreAudioBackend::name_to_id(std::string device_name, DeviceFilter filter) const { uint32_t device_id = UINT32_MAX; std::map devices; switch (filter) { case Input: _pcmio->input_device_list (devices); break; case Output: _pcmio->output_device_list (devices); break; case Duplex: _pcmio->duplex_device_list (devices); break; case All: default: _pcmio->device_list (devices); break; } for (std::map::const_iterator i = devices.begin (); i != devices.end(); ++i) { if (i->second == device_name) { device_id = i->first; break; } } return device_id; } void * CoreAudioBackend::coreaudio_process_thread (void *arg) { ThreadData* td = reinterpret_cast (arg); if (pbd_mach_set_realtime_policy (pthread_self (), td->period_ns, false)) { DEBUG_TRACE (PBD::DEBUG::BackendThreads, "AudioEngine: process thread failed to set mach realtime policy.\n"); } #if MAC_OS_X_VERSION_MAX_ALLOWED >= 110000 if (td->_joined_workgroup) { /* have WG */ int res = os_workgroup_join (td->_workgroup, &td->_join_token); switch (res) { case 0: DEBUG_TRACE (PBD::DEBUG::BackendThreads, "AudioEngine: process thread joined AUHAL workgroup."); break; case EALREADY: DEBUG_TRACE (PBD::DEBUG::BackendThreads, "AudioEngine: process thread is already in a workgroup."); td->_joined_workgroup = false; break; case EINVAL: DEBUG_TRACE (PBD::DEBUG::BackendThreads, "AudioEngine: invalid workgroup for process thread."); td->_joined_workgroup = false; break; default: td->_joined_workgroup = false; DEBUG_TRACE (PBD::DEBUG::BackendThreads, "AudioEngine: process thread failed to join AUHAL workgroup."); break; } } #endif std::function f = td->f; f (); #if MAC_OS_X_VERSION_MAX_ALLOWED >= 110000 if (td->_joined_workgroup) { os_workgroup_leave (td->_workgroup, &td->_join_token); } #endif delete td; return 0; } int CoreAudioBackend::create_process_thread (std::function func) { pthread_t thread_id; ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC, 1e9 * _samples_per_period / _samplerate); #if MAC_OS_X_VERSION_MAX_ALLOWED >= 110000 if (_pcmio->workgroup (td->_workgroup)) { td->_joined_workgroup = true; } else { td->_joined_workgroup = false; } #endif if (pbd_realtime_pthread_create ("CoreAudio Proc", PBD_SCHED_FIFO, PBD_RT_PRI_PROC, PBD_RT_STACKSIZE_PROC, &thread_id, coreaudio_process_thread, td)) { if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, coreaudio_process_thread, td)) { PBD::error << _("AudioEngine: cannot create process thread.") << endmsg; return -1; } PBD::warning << _("AudioEngine: process thread failed to acquire realtime permissions.") << endmsg; } _threads.push_back (thread_id); return 0; } int CoreAudioBackend::join_process_threads () { int rv = 0; for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { void *status; if (pthread_join (*i, &status)) { PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg; rv -= 1; } } _threads.clear (); return rv; } bool CoreAudioBackend::in_process_thread () { if (pthread_equal (_main_thread, pthread_self()) != 0) { return true; } for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { return true; } } return false; } uint32_t CoreAudioBackend::process_thread_count () { return _threads.size (); } void CoreAudioBackend::update_latencies () { // trigger latency callback in RT thread (locked graph) port_connect_add_remove_callback(); } /* PORTENGINE API */ void* CoreAudioBackend::private_handle () const { return NULL; } const std::string& CoreAudioBackend::my_name () const { return _instance_name; } int CoreAudioBackend::register_system_audio_ports() { LatencyRange lr; const uint32_t a_ins = _pcmio->n_capture_channels (); const uint32_t a_out = _pcmio->n_playback_channels (); const uint32_t coreaudio_reported_input_latency = _pcmio->get_latency(name_to_id(_input_audio_device, Input), true); const uint32_t coreaudio_reported_output_latency = _pcmio->get_latency(name_to_id(_output_audio_device, Output), false); #ifndef NDEBUG printf("COREAUDIO LATENCY: i:%d, o:%d\n", coreaudio_reported_input_latency, coreaudio_reported_output_latency); #endif /* audio ports */ lr.min = lr.max = _measure_latency ? 0 : _systemic_audio_input_latency; for (uint32_t i = 0; i < a_ins; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:capture_%d", i+1); PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); BackendPortPtr cp = std::dynamic_pointer_cast(p); cp->set_hw_port_name (_pcmio->cached_port_name(i, true)); _system_inputs.push_back(cp); } lr.min = lr.max = _measure_latency ? 0 : _systemic_audio_output_latency; for (uint32_t i = 0; i < a_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:playback_%d", i+1); PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); BackendPortPtr cp = std::dynamic_pointer_cast(p); cp->set_hw_port_name (_pcmio->cached_port_name(i, false)); _system_outputs.push_back(cp); } return 0; } void CoreAudioBackend::coremidi_rediscover() { if (!_run) { return; } assert(_midi_driver_option == _("CoreMidi")); pthread_mutex_lock (&_process_callback_mutex); for (std::vector::iterator it = _system_midi_out.begin (); it != _system_midi_out.end ();) { bool found = false; for (size_t i = 0; i < _midiio->n_midi_outputs(); ++i) { if ((*it)->name() == _midiio->port_id(i, false)) { found = true; break; } } if (found) { ++it; } else { #ifndef NDEBUG printf("unregister MIDI Output: %s\n", (*it)->name().c_str()); #endif _port_change_flag.store (1); unregister_port((*it)); it = _system_midi_out.erase(it); } } for (std::vector::iterator it = _system_midi_in.begin (); it != _system_midi_in.end ();) { bool found = false; for (size_t i = 0; i < _midiio->n_midi_inputs(); ++i) { if ((*it)->name() == _midiio->port_id(i, true)) { found = true; break; } } if (found) { ++it; } else { #ifndef NDEBUG printf("unregister MIDI Input: %s\n", (*it)->name().c_str()); #endif _port_change_flag.store (1); unregister_port((*it)); it = _system_midi_in.erase(it); } } for (size_t i = 0; i < _midiio->n_midi_inputs(); ++i) { std::string name = _midiio->port_id(i, true); if (find_port_in(_system_midi_in, name)) { continue; } #ifndef NDEBUG printf("register MIDI Input: %s\n", name.c_str()); #endif PortPtr p = add_port(name, DataType::MIDI, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) { fprintf(stderr, "failed to register MIDI IN: %s\n", name.c_str()); continue; } LatencyRange lr; lr.min = lr.max = 0; // TODO add per-port midi-systemic latency set_latency_range (p, false, lr); BackendPortPtr pp = std::dynamic_pointer_cast(p); pp->set_hw_port_name(_midiio->port_name(i, true)); _system_midi_in.push_back(pp); _port_change_flag.store (1); } for (size_t i = 0; i < _midiio->n_midi_outputs(); ++i) { std::string name = _midiio->port_id(i, false); if (find_port_in(_system_midi_out, name)) { continue; } #ifndef NDEBUG printf("register MIDI OUT: %s\n", name.c_str()); #endif PortPtr p = add_port(name, DataType::MIDI, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) { fprintf(stderr, "failed to register MIDI OUT: %s\n", name.c_str()); continue; } LatencyRange lr; lr.min = lr.max = 0; // TODO add per-port midi-systemic latency set_latency_range (p, false, lr); BackendPortPtr pp = std::dynamic_pointer_cast(p); pp->set_hw_port_name(_midiio->port_name(i, false)); _system_midi_out.push_back(pp); _port_change_flag.store (1); } assert(_system_midi_out.size() == _midiio->n_midi_outputs()); assert(_system_midi_in.size() == _midiio->n_midi_inputs()); pthread_mutex_unlock (&_process_callback_mutex); } BackendPort* CoreAudioBackend::port_factory (std::string const & name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { BackendPort* port = 0; switch (type) { case DataType::AUDIO: port = new CoreAudioPort (*this, name, flags); break; case DataType::MIDI: port = new CoreMidiPort (*this, name, flags); break; default: PBD::error << string_compose (_("%1::register_port: Invalid Data Type."), _instance_name) << endmsg; return 0; } return port; } /* MIDI */ int CoreAudioBackend::midi_event_get ( pframes_t& timestamp, size_t& size, uint8_t const** buf, void* port_buffer, uint32_t event_index) { if (!buf || !port_buffer) return -1; CoreMidiBuffer& source = * static_cast(port_buffer); if (event_index >= source.size ()) { return -1; } CoreMidiEvent const& event = source[event_index]; timestamp = event.timestamp (); size = event.size (); *buf = event.data (); return 0; } int CoreAudioBackend::_midi_event_put ( void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size) { if (!buffer || !port_buffer) return -1; if (size >= MaxCoreMidiEventSize) { return -1; } CoreMidiBuffer& dst = * static_cast(port_buffer); #ifndef NDEBUG if (dst.size () && (pframes_t)dst.back ().timestamp () > timestamp) { // nevermind, ::get_buffer() sorts events fprintf (stderr, "CoreMidiBuffer: unordered event: %d > %d\n", (pframes_t)dst.back ().timestamp (), timestamp); } #endif dst.push_back (CoreMidiEvent (timestamp, buffer, size)); return 0; } uint32_t CoreAudioBackend::get_midi_event_count (void* port_buffer) { if (!port_buffer) return 0; return static_cast(port_buffer)->size (); } void CoreAudioBackend::midi_clear (void* port_buffer) { if (!port_buffer) return; CoreMidiBuffer * buf = static_cast(port_buffer); assert (buf); buf->clear (); } /* Monitoring */ bool CoreAudioBackend::can_monitor_input () const { return false; } int CoreAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool) { return -1; } int CoreAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool) { return -1; } bool CoreAudioBackend::monitoring_input (PortEngine::PortHandle) { return false; } /* Latency management */ void CoreAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range) { std::shared_ptr port = std::dynamic_pointer_cast (port_handle); if (!valid_port (port)) { DEBUG_TRACE (PBD::DEBUG::BackendPorts, "CoreAudioBackend::set_latency_range (): invalid port."); return; } port->set_latency_range (latency_range, for_playback); } LatencyRange CoreAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback) { std::shared_ptr port = std::dynamic_pointer_cast (port_handle); LatencyRange r; if (!valid_port (port)) { DEBUG_TRACE (PBD::DEBUG::BackendPorts, "CoreAudioBackend::get_latency_range (): invalid port."); r.min = 0; r.max = 0; return r; } r = port->latency_range (for_playback); if (port->is_physical() && port->is_terminal()) { if (port->type() == DataType::AUDIO) { if (port->is_input() && for_playback) { r.min += _samples_per_period + _hw_audio_input_latency; r.max += _samples_per_period + _hw_audio_input_latency; } if (port->is_output() && !for_playback) { r.min += _samples_per_period + _hw_audio_output_latency; r.max += _samples_per_period + _hw_audio_output_latency; } } else { if (port->is_input() && for_playback) { //r.min += _samples_per_period; //r.max += _samples_per_period; } if (port->is_output() && !for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } } } return r; } /* Getting access to the data buffer for a port */ void* CoreAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes) { std::shared_ptr port = std::dynamic_pointer_cast (port_handle); assert (port); return port->get_buffer (nframes); } void CoreAudioBackend::pre_process () { bool connections_changed = false; bool ports_changed = false; if (!pthread_mutex_trylock (&_port_callback_mutex)) { int canderef (1); if (_port_change_flag.compare_exchange_strong (canderef, 0)) { ports_changed = true; } if (!_port_connection_queue.empty ()) { connections_changed = true; } process_connection_queue_locked (manager); pthread_mutex_unlock (&_port_callback_mutex); } if (ports_changed) { manager.registration_callback(); } if (connections_changed) { manager.graph_order_callback(); } if (connections_changed || ports_changed) { update_system_port_latencies (); engine.latency_callback(false); engine.latency_callback(true); } } void CoreAudioBackend::reset_midi_parsers () { for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) { std::shared_ptr port = std::dynamic_pointer_cast(*it); if (port) { port->reset_parser (); } } } void * CoreAudioBackend::freewheel_thread () { _active_fw = true; bool first_run = false; /* Freewheeling - use for export. The first call to * engine.process_callback() after engine.freewheel_callback will * if the first export cycle. * For reliable precise export timing, the calls need to be in sync. * * Furthermore we need to make sure the registered process thread * is correct. * * _freewheeling = GUI thread state as set by ::freewheel() * _freewheel = in sync here (export thread) */ pthread_mutex_lock (&_freewheel_mutex); while (_run) { // check if we should run, if (_freewheeling != _freewheel) { if (!_freewheeling) { // prepare leaving freewheeling mode _freewheel = false; // first mark as disabled _reinit_thread_callback = true; // hand over _main_thread _freewheel_ack = false; // prepare next handshake reset_midi_parsers (); _midiio->set_enabled(true); engine.freewheel_callback (_freewheeling); } else { first_run = true; _freewheel = true; } } if (!_freewheel || !_freewheel_ack) { // wait for a change, we use a timed wait to // terminate early in case some error sets _run = 0 struct timeval tv; struct timespec ts; gettimeofday (&tv, NULL); ts.tv_sec = tv.tv_sec + 3; ts.tv_nsec = 0; pthread_cond_timedwait (&_freewheel_signal, &_freewheel_mutex, &ts); continue; } if (first_run) { // tell the engine we're ready to GO. engine.freewheel_callback (_freewheeling); first_run = false; _main_thread = pthread_self(); AudioEngine::thread_init_callback (this); _midiio->set_enabled(false); reset_midi_parsers (); pbd_mach_set_realtime_policy (_main_thread, 1e9 * _samples_per_period / _samplerate, true); } // process port updates first in every cycle. pre_process(); // prevent coreaudio device changes pthread_mutex_lock (&_process_callback_mutex); /* Freewheelin' */ // clear input buffers for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample)); } for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) { static_cast((*it)->get_buffer(0))->clear (); } _last_process_start = 0; if (engine.process_callback (_samples_per_period)) { pthread_mutex_unlock (&_process_callback_mutex); break; } pthread_mutex_unlock (&_process_callback_mutex); _dsp_load = 1.0; Glib::usleep (100); // don't hog cpu } pthread_mutex_unlock (&_freewheel_mutex); _active_fw = false; if (_run) { // engine.process_callback() returner error engine.halted_callback("CoreAudio Freehweeling aborted."); } return 0; } int CoreAudioBackend::process_callback (const uint32_t n_samples, const uint64_t host_time) { uint32_t i = 0; uint64_t clock1; PBD::TimerRAII tr (dsp_stats[RunLoop]); _active_ca = true; if (_run && _freewheel && !_freewheel_ack) { // acknowledge freewheeling; hand-over thread ID pthread_mutex_lock (&_freewheel_mutex); if (_freewheel) _freewheel_ack = true; pthread_cond_signal (&_freewheel_signal); pthread_mutex_unlock (&_freewheel_mutex); } if (!_run || _freewheel || _preinit) { // NB if we return 1, the output is // zeroed by the coreaudio callback _dsp_load_calc.reset (); return 1; } if (_reinit_thread_callback || _main_thread != pthread_self()) { _reinit_thread_callback = false; _main_thread = pthread_self(); AudioEngine::thread_init_callback (this); pbd_mach_set_realtime_policy (_main_thread, 1e9 * _samples_per_period / _samplerate, true); } if (pthread_mutex_trylock (&_process_callback_mutex)) { // block while devices are added/removed #ifndef NDEBUG printf("Xrun due to device change\n"); #endif engine.Xrun(); return 1; } /* port-connection change */ pre_process(); clock1 = g_get_monotonic_time(); //_midiio->start_cycle (AudioGetCurrentHostTime (), 1e9 * n_samples / _samplerate); _midiio->start_cycle (host_time, 1e9 * n_samples / _samplerate); _last_process_start = host_time; /* get midi */ i=0; for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) { std::shared_ptr port = std::dynamic_pointer_cast (*it); if (!port) { continue; } uint64_t time_ns; uint8_t data[MaxCoreMidiEventSize]; size_t size = sizeof(data); port->clear_events (); while (_midiio->recv_event (i, time_ns, data, size)) { pframes_t time = floor((float) time_ns * _samplerate * 1e-9); assert (time < n_samples); port->parse_events (time, data, size); size = sizeof(data); /* prepare for next call to recv_event */ } } /* get audio */ i = 0; for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++i) { _pcmio->get_capture_channel (i, (float*)(*it)->get_buffer(n_samples), n_samples); } /* clear output buffers */ for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) { memset ((*it)->get_buffer (n_samples), 0, n_samples * sizeof (Sample)); } if (engine.process_callback (n_samples)) { fprintf(stderr, "ENGINE PROCESS ERROR\n"); //_pcmio->pcm_stop (); _active_ca = false; pthread_mutex_unlock (&_process_callback_mutex); return -1; } /* mixdown midi */ for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) { (*it)->get_buffer(0); } /* queue outgoing midi */ i = 0; for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it, ++i) { const CoreMidiBuffer *src = std::dynamic_pointer_cast(*it)->const_buffer(); for (CoreMidiBuffer::const_iterator mit = src->begin (); mit != src->end (); ++mit) { _midiio->send_event (i, mit->timestamp () * 1e9 / _samplerate , mit->data (), mit->size ()); } } /* write back audio */ i = 0; for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it, ++i) { _pcmio->set_playback_channel (i, (float const*)(*it)->get_buffer (n_samples), n_samples); } _processed_samples += n_samples; /* calc DSP load. */ _dsp_load_calc.set_max_time (_samplerate, _samples_per_period); _dsp_load_calc.set_start_timestamp_us (clock1); _dsp_load_calc.set_stop_timestamp_us (g_get_monotonic_time()); _dsp_load = _dsp_load_calc.get_dsp_load (); pthread_mutex_unlock (&_process_callback_mutex); return 0; } void CoreAudioBackend::unset_callbacks () { _pcmio->set_error_callback (NULL, NULL); _pcmio->set_halted_callback (NULL, NULL); _pcmio->set_sample_rate_callback (NULL, NULL); _pcmio->set_xrun_callback (NULL, NULL); _midiio->set_port_changed_callback(NULL, NULL); } void CoreAudioBackend::error_callback () { unset_callbacks (); engine.halted_callback("CoreAudio Process aborted."); _active_ca = false; } void CoreAudioBackend::halted_callback () { unset_callbacks (); engine.halted_callback("Audio device was disconnected or shut down."); stop (); } void CoreAudioBackend::xrun_callback () { engine.Xrun (); } void CoreAudioBackend::buffer_size_callback () { uint32_t bs = _pcmio->samples_per_period(); if (bs == _samples_per_period) { return; } _samples_per_period = bs; engine.buffer_size_change (_samples_per_period); engine.update_latencies (); } void CoreAudioBackend::sample_rate_callback () { if (_preinit) { #ifndef NDEBUG printf("Samplerate change during initialization.\n"); #endif return; } unset_callbacks (); engine.halted_callback("Sample Rate Changed."); stop(); } void CoreAudioBackend::hw_changed_callback () { _reinit_thread_callback = true; engine.request_device_list_update(); } /******************************************************************************/ static std::shared_ptr _instance; static std::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { "CoreAudio", instantiate, deinstantiate, backend_factory, already_configured, available }; static std::shared_ptr backend_factory (AudioEngine& e) { if (!_instance) { _instance.reset (new CoreAudioBackend (e, _descriptor)); } return _instance; } static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; return 0; } static int deinstantiate () { _instance.reset (); return 0; } static bool already_configured () { return false; } static bool available () { return true; } extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; } /******************************************************************************/ CoreAudioPort::CoreAudioPort (CoreAudioBackend &b, const std::string& name, PortFlags flags) : BackendPort (b, name, flags) { memset (_buffer, 0, sizeof (_buffer)); mlock (_buffer, sizeof (_buffer)); } CoreAudioPort::~CoreAudioPort () { } void* CoreAudioPort::get_buffer (pframes_t n_samples) { if (is_input ()) { const std::set& connections = get_connections (); std::set::const_iterator it = connections.begin (); if (it == connections.end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { std::shared_ptr source = std::dynamic_pointer_cast(*it); assert (source && source->is_output ()); memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); while (++it != connections.end ()) { source = std::dynamic_pointer_cast(*it); assert (source && source->is_output ()); Sample* dst = buffer (); const Sample* src = source->const_buffer (); for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) { *dst += *src; } } } } return _buffer; } CoreMidiPort::CoreMidiPort (CoreAudioBackend &b, const std::string& name, PortFlags flags) : BackendPort (b, name, flags) , _n_periods (1) , _bufperiod (0) , _event (0, 0) , _first_time(true) , _unbuffered_bytes(0) , _total_bytes(0) , _expected_bytes(0) , _status_byte(0) { _buffer[0].clear (); _buffer[1].clear (); _buffer[0].reserve (256); _buffer[1].reserve (256); } CoreMidiPort::~CoreMidiPort () { } struct MidiEventSorter { bool operator() (CoreMidiEvent const& a, CoreMidiEvent const& b) { return a < b; } }; void* CoreMidiPort::get_buffer (pframes_t /* nframes */) { if (is_input ()) { (_buffer[_bufperiod]).clear (); const std::set& connections = get_connections (); for (std::set::const_iterator i = connections.begin (); i != connections.end (); ++i) { const CoreMidiBuffer * src = std::dynamic_pointer_cast(*i)->const_buffer (); for (CoreMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { (_buffer[_bufperiod]).push_back (*it); } } std::stable_sort ((_buffer[_bufperiod]).begin (), (_buffer[_bufperiod]).end (), MidiEventSorter()); } return &(_buffer[_bufperiod]); } int CoreMidiPort::queue_event ( void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size) { const int ret = CoreAudioBackend::_midi_event_put (port_buffer, timestamp, buffer, size); if (!ret) { /* success */ _event._pending = false; } return ret; } void CoreMidiPort::reset_parser () { _event._pending = false; _first_time = true; _unbuffered_bytes = 0; _total_bytes = 0; _expected_bytes = 0; _status_byte = 0; } void CoreMidiPort::clear_events () { CoreMidiBuffer* mbuf = static_cast(get_buffer(0)); mbuf->clear(); } void CoreMidiPort::parse_events (const uint64_t time, const uint8_t *data, const size_t size) { CoreMidiBuffer* mbuf = static_cast(get_buffer(0)); if (_event._pending) { if (queue_event (mbuf, _event._time, _parser_buffer, _event._size)) { return; } } for (size_t i = 0; i < size; ++i) { if (_first_time && !(data[i] & 0x80)) { continue; } _first_time = false; if (process_byte(time, data[i])) { if (queue_event (mbuf, _event._time, _parser_buffer, _event._size)) { return; } } } } // based on JackMidiRawInputWriteQueue by Devin Anderson // bool CoreMidiPort::process_byte(const uint64_t time, const uint8_t byte) { if (byte >= 0xf8) { // Realtime if (byte == 0xfd) { return false; } _parser_buffer[0] = byte; prepare_byte_event(time, byte); return true; } if (byte == 0xf7) { // Sysex end if (_status_byte == 0xf0) { record_byte(byte); return prepare_buffered_event(time); } _total_bytes = 0; _unbuffered_bytes = 0; _expected_bytes = 0; _status_byte = 0; return false; } if (byte >= 0x80) { // Non-realtime status byte if (_total_bytes) { printf ("CoreMidiPort: discarded bogus midi message\n"); #if 0 for (size_t i=0; i < _total_bytes; ++i) { printf("%02x ", _parser_buffer[i]); } printf("\n"); #endif _total_bytes = 0; _unbuffered_bytes = 0; } _status_byte = byte; switch (byte & 0xf0) { case 0x80: case 0x90: case 0xa0: case 0xb0: case 0xe0: // Note On, Note Off, Aftertouch, Control Change, Pitch Wheel _expected_bytes = 3; break; case 0xc0: case 0xd0: // Program Change, Channel Pressure _expected_bytes = 2; break; case 0xf0: switch (byte) { case 0xf0: // Sysex _expected_bytes = 0; break; case 0xf1: case 0xf3: // MTC Quarter Frame, Song Select _expected_bytes = 2; break; case 0xf2: // Song Position _expected_bytes = 3; break; case 0xf4: case 0xf5: // Undefined _expected_bytes = 0; _status_byte = 0; return false; case 0xf6: // Tune Request prepare_byte_event(time, byte); _expected_bytes = 0; _status_byte = 0; return true; } } record_byte(byte); return false; } // Data byte if (! _status_byte) { // Data bytes without a status will be discarded. _total_bytes++; _unbuffered_bytes++; return false; } if (! _total_bytes) { record_byte(_status_byte); } record_byte(byte); return (_total_bytes == _expected_bytes) ? prepare_buffered_event(time) : false; } CoreMidiEvent::CoreMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size) : _size (size) , _timestamp (timestamp) { if (size > 0 && size < MaxCoreMidiEventSize) { memcpy (_data, data, size); } } CoreMidiEvent::CoreMidiEvent (const CoreMidiEvent& other) : _size (other.size ()) , _timestamp (other.timestamp ()) { if (other._size > 0) { assert (other._size < MaxCoreMidiEventSize); memcpy (_data, other._data, other._size); } };