/* a-comp * Copyright (C) 2016 Damien Zammit * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #ifdef LV2_EXTENDED #include #include "ardour/lv2_extensions.h" #endif #include "lv2/lv2plug.in/ns/lv2core/lv2.h" #define ACOMP_URI "urn:ardour:a-comp" #define ACOMP_STEREO_URI "urn:ardour:a-comp#stereo" typedef enum { ACOMP_ATTACK = 0, ACOMP_RELEASE, ACOMP_KNEE, ACOMP_RATIO, ACOMP_THRESHOLD, ACOMP_MAKEUP, ACOMP_GAINR, ACOMP_OUTLEVEL, ACOMP_SIDECHAIN, ACOMP_INPUT, ACOMP_SC, ACOMP_OUTPUT, } PortIndexMono; typedef enum { ACOMP_STEREO_ATTACK = 0, ACOMP_STEREO_RELEASE, ACOMP_STEREO_KNEE, ACOMP_STEREO_RATIO, ACOMP_STEREO_THRESHOLD, ACOMP_STEREO_MAKEUP, ACOMP_STEREO_GAINR, ACOMP_STEREO_OUTLEVEL, ACOMP_STEREO_SIDECHAIN, ACOMP_STEREO_INPUT0, ACOMP_STEREO_INPUT1, ACOMP_STEREO_SC, ACOMP_STEREO_OUTPUT0, ACOMP_STEREO_OUTPUT1, } PortIndexStereo; typedef struct { float* attack; float* release; float* knee; float* ratio; float* thresdb; float* makeup; float* gainr; float* outlevel; float* sidechain; float* input0; float* input1; float* sc; float* output0; float* output1; float srate; float old_yl; float old_y1; float old_yg; #ifdef LV2_EXTENDED bool need_expose; LV2_Inline_Display_Image_Surface surf; cairo_surface_t* display; LV2_Inline_Display* queue_draw; uint32_t w, h; /* ports pointers are only valid during run so we'll * have to cache them for the display, besides * we do want to check for changes */ float v_knee; float v_ratio; float v_thresdb; float v_lvl; float v_lvl_in; float v_lvl_out; #endif } AComp; static LV2_Handle instantiate(const LV2_Descriptor* descriptor, double rate, const char* bundle_path, const LV2_Feature* const* features) { AComp* acomp = (AComp*)calloc(1, sizeof(AComp)); for (int i=0; features[i]; ++i) { #ifdef LV2_EXTENDED if (!strcmp(features[i]->URI, LV2_INLINEDISPLAY__queue_draw)) { acomp->queue_draw = (LV2_Inline_Display*) features[i]->data; } #endif } acomp->srate = rate; acomp->old_yl=acomp->old_y1=acomp->old_yg=0.f; acomp->need_expose = true; return (LV2_Handle)acomp; } static void connect_port_mono(LV2_Handle instance, uint32_t port, void* data) { AComp* acomp = (AComp*)instance; switch ((PortIndexMono)port) { case ACOMP_ATTACK: acomp->attack = (float*)data; break; case ACOMP_RELEASE: acomp->release = (float*)data; break; case ACOMP_KNEE: acomp->knee = (float*)data; break; case ACOMP_RATIO: acomp->ratio = (float*)data; break; case ACOMP_THRESHOLD: acomp->thresdb = (float*)data; break; case ACOMP_MAKEUP: acomp->makeup = (float*)data; break; case ACOMP_GAINR: acomp->gainr = (float*)data; break; case ACOMP_OUTLEVEL: acomp->outlevel = (float*)data; break; case ACOMP_SIDECHAIN: acomp->sidechain = (float*)data; break; case ACOMP_INPUT: acomp->input0 = (float*)data; break; case ACOMP_SC: acomp->sc = (float*)data; break; case ACOMP_OUTPUT: acomp->output0 = (float*)data; break; } } static void connect_port_stereo(LV2_Handle instance, uint32_t port, void* data) { AComp* acomp = (AComp*)instance; switch ((PortIndexStereo)port) { case ACOMP_STEREO_ATTACK: acomp->attack = (float*)data; break; case ACOMP_STEREO_RELEASE: acomp->release = (float*)data; break; case ACOMP_STEREO_KNEE: acomp->knee = (float*)data; break; case ACOMP_STEREO_RATIO: acomp->ratio = (float*)data; break; case ACOMP_STEREO_THRESHOLD: acomp->thresdb = (float*)data; break; case ACOMP_STEREO_MAKEUP: acomp->makeup = (float*)data; break; case ACOMP_STEREO_GAINR: acomp->gainr = (float*)data; break; case ACOMP_STEREO_OUTLEVEL: acomp->outlevel = (float*)data; break; case ACOMP_STEREO_SIDECHAIN: acomp->sidechain = (float*)data; break; case ACOMP_STEREO_INPUT0: acomp->input0 = (float*)data; break; case ACOMP_STEREO_INPUT1: acomp->input1 = (float*)data; break; case ACOMP_STEREO_SC: acomp->sc = (float*)data; break; case ACOMP_STEREO_OUTPUT0: acomp->output0 = (float*)data; break; case ACOMP_STEREO_OUTPUT1: acomp->output1 = (float*)data; break; } } // Force already-denormal float value to zero static inline float sanitize_denormal(float value) { if (!isnormal(value)) { value = 0.f; } return value; } static inline float from_dB(float gdb) { return (exp(gdb/20.f*log(10.f))); } static inline float to_dB(float g) { return (20.f*log10(g)); } static void activate(LV2_Handle instance) { AComp* acomp = (AComp*)instance; *(acomp->gainr) = 0.0f; *(acomp->outlevel) = -45.0f; acomp->old_yl=acomp->old_y1=acomp->old_yg=0.f; } static void run_mono(LV2_Handle instance, uint32_t n_samples) { AComp* acomp = (AComp*)instance; const float* const input = acomp->input0; const float* const sc = acomp->sc; float* const output = acomp->output0; float srate = acomp->srate; float width = (6.f * *(acomp->knee)) + 0.01; float cdb=0.f; float attack_coeff = exp(-1000.f/(*(acomp->attack) * srate)); float release_coeff = exp(-1000.f/(*(acomp->release) * srate)); float max = 0.f; float lgaininp = 0.f; float Lgain = 1.f; float Lxg, Lxl, Lyg, Lyl, Ly1; int usesidechain = (*(acomp->sidechain) < 0.5) ? 0 : 1; uint32_t i; float ingain; float in0; float sc0; float ratio = *(acomp->ratio); float thresdb = *(acomp->thresdb); #ifdef LV2_EXTENDED if (acomp->v_knee != *acomp->knee) { acomp->v_knee = *acomp->knee; acomp->need_expose = true; } if (acomp->v_ratio != *acomp->ratio) { acomp->v_ratio = *acomp->ratio; acomp->need_expose = true; } if (acomp->v_thresdb != *acomp->thresdb) { acomp->v_thresdb = *acomp->thresdb; acomp->need_expose = true; } #endif float in_peak = 0; for (i = 0; i < n_samples; i++) { in0 = input[i]; sc0 = sc[i]; ingain = usesidechain ? fabs(sc0) : fabs(in0); Lyg = 0.f; Lxg = (ingain==0.f) ? -160.f : to_dB(ingain); Lxg = sanitize_denormal(Lxg); Lyg = Lxg + (1.f/ratio-1.f)*(Lxg-thresdb+width/2.f)*(Lxg-thresdb+width/2.f)/(2.f*width); if (2.f*(Lxg-thresdb) < -width) { Lyg = Lxg; } else { Lyg = thresdb + (Lxg-thresdb)/ratio; Lyg = sanitize_denormal(Lyg); } Lxl = Lxg - Lyg; acomp->old_y1 = sanitize_denormal(acomp->old_y1); acomp->old_yl = sanitize_denormal(acomp->old_yl); Ly1 = fmaxf(Lxl, release_coeff * acomp->old_y1+(1.f-release_coeff)*Lxl); Lyl = attack_coeff * acomp->old_yl+(1.f-attack_coeff)*Ly1; Ly1 = sanitize_denormal(Ly1); Lyl = sanitize_denormal(Lyl); cdb = -Lyl; Lgain = from_dB(cdb); *(acomp->gainr) = Lyl; if (ingain > in_peak) { in_peak = ingain; } lgaininp = in0 * Lgain; output[i] = lgaininp * from_dB(*(acomp->makeup)); max = (fabsf(output[i]) > max) ? fabsf(output[i]) : sanitize_denormal(max); // TODO re-use local variables on stack // store values back to acomp at the end of the inner-loop acomp->old_yl = Lyl; acomp->old_y1 = Ly1; acomp->old_yg = Lyg; } *(acomp->outlevel) = (max < 0.0056f) ? -45.f : to_dB(max); #ifdef LV2_EXTENDED acomp->v_lvl += .1 * (in_peak - acomp->v_lvl); // crude LPF TODO use n_samples/rate TC const float v_lvl_in = (acomp->v_lvl < 0.001f) ? -60.f : to_dB(acomp->v_lvl); const float v_lvl_out = (max < 0.001f) ? -60.f : to_dB(max); if (fabsf (acomp->v_lvl_out - v_lvl_out) >= 1 || fabsf (acomp->v_lvl_in - v_lvl_in) >= 1) { // >= 1dB difference acomp->need_expose = true; acomp->v_lvl_in = v_lvl_in; acomp->v_lvl_out = v_lvl_out - *acomp->makeup; } if (acomp->need_expose && acomp->queue_draw) { acomp->need_expose = false; acomp->queue_draw->queue_draw (acomp->queue_draw->handle); } #endif } static void run_stereo(LV2_Handle instance, uint32_t n_samples) { AComp* acomp = (AComp*)instance; const float* const input0 = acomp->input0; const float* const input1 = acomp->input1; const float* const sc = acomp->sc; float* const output0 = acomp->output0; float* const output1 = acomp->output1; float srate = acomp->srate; float width = (6.f * *(acomp->knee)) + 0.01; float cdb=0.f; float attack_coeff = exp(-1000.f/(*(acomp->attack) * srate)); float release_coeff = exp(-1000.f/(*(acomp->release) * srate)); float max = 0.f; float lgaininp = 0.f; float rgaininp = 0.f; float Lgain = 1.f; float Lxg, Lxl, Lyg, Lyl, Ly1; int usesidechain = (*(acomp->sidechain) < 0.5) ? 0 : 1; uint32_t i; float ingain; float in0; float in1; float sc0; float maxabslr; float ratio = *(acomp->ratio); float thresdb = *(acomp->thresdb); #ifdef LV2_EXTENDED if (acomp->v_knee != *acomp->knee) { acomp->v_knee = *acomp->knee; acomp->need_expose = true; } if (acomp->v_ratio != *acomp->ratio) { acomp->v_ratio = *acomp->ratio; acomp->need_expose = true; } if (acomp->v_thresdb != *acomp->thresdb) { acomp->v_thresdb = *acomp->thresdb; acomp->need_expose = true; } #endif float in_peak = 0; for (i = 0; i < n_samples; i++) { in0 = input0[i]; in1 = input1[i]; sc0 = sc[i]; maxabslr = fmaxf(fabs(in0), fabs(in1)); ingain = usesidechain ? fabs(sc0) : maxabslr; Lyg = 0.f; Lxg = (ingain==0.f) ? -160.f : to_dB(ingain); Lxg = sanitize_denormal(Lxg); Lyg = Lxg + (1.f/ratio-1.f)*(Lxg-thresdb+width/2.f)*(Lxg-thresdb+width/2.f)/(2.f*width); if (2.f*(Lxg-thresdb) < -width) { Lyg = Lxg; } else { Lyg = thresdb + (Lxg-thresdb)/ratio; Lyg = sanitize_denormal(Lyg); } Lxl = Lxg - Lyg; acomp->old_y1 = sanitize_denormal(acomp->old_y1); acomp->old_yl = sanitize_denormal(acomp->old_yl); Ly1 = fmaxf(Lxl, release_coeff * acomp->old_y1+(1.f-release_coeff)*Lxl); Lyl = attack_coeff * acomp->old_yl+(1.f-attack_coeff)*Ly1; Ly1 = sanitize_denormal(Ly1); Lyl = sanitize_denormal(Lyl); cdb = -Lyl; Lgain = from_dB(cdb); *(acomp->gainr) = Lyl; if (ingain > in_peak) { in_peak = ingain; } lgaininp = in0 * Lgain; rgaininp = in1 * Lgain; output0[i] = lgaininp * from_dB(*(acomp->makeup)); output1[i] = rgaininp * from_dB(*(acomp->makeup)); max = (fmaxf(fabs(output0[i]), fabs(output1[i])) > max) ? fmaxf(fabs(output0[i]), fabs(output1[i])) : sanitize_denormal(max); // TODO re-use local variables on stack // store values back to acomp at the end of the inner-loop acomp->old_yl = Lyl; acomp->old_y1 = Ly1; acomp->old_yg = Lyg; } *(acomp->outlevel) = (max < 0.0056f) ? -45.f : to_dB(max); #ifdef LV2_EXTENDED acomp->v_lvl += .1 * (in_peak - acomp->v_lvl); // crude LPF TODO use n_samples/rate TC const float v_lvl_in = (acomp->v_lvl < 0.001f) ? -60.f : to_dB(acomp->v_lvl); const float v_lvl_out = (max < 0.001f) ? -60.f : to_dB(max); if (fabsf (acomp->v_lvl_out - v_lvl_out) >= 1 || fabsf (acomp->v_lvl_in - v_lvl_in) >= 1) { // >= 1dB difference acomp->need_expose = true; acomp->v_lvl_in = v_lvl_in; acomp->v_lvl_out = v_lvl_out - *acomp->makeup; } if (acomp->need_expose && acomp->queue_draw) { acomp->need_expose = false; acomp->queue_draw->queue_draw (acomp->queue_draw->handle); } #endif } static void deactivate(LV2_Handle instance) { activate(instance); } static void cleanup(LV2_Handle instance) { #ifdef LV2_EXTENDED AComp* acomp = (AComp*)instance; if (acomp->display) { cairo_surface_destroy (acomp->display); } #endif free(instance); } #ifndef MIN #define MIN(A,B) ((A) < (B)) ? (A) : (B) #endif #ifdef LV2_EXTENDED static float comp_curve (AComp* self, float xg) { const float knee = self->v_knee; const float ratio = self->v_ratio; const float thresdb = self->v_thresdb; const float width = 6.f * knee + 0.01f; float yg = 0.f; if (2.f * (xg - thresdb) < -width) { yg = xg; } else if (2.f * fabs (xg - thresdb) <= width) { yg = xg + (1.f / ratio - 1.f ) * (xg - thresdb + width / 2.f) * (xg - thresdb + width / 2.f) / (2.f * width); } else if (2.f * (xg - thresdb) > width) { yg = thresdb + (xg - thresdb) / ratio; } return yg; } static LV2_Inline_Display_Image_Surface * render_inline (LV2_Handle instance, uint32_t w, uint32_t max_h) { AComp* self = (AComp*)instance; uint32_t h = MIN (w, max_h); if (!self->display || self->w != w || self->h != h) { if (self->display) cairo_surface_destroy(self->display); self->display = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, w, h); self->w = w; self->h = h; } cairo_t* cr = cairo_create (self->display); // clear background cairo_rectangle (cr, 0, 0, w, h); cairo_set_source_rgba (cr, .2, .2, .2, 1.0); cairo_fill (cr); cairo_set_line_width(cr, 1.0); // draw grid 10dB steps const double dash1[] = {1, 2}; const double dash2[] = {1, 3}; cairo_save (cr); cairo_set_line_cap(cr, CAIRO_LINE_CAP_ROUND); cairo_set_dash(cr, dash2, 2, 2); cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 0.5); for (uint32_t d = 1; d < 6; ++d) { const float x = -.5 + floorf (w * (d * 10.f / 60.f)); const float y = -.5 + floorf (h * (d * 10.f / 60.f)); cairo_move_to (cr, x, 0); cairo_line_to (cr, x, h); cairo_stroke (cr); cairo_move_to (cr, 0, y); cairo_line_to (cr, w, y); cairo_stroke (cr); } if (self->v_thresdb < 0) { cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 1.0); const float y = -.5 + floorf (h * (self->v_thresdb / -60.f)); cairo_set_dash(cr, dash1, 2, 2); cairo_move_to (cr, 0, y); cairo_line_to (cr, w, y); cairo_stroke (cr); cairo_move_to (cr, 0, h); cairo_line_to (cr, w, 0); cairo_stroke (cr); } cairo_restore (cr); // draw curve cairo_set_source_rgba (cr, .8, .8, .8, 1.0); cairo_move_to (cr, 0, h); for (uint32_t x = 0; x < w; ++x) { // plot -60..0 dB const float x_db = 60.f * (-1.f + x / (float)w); const float y_db = comp_curve (self, x_db); const float y = h * (y_db / -60.f); cairo_line_to (cr, x, y); } cairo_stroke_preserve (cr); cairo_line_to (cr, w, h); cairo_close_path (cr); cairo_clip (cr); // draw signal level & reduction/gradient const float top = comp_curve (self, 0); cairo_pattern_t* pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, h); if (top > self->v_thresdb) { cairo_pattern_add_color_stop_rgba (pat, 0.0, 0.8, 0.1, 0.1, 0.5); cairo_pattern_add_color_stop_rgba (pat, top / -60.f, 0.8, 0.1, 0.1, 0.5); } if (self->v_knee > 0) { cairo_pattern_add_color_stop_rgba (pat, (self->v_thresdb / -60.f), 0.7, 0.7, 0.2, 0.5); cairo_pattern_add_color_stop_rgba (pat, ((self->v_thresdb - self->v_knee) / -60.f), 0.5, 0.5, 0.5, 0.5); } else { cairo_pattern_add_color_stop_rgba (pat, (self->v_thresdb / -60.f), 0.7, 0.7, 0.2, 0.5); cairo_pattern_add_color_stop_rgba (pat, ((self->v_thresdb - .01) / -60.f), 0.5, 0.5, 0.5, 0.5); } cairo_pattern_add_color_stop_rgba (pat, 1.0, 0.5, 0.5, 0.5, 0.5); // maybe cut off at x-position? const float x = w * (self->v_lvl_in + 60) / 60.f; const float y = h * (self->v_lvl_out + 60) / 60.f; cairo_rectangle (cr, 0, h - x, y, h); if (self->v_ratio > 1.0) { cairo_set_source (cr, pat); } else { cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 0.5); } cairo_fill (cr); cairo_pattern_destroy (pat); // TODO cache pattern // create RGBA surface cairo_destroy (cr); cairo_surface_flush (self->display); self->surf.width = cairo_image_surface_get_width (self->display); self->surf.height = cairo_image_surface_get_height (self->display); self->surf.stride = cairo_image_surface_get_stride (self->display); self->surf.data = cairo_image_surface_get_data (self->display); return &self->surf; } #endif static const void* extension_data(const char* uri) { static const LV2_Inline_Display_Interface display = { render_inline }; if (!strcmp(uri, LV2_INLINEDISPLAY__interface)) { return &display; } return NULL; } static const LV2_Descriptor descriptor_mono = { ACOMP_URI, instantiate, connect_port_mono, activate, run_mono, deactivate, cleanup, extension_data }; static const LV2_Descriptor descriptor_stereo = { ACOMP_STEREO_URI, instantiate, connect_port_stereo, activate, run_stereo, deactivate, cleanup, extension_data }; LV2_SYMBOL_EXPORT const LV2_Descriptor* lv2_descriptor(uint32_t index) { switch (index) { case 0: return &descriptor_mono; case 1: return &descriptor_stereo; default: return NULL; } }