/* * Copyright (C) 1998-2017 Paul Davis * Copyright (C) 2009-2010 Carl Hetherington * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include "midi++/types.h" #include "midi++/port.h" #include "midi++/channel.h" using namespace MIDI; Channel::Channel (MIDI::byte channelnum, Port &p) : _port (p) , _channel_number (channelnum) , _rpn_msb (0) , _rpn_lsb (0) , _nrpn_msb (0) , _nrpn_lsb (0) , _rpn_state (RPNState (0)) , _nrpn_state (RPNState (0)) { reset (0, 1, false); } void Channel::connect_signals () { _port.parser()->channel_pressure[_channel_number].connect_same_thread (*this, std::bind (&Channel::process_chanpress, this, _1, _2)); _port.parser()->channel_note_on[_channel_number].connect_same_thread (*this, std::bind (&Channel::process_note_on, this, _1, _2)); _port.parser()->channel_note_off[_channel_number].connect_same_thread (*this, std::bind (&Channel::process_note_off, this, _1, _2)); _port.parser()->channel_poly_pressure[_channel_number].connect_same_thread (*this, std::bind (&Channel::process_polypress, this, _1, _2)); _port.parser()->channel_program_change[_channel_number].connect_same_thread (*this, std::bind (&Channel::process_program_change, this, _1, _2)); _port.parser()->channel_controller[_channel_number].connect_same_thread (*this, std::bind (&Channel::process_controller, this, _1, _2)); _port.parser()->channel_pitchbend[_channel_number].connect_same_thread (*this, std::bind (&Channel::process_pitchbend, this, _1, _2)); _port.parser()->reset.connect_same_thread (*this, std::bind (&Channel::process_reset, this, _1)); } void Channel::reset (timestamp_t timestamp, samplecnt_t /*nframes*/, bool notes_off) { _program_number = _channel_number; _bank_number = 0; _pitch_bend = 0; _last_note_on = 0; _last_note_off = 0; _last_on_velocity = 0; _last_off_velocity = 0; if (notes_off) { all_notes_off (timestamp); } memset (_polypress, 0, sizeof (_polypress)); memset (_controller_msb, 0, sizeof (_controller_msb)); memset (_controller_lsb, 0, sizeof (_controller_lsb)); /* zero all controllers XXX not necessarily the right thing */ memset (_controller_val, 0, sizeof (_controller_val)); for (int n = 0; n < 128; n++) { _controller_14bit[n] = false; } rpn_reset (); nrpn_reset (); _omni = true; _poly = false; _mono = true; _notes_on = 0; } void Channel::rpn_reset () { _rpn_msb = 0; _rpn_lsb = 0; _rpn_val_msb = 0; _rpn_val_lsb = 0; _rpn_state = RPNState (0); } void Channel::nrpn_reset () { _nrpn_msb = 0; _nrpn_lsb = 0; _nrpn_val_msb = 0; _nrpn_val_lsb = 0; _nrpn_state = RPNState (0); } void Channel::process_note_off (Parser & /*parser*/, EventTwoBytes *tb) { _last_note_off = tb->note_number; _last_off_velocity = tb->velocity; if (_notes_on) { _notes_on--; } } void Channel::process_note_on (Parser & /*parser*/, EventTwoBytes *tb) { _last_note_on = tb->note_number; _last_on_velocity = tb->velocity; _notes_on++; } const Channel::RPNState Channel::RPN_READY_FOR_VALUE = RPNState (HaveLSB|HaveMSB); const Channel::RPNState Channel::RPN_VALUE_READY = RPNState (HaveLSB|HaveMSB|HaveValue); bool Channel::maybe_process_rpns (Parser& parser, EventTwoBytes *tb) { switch (tb->controller_number) { case 0x62: _rpn_state = RPNState (_rpn_state|HaveMSB); _rpn_lsb = tb->value; if (_rpn_msb == 0x7f && _rpn_lsb == 0x7f) { rpn_reset (); } return true; case 0x63: _rpn_state = RPNState (_rpn_state|HaveLSB); _rpn_msb = tb->value; if (_rpn_msb == 0x7f && _rpn_lsb == 0x7f) { rpn_reset (); } return true; case 0x64: _nrpn_state = RPNState (_rpn_state|HaveMSB); _rpn_lsb = tb->value; if (_nrpn_msb == 0x7f && _nrpn_lsb == 0x7f) { nrpn_reset (); } return true; case 0x65: _nrpn_state = RPNState (_rpn_state|HaveLSB); _rpn_msb = tb->value; if (_rpn_msb == 0x7f && _rpn_lsb == 0x7f) { nrpn_reset (); } return true; } if ((_nrpn_state & RPN_READY_FOR_VALUE) == RPN_READY_FOR_VALUE) { uint16_t rpn_id = (_rpn_msb << 7)|_rpn_lsb; switch (tb->controller_number) { case 0x60: /* data increment */ _nrpn_state = RPNState (_nrpn_state|HaveValue); parser.channel_nrpn_change[_channel_number] (parser, rpn_id, 1); /* EMIT SIGNAL */ return true; case 0x61: /* data decrement */ _nrpn_state = RPNState (_nrpn_state|HaveValue); parser.channel_nrpn_change[_channel_number] (parser, rpn_id, -1); /* EMIT SIGNAL */ return true; case 0x06: /* data entry MSB */ _nrpn_state = RPNState (_nrpn_state|HaveValue); _nrpn_val_msb = tb->value; break; case 0x26: /* data entry LSB */ _nrpn_state = RPNState (_nrpn_state|HaveValue); _nrpn_val_lsb = tb->value; } if (_nrpn_state == RPN_VALUE_READY) { float rpn_val = ((_rpn_val_msb << 7)|_rpn_val_lsb)/16384.0; std::pair result = nrpns.insert (std::make_pair (rpn_id, rpn_val)); if (!result.second) { result.first->second = rpn_val; } parser.channel_nrpn[_channel_number] (parser, rpn_id, rpn_val); /* EMIT SIGNAL */ return true; } } else if ((_rpn_state & RPN_READY_FOR_VALUE) == RPN_READY_FOR_VALUE) { uint16_t rpn_id = (_rpn_msb << 7)|_rpn_lsb; switch (tb->controller_number) { case 0x60: /* data increment */ _rpn_state = RPNState (_rpn_state|HaveValue); parser.channel_rpn_change[_channel_number] (parser, rpn_id, 1); /* EMIT SIGNAL */ return true; case 0x61: /* data decrement */ _rpn_state = RPNState (_rpn_state|HaveValue); parser.channel_rpn_change[_channel_number] (parser, rpn_id, -1); /* EMIT SIGNAL */ return true; case 0x06: /* data entry MSB */ _rpn_state = RPNState (_rpn_state|HaveValue); _rpn_val_msb = tb->value; break; case 0x26: /* data entry LSB */ _rpn_state = RPNState (_rpn_state|HaveValue); _rpn_val_lsb = tb->value; } if (_rpn_state == RPN_VALUE_READY) { float rpn_val = ((_rpn_val_msb << 7)|_rpn_val_lsb)/16384.0; std::pair result = rpns.insert (std::make_pair (rpn_id, rpn_val)); if (!result.second) { result.first->second = rpn_val; } parser.channel_rpn[_channel_number] (parser, rpn_id, rpn_val); /* EMIT SIGNAL */ return true; } } return false; } void Channel::process_controller (Parser & parser, EventTwoBytes *tb) { unsigned short cv; /* XXX arguably need a lock here to protect non-atomic changes to controller_val[...]. or rather, need to make sure that all changes *are* atomic. */ if (maybe_process_rpns (parser, tb)) { return; } /* Note: if RPN data controllers (0x60, 0x61, 0x6, 0x26) are received * without a previous RPN parameter ID message, or after the RPN ID * has been reset, they will be treated like ordinary CC messages. */ if (tb->controller_number < 32) { /* unsigned: no test for >= 0 */ /* if this controller is already known to use 14 bits, then treat this value as the MSB, and as per MIDI spec, set LSB to zero. otherwise, just treat it as a 7 bit value, and set it directly. */ cv = (unsigned short) _controller_val[tb->controller_number]; if (_controller_14bit[tb->controller_number]) { cv = (tb->value & 0x7f) << 7; } else { cv = tb->value; } _controller_val[tb->controller_number] = (controller_value_t)cv; } else if ((tb->controller_number >= 32 && tb->controller_number <= 63)) { int cn = tb->controller_number - 32; cv = (unsigned short) _controller_val[cn]; /* LSB for CC 0-31 arrived. If this is the first time (i.e. its currently flagged as a 7 bit controller), mark the controller as 14 bit, adjust the existing value to be the MSB, and OR-in the new LSB value. otherwise, OR-in the new low 7bits with the old high 7. */ if (_controller_14bit[cn] == false) { _controller_14bit[cn] = true; cv = (cv << 7) | (tb->value & 0x7f); } else { cv = (cv & 0x3f80) | (tb->value & 0x7f); } /* update the 14 bit value */ _controller_val[cn] = (controller_value_t) cv; /* also store the "raw" 7 bit value in the incoming controller value store */ _controller_val[tb->controller_number] = (controller_value_t) tb->value; } else { /* controller can only take 7 bit values */ _controller_val[tb->controller_number] = (controller_value_t) tb->value; } /* bank numbers are special, in that they have their own signal */ if (tb->controller_number == 0 || tb->controller_number == 0x20) { _bank_number = _controller_val[0]; _port.parser()->bank_change (*_port.parser(), _bank_number); _port.parser()->channel_bank_change[_channel_number] (*_port.parser(), _bank_number); } } void Channel::process_program_change (Parser & /*parser*/, MIDI::byte val) { _program_number = val; } void Channel::process_chanpress (Parser & /*parser*/, MIDI::byte val) { _chanpress = val; } void Channel::process_polypress (Parser & /*parser*/, EventTwoBytes *tb) { _polypress[tb->note_number] = tb->value; } void Channel::process_pitchbend (Parser & /*parser*/, pitchbend_t val) { _pitch_bend = val; } void Channel::process_reset (Parser & /*parser*/) { reset (0, 1); } /** Write a message to a channel. * \return true if success */ bool Channel::channel_msg (MIDI::byte id, MIDI::byte val1, MIDI::byte val2, timestamp_t timestamp) { unsigned char msg[3]; int len = 0; msg[0] = id | (_channel_number & 0xf); switch (id) { case off: msg[1] = val1 & 0x7F; msg[2] = val2 & 0x7F; len = 3; break; case on: msg[1] = val1 & 0x7F; msg[2] = val2 & 0x7F; len = 3; break; case MIDI::polypress: msg[1] = val1 & 0x7F; msg[2] = val2 & 0x7F; len = 3; break; case controller: msg[1] = val1 & 0x7F; msg[2] = val2 & 0x7F; len = 3; break; case MIDI::program: msg[1] = val1 & 0x7F; len = 2; break; case MIDI::chanpress: msg[1] = val1 & 0x7F; len = 2; break; case MIDI::pitchbend: msg[1] = val1 & 0x7F; msg[2] = val2 & 0x7F; len = 3; break; } return _port.midimsg (msg, len, timestamp); } float Channel::rpn_value (uint16_t rpn) const { return rpn_value_absolute (rpn) / 16384.0f; } float Channel::rpn_value_absolute (uint16_t rpn) const { RPNList::const_iterator r = rpns.find (rpn); if (r == rpns.end()) { return 0.0; } return r->second; } float Channel::nrpn_value (uint16_t nrpn) const { return nrpn_value_absolute (nrpn) / 16384.0f; } float Channel::nrpn_value_absolute (uint16_t nrpn) const { RPNList::const_iterator r = nrpns.find (nrpn); if (r == nrpns.end()) { return 0.0; } return r->second; }