/* * Copyright (C) 2015 Robin Gareus * Copyright (C) 2015 Tim Mayberry * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "portaudio_io.h" #ifdef WITH_ASIO #include "pa_asio.h" #endif #include "pbd/compose.h" #include "ardour/audio_backend.h" #include "debug.h" #define INTERLEAVED_INPUT #define INTERLEAVED_OUTPUT using namespace PBD; using namespace ARDOUR; PortAudioIO::PortAudioIO () : _capture_channels (0) , _playback_channels (0) , _stream (0) , _input_buffer (0) , _output_buffer (0) , _cur_sample_rate (0) , _cur_input_latency (0) , _cur_output_latency (0) , _host_api_index(-1) { } PortAudioIO::~PortAudioIO () { close_stream(); pa_deinitialize (); clear_device_lists (); free (_input_buffer); _input_buffer = NULL; free (_output_buffer); _output_buffer = NULL; } std::string PortAudioIO::control_app_name (int device_id) const { #ifdef WITH_ASIO if (get_current_host_api_type() == paASIO) { // is this used for anything, or just acts as a boolean? return "PortaudioASIO"; } #endif return std::string(); } void PortAudioIO::launch_control_app (int device_id) { #ifdef WITH_ASIO PaError err = PaAsio_ShowControlPanel (device_id, NULL); if (err != paNoError) { // error << ? DEBUG_AUDIO (string_compose ( "Unable to show control panel for device with index %1\n", device_id)); } #endif } void PortAudioIO::get_default_sample_rates (std::vector& rates) { rates.push_back(8000.0); rates.push_back(22050.0); rates.push_back(24000.0); rates.push_back(44100.0); rates.push_back(48000.0); rates.push_back(88200.0); rates.push_back(96000.0); rates.push_back(176400.0); rates.push_back(192000.0); } int PortAudioIO::available_sample_rates(int device_id, std::vector& sampleRates) { if (!pa_initialize()) return -1; #ifdef WITH_ASIO if (get_current_host_api_type() == paASIO) { get_default_sample_rates(sampleRates); return 0; } #endif // TODO use separate int device_input, int device_output ?! if (device_id == DeviceDefault) { device_id = get_default_input_device (); } DEBUG_AUDIO ( string_compose ("Querying Samplerates for device %1\n", device_id)); sampleRates.clear(); const PaDeviceInfo* nfo = Pa_GetDeviceInfo(device_id); if (nfo) { PaStreamParameters inputParam; PaStreamParameters outputParam; inputParam.device = device_id; inputParam.channelCount = nfo->maxInputChannels; inputParam.sampleFormat = paFloat32; inputParam.suggestedLatency = 0; inputParam.hostApiSpecificStreamInfo = 0; outputParam.device = device_id; outputParam.channelCount = nfo->maxOutputChannels; outputParam.sampleFormat = paFloat32; outputParam.suggestedLatency = 0; outputParam.hostApiSpecificStreamInfo = 0; std::vector rates; get_default_sample_rates(rates); for (std::vector::const_iterator i = rates.begin(); i != rates.end(); ++i) { if (paFormatIsSupported == Pa_IsFormatSupported(nfo->maxInputChannels > 0 ? &inputParam : NULL, nfo->maxOutputChannels > 0 ? &outputParam : NULL, *i)) { sampleRates.push_back(*i); } } } if (sampleRates.empty()) { // fill in something.. get_default_sample_rates(sampleRates); } return 0; } #ifdef WITH_ASIO bool PortAudioIO::get_asio_buffer_properties (int device_id, long& min_size_frames, long& max_size_frames, long& preferred_size_frames, long& granularity) { // we shouldn't really need all these checks but it shouldn't hurt const PaDeviceInfo* device_info = Pa_GetDeviceInfo(device_id); if (!device_info) { DEBUG_AUDIO (string_compose ( "Unable to get device info from device index %1\n", device_id)); return false; } if (get_current_host_api_type() != paASIO) { DEBUG_AUDIO (string_compose ( "ERROR device_id %1 is not an ASIO device\n", device_id)); return false; } PaError err = PaAsio_GetAvailableBufferSizes (device_id, &min_size_frames, &max_size_frames, &preferred_size_frames, &granularity); if (err != paNoError) { DEBUG_AUDIO (string_compose ( "Unable to determine available buffer sizes for device %1\n", device_id)); return false; } return true; } bool PortAudioIO::get_asio_buffer_sizes (int device_id, std::vector& buffer_sizes) { long min_size_frames = 0; long max_size_frames = 0; long preferred_size_frames = 0; long granularity = 0; if (!get_asio_buffer_properties (device_id, min_size_frames, max_size_frames, preferred_size_frames, granularity)) { DEBUG_AUDIO (string_compose ( "Unable to get device buffer properties from device index %1\n", device_id)); return false; } DEBUG_AUDIO (string_compose ("ASIO buffer properties for device %1, " "min_size_frames: %2, max_size_frames: %3, " "preferred_size_frames: %4, granularity: %5\n", device_id, min_size_frames, max_size_frames, preferred_size_frames, granularity)); #ifdef USE_ASIO_MIN_MAX_BUFFER_SIZES if (min_size_frames >= max_size_frames) { buffer_sizes.push_back (preferred_size_frames); return true; } long buffer_size = min_size_frames; while (buffer_size <= max_size_frames) { buffer_sizes.push_back (buffer_size); if (granularity <= 0) { // buffer sizes are power of 2 buffer_size = buffer_size * 2; } else { buffer_size += granularity; } } #else buffer_sizes.push_back (preferred_size_frames); #endif return true; } #endif void PortAudioIO::get_default_buffer_sizes(std::vector& buffer_sizes) { buffer_sizes.push_back(64); buffer_sizes.push_back(128); buffer_sizes.push_back(256); buffer_sizes.push_back(512); buffer_sizes.push_back(1024); buffer_sizes.push_back(2048); buffer_sizes.push_back(4096); } int PortAudioIO::available_buffer_sizes(int device_id, std::vector& buffer_sizes) { #ifdef WITH_ASIO if (get_current_host_api_type() == paASIO) { if (get_asio_buffer_sizes (device_id, buffer_sizes)) { return 0; } } #endif get_default_buffer_sizes (buffer_sizes); return 0; } void PortAudioIO::input_device_list(std::map &devices) const { for (std::map::const_iterator i = _input_devices.begin (); i != _input_devices.end (); ++i) { devices.insert (std::pair(i->first, Glib::locale_to_utf8(i->second->name))); } } void PortAudioIO::output_device_list(std::map &devices) const { for (std::map::const_iterator i = _output_devices.begin (); i != _output_devices.end (); ++i) { devices.insert (std::pair(i->first, Glib::locale_to_utf8(i->second->name))); } } bool& PortAudioIO::pa_initialized() { static bool s_initialized = false; return s_initialized; } bool PortAudioIO::pa_initialize() { if (pa_initialized()) return true; PaError err = Pa_Initialize(); if (err != paNoError) { return false; } pa_initialized() = true; return true; } bool PortAudioIO::pa_deinitialize() { if (!pa_initialized()) return true; PaError err = Pa_Terminate(); if (err != paNoError) { return false; } pa_initialized() = false; return true; } void PortAudioIO::host_api_list (std::vector& api_list) { if (!pa_initialize()) return; PaHostApiIndex count = Pa_GetHostApiCount(); if (count < 0) return; for (int i = 0; i < count; ++i) { const PaHostApiInfo* info = Pa_GetHostApiInfo (i); if (info->name != NULL) { // possible? api_list.push_back (info->name); } } } PaHostApiTypeId PortAudioIO::get_current_host_api_type () const { const PaHostApiInfo* info = Pa_GetHostApiInfo (_host_api_index); if (info == NULL) { DEBUG_AUDIO(string_compose( "Unable to determine Host API type from index %1\n", _host_api_index)); return (PaHostApiTypeId)0; } return info->type; } std::string PortAudioIO::get_host_api_name_from_index (PaHostApiIndex index) { std::vector api_list; host_api_list(api_list); return api_list[index]; } bool PortAudioIO::set_host_api (const std::string& host_api_name) { PaHostApiIndex new_index = get_host_api_index_from_name (host_api_name); if (new_index < 0) { DEBUG_AUDIO ("Portaudio: Error setting host API\n"); return false; } _host_api_index = new_index; _host_api_name = host_api_name; return true; } PaHostApiIndex PortAudioIO::get_host_api_index_from_name (const std::string& name) { if (!pa_initialize()) return -1; PaHostApiIndex count = Pa_GetHostApiCount(); if (count < 0) { DEBUG_AUDIO ("Host API count < 0\n"); return -1; } for (int i = 0; i < count; ++i) { const PaHostApiInfo* info = Pa_GetHostApiInfo (i); if (info != NULL && info->name != NULL) { // possible? if (name == info->name) { return i; } } } DEBUG_AUDIO (string_compose ("Unable to get host API from name: %1\n", name)); return -1; } PaDeviceIndex PortAudioIO::get_default_input_device () const { const PaHostApiInfo* info = Pa_GetHostApiInfo (_host_api_index); if (info == NULL) return -1; return info->defaultInputDevice; } PaDeviceIndex PortAudioIO::get_default_output_device () const { const PaHostApiInfo* info = Pa_GetHostApiInfo (_host_api_index); if (info == NULL) return -1; return info->defaultOutputDevice; } void PortAudioIO::clear_device_lists () { for (std::map::const_iterator i = _input_devices.begin (); i != _input_devices.end(); ++i) { delete i->second; } _input_devices.clear(); for (std::map::const_iterator i = _output_devices.begin (); i != _output_devices.end(); ++i) { delete i->second; } _output_devices.clear(); } void PortAudioIO::add_none_devices () { _input_devices.insert(std::pair( DeviceNone, new paDevice(AudioBackend::get_standard_device_name(AudioBackend::DeviceNone), 0, 0))); _output_devices.insert(std::pair( DeviceNone, new paDevice(AudioBackend::get_standard_device_name(AudioBackend::DeviceNone), 0, 0))); } void PortAudioIO::add_default_devices () { const PaHostApiInfo* info = Pa_GetHostApiInfo (_host_api_index); if (info == NULL) return; const PaDeviceInfo* nfo_i = Pa_GetDeviceInfo(get_default_input_device()); const PaDeviceInfo* nfo_o = Pa_GetDeviceInfo(get_default_output_device()); if (nfo_i && nfo_o) { _input_devices.insert (std::pair (DeviceDefault, new paDevice(AudioBackend::get_standard_device_name(AudioBackend::DeviceDefault), nfo_i->maxInputChannels, nfo_o->maxOutputChannels ))); _output_devices.insert (std::pair (DeviceDefault, new paDevice(AudioBackend::get_standard_device_name(AudioBackend::DeviceDefault), nfo_i->maxInputChannels, nfo_o->maxOutputChannels ))); } } void PortAudioIO::add_devices () { const PaHostApiInfo* info = Pa_GetHostApiInfo (_host_api_index); if (info == NULL) return; int n_devices = Pa_GetDeviceCount(); DEBUG_AUDIO (string_compose ("PortAudio found %1 devices\n", n_devices)); for (int i = 0 ; i < n_devices; ++i) { const PaDeviceInfo* nfo = Pa_GetDeviceInfo(i); if (!nfo) continue; if (nfo->hostApi != _host_api_index) continue; DEBUG_AUDIO (string_compose (" (%1) '%2' '%3' in: %4 (lat: %5 .. %6) out: %7 " "(lat: %8 .. %9) sr:%10\n", i, info->name, nfo->name, nfo->maxInputChannels, nfo->defaultLowInputLatency * 1e3, nfo->defaultHighInputLatency * 1e3, nfo->maxOutputChannels, nfo->defaultLowOutputLatency * 1e3, nfo->defaultHighOutputLatency * 1e3, nfo->defaultSampleRate)); if ( nfo->maxInputChannels == 0 && nfo->maxOutputChannels == 0) { continue; } if (nfo->maxInputChannels > 0) { _input_devices.insert (std::pair (i, new paDevice( nfo->name, nfo->maxInputChannels, nfo->maxOutputChannels ))); } if (nfo->maxOutputChannels > 0) { _output_devices.insert (std::pair (i, new paDevice( nfo->name, nfo->maxInputChannels, nfo->maxOutputChannels ))); } } } bool PortAudioIO::update_devices() { DEBUG_AUDIO ("Update devices\n"); if (_stream != NULL) return false; pa_deinitialize(); if (!pa_initialize()) return false; clear_device_lists (); // ASIO doesn't support separate input/output devices so adding None // doesn't make sense if (get_current_host_api_type() != paASIO) { add_none_devices (); } add_devices (); return true; } void PortAudioIO::reset_stream_dependents () { _capture_channels = 0; _playback_channels = 0; _cur_sample_rate = 0; _cur_input_latency = 0; _cur_output_latency = 0; } PortAudioIO::ErrorCode PortAudioIO::close_stream() { if (!_stream) return NoError; PaError err = Pa_CloseStream (_stream); if (err != paNoError) { return StreamCloseError; } _stream = NULL; reset_stream_dependents(); free (_input_buffer); _input_buffer = NULL; free (_output_buffer); _output_buffer = NULL; return NoError; } PortAudioIO::ErrorCode PortAudioIO::start_stream() { PaError err = Pa_StartStream (_stream); if (err != paNoError) { return StreamStartError; } return NoError; } bool PortAudioIO::set_sample_rate_and_latency_from_stream () { const PaStreamInfo* nfo_s = Pa_GetStreamInfo(_stream); if (nfo_s == NULL) { return false; } _cur_sample_rate = nfo_s->sampleRate; _cur_input_latency = nfo_s->inputLatency * _cur_sample_rate; _cur_output_latency = nfo_s->outputLatency * _cur_sample_rate; DEBUG_AUDIO (string_compose ("PA Sample Rate %1 SPS\n", _cur_sample_rate)); DEBUG_AUDIO (string_compose ("PA Input Latency %1ms, %2 spl\n", 1e3 * nfo_s->inputLatency, _cur_input_latency)); DEBUG_AUDIO (string_compose ("PA Output Latency %1ms, %2 spl\n", 1e3 * nfo_s->outputLatency, _cur_output_latency)); return true; } bool PortAudioIO::allocate_buffers_for_blocking_api (uint32_t samples_per_period) { if (_capture_channels > 0) { _input_buffer = (float*)malloc(samples_per_period * _capture_channels * sizeof(float)); if (!_input_buffer) { DEBUG_AUDIO("PortAudio failed to allocate input buffer.\n"); return false; } } if (_playback_channels > 0) { _output_buffer = (float*)calloc(samples_per_period * _playback_channels, sizeof(float)); if (!_output_buffer) { DEBUG_AUDIO("PortAudio failed to allocate output buffer.\n"); return false; } } return true; } bool PortAudioIO::get_input_stream_params(int device_input, PaStreamParameters& inputParam) const { const PaDeviceInfo *nfo_in = NULL; if (device_input == DeviceDefault) { device_input = get_default_input_device (); } if (device_input == DeviceNone) { return false; } nfo_in = Pa_GetDeviceInfo(device_input); if (nfo_in == NULL) { DEBUG_AUDIO ("PortAudio Cannot Query Input Device Info\n"); return false; } inputParam.device = device_input; inputParam.channelCount = nfo_in->maxInputChannels; #ifdef INTERLEAVED_INPUT inputParam.sampleFormat = paFloat32; #else inputParam.sampleFormat = paFloat32 | paNonInterleaved; #endif inputParam.suggestedLatency = nfo_in->defaultLowInputLatency; inputParam.hostApiSpecificStreamInfo = NULL; return true; } bool PortAudioIO::get_output_stream_params(int device_output, PaStreamParameters& outputParam) const { const PaDeviceInfo *nfo_out = NULL; if (device_output == DeviceDefault) { device_output = get_default_output_device (); } if (device_output == DeviceNone) { return false; } nfo_out = Pa_GetDeviceInfo(device_output); if (nfo_out == NULL) { DEBUG_AUDIO ("PortAudio Cannot Query Output Device Info\n"); return false; } outputParam.device = device_output; outputParam.channelCount = nfo_out->maxOutputChannels; #ifdef INTERLEAVED_OUTPUT outputParam.sampleFormat = paFloat32; #else outputParam.sampleFormat = paFloat32 | paNonInterleaved; #endif outputParam.suggestedLatency = nfo_out->defaultLowOutputLatency; outputParam.hostApiSpecificStreamInfo = NULL; return true; } PortAudioIO::ErrorCode PortAudioIO::pre_stream_open(int device_input, PaStreamParameters& inputParam, int device_output, PaStreamParameters& outputParam) { if (!pa_initialize()) { DEBUG_AUDIO ("PortAudio Initialization Failed\n"); return InitializationError; } reset_stream_dependents (); DEBUG_AUDIO (string_compose ( "PortAudio Device IDs: i:%1 o:%2\n", device_input, device_output)); if (device_input == DeviceNone && device_output == DeviceNone) { return DeviceConfigNotSupportedError; } if (get_input_stream_params(device_input, inputParam)) { _capture_channels = inputParam.channelCount; } if (get_output_stream_params(device_output, outputParam)) { _playback_channels = outputParam.channelCount; } if (_capture_channels == 0 && _playback_channels == 0) { DEBUG_AUDIO("PortAudio no input or output channels.\n"); return DeviceConfigNotSupportedError; } DEBUG_AUDIO (string_compose ("PortAudio Channels: in:%1 out:%2\n", _capture_channels, _playback_channels)); return NoError; } PortAudioIO::ErrorCode PortAudioIO::open_blocking_stream(int device_input, int device_output, double sample_rate, uint32_t samples_per_period) { PaStreamParameters inputParam; PaStreamParameters outputParam; ErrorCode error_code = pre_stream_open(device_input, inputParam, device_output, outputParam); if (error_code != NoError) return error_code; PaError err = paNoError; err = Pa_OpenStream ( &_stream, _capture_channels > 0 ? &inputParam: NULL, _playback_channels > 0 ? &outputParam: NULL, sample_rate, samples_per_period, paDitherOff, NULL, NULL); if (err != paNoError) { DEBUG_AUDIO ("PortAudio failed to start stream.\n"); return StreamOpenError; } if (!set_sample_rate_and_latency_from_stream()) { DEBUG_AUDIO ("PortAudio failed to query stream information.\n"); close_stream(); return StreamOpenError; } if (!allocate_buffers_for_blocking_api(samples_per_period)) { close_stream(); return StreamOpenError; } return NoError; } int PortAudioIO::next_cycle (uint32_t n_samples) { bool xrun = false; PaError err; err = Pa_IsStreamActive (_stream); if (err != 1) { // 0: inactive / aborted // < 0: error return -1; } // TODO, check drift.. process part with larger capacity first. // Pa_GetStreamReadAvailable(_stream) < Pa_GetStreamWriteAvailable(_stream) if (_playback_channels > 0) { err = Pa_WriteStream (_stream, _output_buffer, n_samples); if (err) xrun = true; } if (_capture_channels > 0) { err = Pa_ReadStream (_stream, _input_buffer, n_samples); if (err) { memset (_input_buffer, 0, sizeof(float) * n_samples * _capture_channels); xrun = true; } } return xrun ? 1 : 0; } std::string PortAudioIO::get_input_channel_name (int device_id, uint32_t channel) const { #ifdef WITH_ASIO const char* channel_name; // This will return an error for non-ASIO devices so no need to check if // the device_id corresponds to an ASIO device. PaError err = PaAsio_GetInputChannelName (device_id, channel, &channel_name); if (err == paNoError) { DEBUG_AUDIO ( string_compose ("Input channel name for device %1, channel %2 is %3\n", device_id, channel, channel_name)); return channel_name; } #endif return std::string(); } std::string PortAudioIO::get_output_channel_name (int device_id, uint32_t channel) const { #ifdef WITH_ASIO const char* channel_name; PaError err = PaAsio_GetOutputChannelName (device_id, channel, &channel_name); if (err == paNoError) { DEBUG_AUDIO ( string_compose ("Output channel name for device %1, channel %2 is %3\n", device_id, channel, channel_name)); return channel_name; } #endif return std::string(); } #ifdef INTERLEAVED_INPUT int PortAudioIO::get_capture_channel (uint32_t chn, float *input, uint32_t n_samples) { assert(chn < _capture_channels); const uint32_t stride = _capture_channels; float *ptr = _input_buffer + chn; while (n_samples-- > 0) { *input++ = *ptr; ptr += stride; } return 0; } #else int PortAudioIO::get_capture_channel (uint32_t chn, float *input, uint32_t n_samples) { assert(chn < _capture_channels); memcpy((void*)input, &(_input_buffer[chn * n_samples]), n_samples * sizeof(float)); return 0; } #endif #ifdef INTERLEAVED_OUTPUT int PortAudioIO::set_playback_channel (uint32_t chn, const float *output, uint32_t n_samples) { assert(chn < _playback_channels); const uint32_t stride = _playback_channels; float *ptr = _output_buffer + chn; while (n_samples-- > 0) { *ptr = *output++; ptr += stride; } return 0; } #else int PortAudioIO::set_playback_channel (uint32_t chn, const float *output, uint32_t n_samples) { assert(chn < _playback_channels); memcpy((void*)&(_output_buffer[chn * n_samples]), (void*)output, n_samples * sizeof(float)); return 0; } #endif