/* * Copyright (C) 2014 Robin Gareus * Copyright (C) 2010 Devin Anderson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "alsa_rawmidi.h" #include "rt_thread.h" #include "pbd/error.h" #include "i18n.h" using namespace ARDOUR; /* max bytes per individual midi-event * events larger than this are ignored */ #define MaxAlsaRawEventSize (64) #ifndef NDEBUG #define _DEBUGPRINT(STR) fprintf(stderr, STR); #else #define _DEBUGPRINT(STR) ; #endif AlsaRawMidiIO::AlsaRawMidiIO (const char *device, const bool input) : _state (-1) , _running (false) , _device (0) , _pfds (0) , _sample_length_us (1e6 / 48000.0) , _period_length_us (1.024e6 / 48000.0) , _samples_per_period (1024) , _rb (0) { pthread_mutex_init (&_notify_mutex, 0); pthread_cond_init (&_notify_ready, 0); init (device, input); } AlsaRawMidiIO::~AlsaRawMidiIO () { if (_device) { snd_rawmidi_close (_device); _device = 0; } delete _rb; pthread_mutex_destroy (&_notify_mutex); pthread_cond_destroy (&_notify_ready); free (_pfds); } void AlsaRawMidiIO::init (const char *device_name, const bool input) { if (snd_rawmidi_open ( input ? &_device : NULL, input ? NULL : &_device, device_name, SND_RAWMIDI_NONBLOCK) < 0) { return; } _npfds = snd_rawmidi_poll_descriptors_count (_device); if (_npfds < 1) { _DEBUGPRINT("AlsaRawMidiIO: no poll descriptor(s).\n"); snd_rawmidi_close (_device); _device = 0; return; } _pfds = (struct pollfd*) malloc (_npfds * sizeof(struct pollfd)); snd_rawmidi_poll_descriptors (_device, _pfds, _npfds); // MIDI (hw port) 31.25 kbaud // worst case here is 8192 SPP and 8KSPS for which we'd need // 4000 bytes sans MidiEventHeader. // since we're not always in sync, let's use 4096. _rb = new RingBuffer(4096 + 4096 * sizeof(MidiEventHeader)); #if 0 _state = 0; #else snd_rawmidi_params_t *params; if (snd_rawmidi_params_malloc (¶ms)) { goto initerr; } if (snd_rawmidi_params_current (_device, params)) { goto initerr; } if (snd_rawmidi_params_set_avail_min (_device, params, 1)) { goto initerr; } if ( snd_rawmidi_params_set_buffer_size (_device, params, 64)) { goto initerr; } if (snd_rawmidi_params_set_no_active_sensing (_device, params, 1)) { goto initerr; } _state = 0; return; initerr: _DEBUGPRINT("AlsaRawMidiIO: parameter setup error\n"); snd_rawmidi_close (_device); _device = 0; #endif return; } static void * pthread_process (void *arg) { AlsaRawMidiIO *d = static_cast(arg); d->main_process_thread (); pthread_exit (0); return 0; } int AlsaRawMidiIO::start () { if (_realtime_pthread_create (SCHED_FIFO, -21, 100000, &_main_thread, pthread_process, this)) { if (pthread_create (&_main_thread, NULL, pthread_process, this)) { PBD::error << _("AlsaRawMidiIO: Failed to create process thread.") << endmsg; return -1; } else { PBD::warning << _("AlsaRawMidiIO: Cannot acquire realtime permissions.") << endmsg; } } int timeout = 5000; while (!_running && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_running) { return -1; } return 0; } int AlsaRawMidiIO::stop () { void *status; if (!_running) { return 0; } _running = false; pthread_mutex_lock (&_notify_mutex); pthread_cond_signal (&_notify_ready); pthread_mutex_unlock (&_notify_mutex); if (pthread_join (_main_thread, &status)) { PBD::error << _("AlsaRawMidiIO: Failed to terminate.") << endmsg; return -1; } return 0; } void AlsaRawMidiIO::setup_timing (const size_t samples_per_period, const float samplerate) { _period_length_us = (double) samples_per_period * 1e6 / samplerate; _sample_length_us = 1e6 / samplerate; _samples_per_period = samples_per_period; } void AlsaRawMidiIO::sync_time (const uint64_t tme) { // TODO consider a PLL, if this turns out to be the bottleneck for jitter // also think about using // snd_pcm_status_get_tstamp() and snd_rawmidi_status_get_tstamp() // instead of monotonic clock. #ifdef DEBUG_TIMING double tdiff = (_clock_monotonic + _period_length_us - tme) / 1000.0; if (abs(tdiff) >= .05) { printf("AlsaRawMidiIO MJ: %.1f ms\n", tdiff); } #endif _clock_monotonic = tme; } /////////////////////////////////////////////////////////////////////////////// // select sleeps _at most_ (compared to usleep() which sleeps at least) static void select_sleep (uint32_t usec) { if (usec <= 10) return; fd_set fd; int max_fd=0; struct timeval tv; tv.tv_sec = usec / 1000000; tv.tv_usec = usec % 1000000; FD_ZERO (&fd); select (max_fd, &fd, NULL, NULL, &tv); } /////////////////////////////////////////////////////////////////////////////// AlsaRawMidiOut::AlsaRawMidiOut (const char *device) : AlsaRawMidiIO (device, false) { } int AlsaRawMidiOut::send_event (const pframes_t time, const uint8_t *data, const size_t size) { const uint32_t buf_size = sizeof (MidiEventHeader) + size; if (_rb->write_space() < buf_size) { _DEBUGPRINT("AlsaRawMidiOut: ring buffer overflow\n"); return -1; } struct MidiEventHeader h (_clock_monotonic + time * _sample_length_us, size); _rb->write ((uint8_t*) &h, sizeof(MidiEventHeader)); _rb->write (data, size); if (pthread_mutex_trylock (&_notify_mutex) == 0) { pthread_cond_signal (&_notify_ready); pthread_mutex_unlock (&_notify_mutex); } return 0; } void * AlsaRawMidiOut::main_process_thread () { _running = true; pthread_mutex_lock (&_notify_mutex); while (_running) { bool have_data = false; struct MidiEventHeader h(0,0); uint8_t data[MaxAlsaRawEventSize]; const uint32_t read_space = _rb->read_space(); if (read_space > sizeof(MidiEventHeader)) { if (_rb->read ((uint8_t*)&h, sizeof(MidiEventHeader)) != sizeof(MidiEventHeader)) { _DEBUGPRINT("AlsaRawMidiOut: Garbled MIDI EVENT HEADER!!\n"); break; } assert (read_space >= h.size); if (h.size > MaxAlsaRawEventSize) { _rb->increment_read_idx (h.size); _DEBUGPRINT("AlsaRawMidiOut: MIDI event too large!\n"); continue; } if (_rb->read (&data[0], h.size) != h.size) { _DEBUGPRINT("AlsaRawMidiOut: Garbled MIDI EVENT DATA!!\n"); break; } have_data = true; } if (!have_data) { pthread_cond_wait (&_notify_ready, &_notify_mutex); continue; } uint64_t now = g_get_monotonic_time(); while (h.time > now + 500) { select_sleep(h.time - now); now = g_get_monotonic_time(); } retry: int perr = poll (_pfds, _npfds, 10 /* ms */); if (perr < 0) { PBD::error << _("AlsaRawMidiOut: Error polling device. Terminating Midi Thread.") << endmsg; break; } if (perr == 0) { _DEBUGPRINT("AlsaRawMidiOut: poll() timed out.\n"); goto retry; } unsigned short revents = 0; if (snd_rawmidi_poll_descriptors_revents (_device, _pfds, _npfds, &revents)) { PBD::error << _("AlsaRawMidiOut: Failed to poll device. Terminating Midi Thread.") << endmsg; break; } if (revents & (POLLERR | POLLHUP | POLLNVAL)) { PBD::error << _("AlsaRawMidiOut: poll error. Terminating Midi Thread.") << endmsg; break; } if (!(revents & POLLOUT)) { _DEBUGPRINT("AlsaRawMidiOut: POLLOUT not ready.\n"); select_sleep (1000); goto retry; } ssize_t err = snd_rawmidi_write (_device, data, h.size); if ((err == -EAGAIN) || (err == -EWOULDBLOCK)) { select_sleep (1000); goto retry; } if (err < 0) { PBD::error << _("AlsaRawMidiOut: write failed. Terminating Midi Thread.") << endmsg; break; } if ((size_t) err < h.size) { _DEBUGPRINT("AlsaRawMidiOut: short write\n"); memmove(&data[0], &data[err], err); h.size -= err; goto retry; } snd_rawmidi_drain (_device); } pthread_mutex_unlock (&_notify_mutex); _DEBUGPRINT("AlsaRawMidiOut: MIDI OUT THREAD STOPPED\n"); return 0; } /////////////////////////////////////////////////////////////////////////////// AlsaRawMidiIn::AlsaRawMidiIn (const char *device) : AlsaRawMidiIO (device, true) , _event(0,0) , _first_time(true) , _unbuffered_bytes(0) , _total_bytes(0) , _expected_bytes(0) , _status_byte(0) { } size_t AlsaRawMidiIn::recv_event (pframes_t &time, uint8_t *data, size_t &size) { const uint32_t read_space = _rb->read_space(); struct MidiEventHeader h(0,0); if (read_space <= sizeof(MidiEventHeader)) { return 0; } #if 1 // check if event is in current cycle RingBuffer::rw_vector vector; _rb->get_read_vector(&vector); if (vector.len[0] >= sizeof(MidiEventHeader)) { memcpy((uint8_t*)&h, vector.buf[0], sizeof(MidiEventHeader)); } else { if (vector.len[0] > 0) { memcpy ((uint8_t*)&h, vector.buf[0], vector.len[0]); } memcpy (((uint8_t*)&h) + vector.len[0], vector.buf[1], sizeof(MidiEventHeader) - vector.len[0]); } if (h.time >= _clock_monotonic + _period_length_us ) { #ifdef DEBUG_TIMING printf("AlsaRawMidiIn DEBUG: POSTPONE EVENT TO NEXT CYCLE: %.1f spl\n", ((h.time - _clock_monotonic) / _sample_length_us)); #endif return 0; } _rb->increment_read_idx (sizeof(MidiEventHeader)); #else if (_rb->read ((uint8_t*)&h, sizeof(MidiEventHeader)) != sizeof(MidiEventHeader)) { _DEBUGPRINT("AlsaRawMidiIn::recv_event Garbled MIDI EVENT HEADER!!\n"); return 0; } #endif assert (h.size > 0); if (h.size > size) { _DEBUGPRINT("AlsaRawMidiIn::recv_event MIDI event too large!\n"); _rb->increment_read_idx (h.size); return 0; } if (_rb->read (&data[0], h.size) != h.size) { _DEBUGPRINT("AlsaRawMidiIn::recv_event Garbled MIDI EVENT DATA!!\n"); return 0; } if (h.time < _clock_monotonic) { #ifdef DEBUG_TIMING printf("AlsaRawMidiIn DEBUG: MIDI TIME < 0 %.1f spl\n", ((_clock_monotonic - h.time) / -_sample_length_us)); #endif time = 0; } else if (h.time >= _clock_monotonic + _period_length_us ) { #ifdef DEBUG_TIMING printf("AlsaRawMidiIn DEBUG: MIDI TIME > PERIOD %.1f spl\n", ((h.time - _clock_monotonic) / _sample_length_us)); #endif time = _samples_per_period - 1; } else { time = floor ((h.time - _clock_monotonic) / _sample_length_us); } assert(time < _samples_per_period); size = h.size; return h.size; } void * AlsaRawMidiIn::main_process_thread () { _running = true; while (_running) { unsigned short revents = 0; int perr = poll (_pfds, _npfds, 100 /* ms */); if (perr < 0) { PBD::error << _("AlsaRawMidiIn: Error polling device. Terminating Midi Thread.") << endmsg; break; } if (perr == 0) { continue; } if (snd_rawmidi_poll_descriptors_revents (_device, _pfds, _npfds, &revents)) { PBD::error << _("AlsaRawMidiIn: Failed to poll device. Terminating Midi Thread.") << endmsg; break; } if (revents & (POLLERR | POLLHUP | POLLNVAL)) { PBD::error << _("AlsaRawMidiIn: poll error. Terminating Midi Thread.") << endmsg; break; } if (!(revents & POLLIN)) { _DEBUGPRINT("AlsaRawMidiOut: POLLIN not ready.\n"); select_sleep (1000); continue; } uint8_t data[MaxAlsaRawEventSize]; uint64_t time = g_get_monotonic_time(); ssize_t err = snd_rawmidi_read (_device, data, sizeof(data)); if ((err == -EAGAIN) || (err == -EWOULDBLOCK)) { continue; } if (err < 0) { PBD::error << _("AlsaRawMidiIn: read error. Terminating Midi") << endmsg; break; } if (err == 0) { _DEBUGPRINT("AlsaRawMidiIn: zero read\n"); continue; } #if 0 queue_event (time, data, err); #else parse_events (time, data, err); #endif } _DEBUGPRINT("AlsaRawMidiIn: MIDI IN THREAD STOPPED\n"); return 0; } int AlsaRawMidiIn::queue_event (const uint64_t time, const uint8_t *data, const size_t size) { const uint32_t buf_size = sizeof(MidiEventHeader) + size; _event._pending = false; if (size == 0) { return -1; } if (_rb->write_space() < buf_size) { _DEBUGPRINT("AlsaRawMidiIn: ring buffer overflow\n"); return -1; } struct MidiEventHeader h (time, size); _rb->write ((uint8_t*) &h, sizeof(MidiEventHeader)); _rb->write (data, size); return 0; } void AlsaRawMidiIn::parse_events (const uint64_t time, const uint8_t *data, const size_t size) { if (_event._pending) { if (queue_event (_event._time, _parser_buffer, _event._size)) { return; } } for (size_t i = 0; i < size; ++i) { if (_first_time && !(data[i] & 0x80)) { continue; } _first_time = false; /// TODO optimize e.g. use fn pointer to different parse_events() if (process_byte(time, data[i])) { if (queue_event (_event._time, _parser_buffer, _event._size)) { return; } } } } // based on JackMidiRawInputWriteQueue by Devin Anderson // bool AlsaRawMidiIn::process_byte(const uint64_t time, const uint8_t byte) { if (byte >= 0xf8) { // Realtime if (byte == 0xfd) { return false; } _parser_buffer[0] = byte; prepare_byte_event(time, byte); return true; } if (byte == 0xf7) { // Sysex end if (_status_byte == 0xf0) { record_byte(byte); return prepare_buffered_event(time); } _total_bytes = 0; _unbuffered_bytes = 0; _expected_bytes = 0; _status_byte = 0; return false; } if (byte >= 0x80) { // Non-realtime status byte if (_total_bytes) { _total_bytes = 0; _unbuffered_bytes = 0; } _status_byte = byte; switch (byte & 0xf0) { case 0x80: case 0x90: case 0xa0: case 0xb0: case 0xe0: // Note On, Note Off, Aftertouch, Control Change, Pitch Wheel _expected_bytes = 3; break; case 0xc0: case 0xd0: // Program Change, Channel Pressure _expected_bytes = 2; break; case 0xf0: switch (byte) { case 0xf0: // Sysex _expected_bytes = 0; break; case 0xf1: case 0xf3: // MTC Quarter Frame, Song Select _expected_bytes = 2; break; case 0xf2: // Song Position _expected_bytes = 3; break; case 0xf4: case 0xf5: // Undefined _expected_bytes = 0; _status_byte = 0; return false; case 0xf6: // Tune Request prepare_byte_event(time, byte); _expected_bytes = 0; _status_byte = 0; return true; } } record_byte(byte); return false; } // Data byte if (! _status_byte) { // Data bytes without a status will be discarded. _total_bytes++; _unbuffered_bytes++; return false; } if (! _total_bytes) { // Apply running status. record_byte(_status_byte); } record_byte(byte); return (_total_bytes == _expected_bytes) ? prepare_buffered_event(time) : false; }