/*********************************/ /* Principal Components Analysis */ /*********************************/ /*********************************************************************/ /* Principal Components Analysis or the Karhunen-Loeve expansion is a classical method for dimensionality reduction or exploratory data analysis. One reference among many is: F. Murtagh and A. Heck, Multivariate Data Analysis, Kluwer Academic, Dordrecht, 1987. Author: F. Murtagh Phone: + 49 89 32006298 (work) + 49 89 965307 (home) Earn/Bitnet: fionn@dgaeso51, fim@dgaipp1s, murtagh@stsci Span: esomc1::fionn Internet: murtagh@scivax.stsci.edu F. Murtagh, Munich, 6 June 1989 */ /*********************************************************************/ #include #include #include #include "pca.h" #define SIGN(a, b) ( (b) < 0 ? -fabs(a) : fabs(a) ) /** Variance-covariance matrix: creation *****************************/ /* Create m * m covariance matrix from given n * m data matrix. */ void covcol(double** data, int n, int m, double** symmat) { double *mean; int i, j, j1, j2; /* Allocate storage for mean vector */ mean = (double*) malloc(m*sizeof(double)); /* Determine mean of column vectors of input data matrix */ for (j = 0; j < m; j++) { mean[j] = 0.0; for (i = 0; i < n; i++) { mean[j] += data[i][j]; } mean[j] /= (double)n; } /* printf("\nMeans of column vectors:\n"); for (j = 0; j < m; j++) { printf("%12.1f",mean[j]); } printf("\n"); */ /* Center the column vectors. */ for (i = 0; i < n; i++) { for (j = 0; j < m; j++) { data[i][j] -= mean[j]; } } /* Calculate the m * m covariance matrix. */ for (j1 = 0; j1 < m; j1++) { for (j2 = j1; j2 < m; j2++) { symmat[j1][j2] = 0.0; for (i = 0; i < n; i++) { symmat[j1][j2] += data[i][j1] * data[i][j2]; } symmat[j2][j1] = symmat[j1][j2]; } } free(mean); return; } /** Error handler **************************************************/ void erhand(char* err_msg) { fprintf(stderr,"Run-time error:\n"); fprintf(stderr,"%s\n", err_msg); fprintf(stderr,"Exiting to system.\n"); exit(1); } /** Reduce a real, symmetric matrix to a symmetric, tridiag. matrix. */ /* Householder reduction of matrix a to tridiagonal form. Algorithm: Martin et al., Num. Math. 11, 181-195, 1968. Ref: Smith et al., Matrix Eigensystem Routines -- EISPACK Guide Springer-Verlag, 1976, pp. 489-494. W H Press et al., Numerical Recipes in C, Cambridge U P, 1988, pp. 373-374. */ void tred2(double** a, int n, double* d, double* e) { int l, k, j, i; double scale, hh, h, g, f; for (i = n-1; i >= 1; i--) { l = i - 1; h = scale = 0.0; if (l > 0) { for (k = 0; k <= l; k++) scale += fabs(a[i][k]); if (scale == 0.0) e[i] = a[i][l]; else { for (k = 0; k <= l; k++) { a[i][k] /= scale; h += a[i][k] * a[i][k]; } f = a[i][l]; g = f>0 ? -sqrt(h) : sqrt(h); e[i] = scale * g; h -= f * g; a[i][l] = f - g; f = 0.0; for (j = 0; j <= l; j++) { a[j][i] = a[i][j]/h; g = 0.0; for (k = 0; k <= j; k++) g += a[j][k] * a[i][k]; for (k = j+1; k <= l; k++) g += a[k][j] * a[i][k]; e[j] = g / h; f += e[j] * a[i][j]; } hh = f / (h + h); for (j = 0; j <= l; j++) { f = a[i][j]; e[j] = g = e[j] - hh * f; for (k = 0; k <= j; k++) a[j][k] -= (f * e[k] + g * a[i][k]); } } } else e[i] = a[i][l]; d[i] = h; } d[0] = 0.0; e[0] = 0.0; for (i = 0; i < n; i++) { l = i - 1; if (d[i]) { for (j = 0; j <= l; j++) { g = 0.0; for (k = 0; k <= l; k++) g += a[i][k] * a[k][j]; for (k = 0; k <= l; k++) a[k][j] -= g * a[k][i]; } } d[i] = a[i][i]; a[i][i] = 1.0; for (j = 0; j <= l; j++) a[j][i] = a[i][j] = 0.0; } } /** Tridiagonal QL algorithm -- Implicit **********************/ void tqli(double* d, double* e, int n, double** z) { int m, l, iter, i, k; double s, r, p, g, f, dd, c, b; for (i = 1; i < n; i++) e[i-1] = e[i]; e[n-1] = 0.0; for (l = 0; l < n; l++) { iter = 0; do { for (m = l; m < n-1; m++) { dd = fabs(d[m]) + fabs(d[m+1]); if (fabs(e[m]) + dd == dd) break; } if (m != l) { if (iter++ == 30) erhand("No convergence in TLQI."); g = (d[l+1] - d[l]) / (2.0 * e[l]); r = sqrt((g * g) + 1.0); g = d[m] - d[l] + e[l] / (g + SIGN(r, g)); s = c = 1.0; p = 0.0; for (i = m-1; i >= l; i--) { f = s * e[i]; b = c * e[i]; if (fabs(f) >= fabs(g)) { c = g / f; r = sqrt((c * c) + 1.0); e[i+1] = f * r; c *= (s = 1.0/r); } else { s = f / g; r = sqrt((s * s) + 1.0); e[i+1] = g * r; s *= (c = 1.0/r); } g = d[i+1] - p; r = (d[i] - g) * s + 2.0 * c * b; p = s * r; d[i+1] = g + p; g = c * r - b; for (k = 0; k < n; k++) { f = z[k][i+1]; z[k][i+1] = s * z[k][i] + c * f; z[k][i] = c * z[k][i] - s * f; } } d[l] = d[l] - p; e[l] = g; e[m] = 0.0; } } while (m != l); } } /* In place projection onto basis vectors */ void pca_project(double** data, int n, int m, int ncomponents) { int i, j, k, k2; double **symmat, **symmat2, *evals, *interm; //TODO: assert ncomponents < m symmat = (double**) malloc(m*sizeof(double*)); for (i = 0; i < m; i++) symmat[i] = (double*) malloc(m*sizeof(double)); covcol(data, n, m, symmat); /********************************************************************* Eigen-reduction **********************************************************************/ /* Allocate storage for dummy and new vectors. */ evals = (double*) malloc(m*sizeof(double)); /* Storage alloc. for vector of eigenvalues */ interm = (double*) malloc(m*sizeof(double)); /* Storage alloc. for 'intermediate' vector */ //MALLOC_ARRAY(symmat2,m,m,double); //for (i = 0; i < m; i++) { // for (j = 0; j < m; j++) { // symmat2[i][j] = symmat[i][j]; /* Needed below for col. projections */ // } //} tred2(symmat, m, evals, interm); /* Triangular decomposition */ tqli(evals, interm, m, symmat); /* Reduction of sym. trid. matrix */ /* evals now contains the eigenvalues, columns of symmat now contain the associated eigenvectors. */ /* printf("\nEigenvalues:\n"); for (j = m-1; j >= 0; j--) { printf("%18.5f\n", evals[j]); } printf("\n(Eigenvalues should be strictly positive; limited\n"); printf("precision machine arithmetic may affect this.\n"); printf("Eigenvalues are often expressed as cumulative\n"); printf("percentages, representing the 'percentage variance\n"); printf("explained' by the associated axis or principal component.)\n"); printf("\nEigenvectors:\n"); printf("(First three; their definition in terms of original vbes.)\n"); for (j = 0; j < m; j++) { for (i = 1; i <= 3; i++) { printf("%12.4f", symmat[j][m-i]); } printf("\n"); } */ /* Form projections of row-points on prin. components. */ /* Store in 'data', overwriting original data. */ for (i = 0; i < n; i++) { for (j = 0; j < m; j++) { interm[j] = data[i][j]; } /* data[i][j] will be overwritten */ for (k = 0; k < ncomponents; k++) { data[i][k] = 0.0; for (k2 = 0; k2 < m; k2++) { data[i][k] += interm[k2] * symmat[k2][m-k-1]; } } } /* printf("\nProjections of row-points on first 3 prin. comps.:\n"); for (i = 0; i < n; i++) { for (j = 0; j < 3; j++) { printf("%12.4f", data[i][j]); } printf("\n"); } */ /* Form projections of col.-points on first three prin. components. */ /* Store in 'symmat2', overwriting what was stored in this. */ //for (j = 0; j < m; j++) { // for (k = 0; k < m; k++) { // interm[k] = symmat2[j][k]; } /*symmat2[j][k] will be overwritten*/ // for (i = 0; i < 3; i++) { // symmat2[j][i] = 0.0; // for (k2 = 0; k2 < m; k2++) { // symmat2[j][i] += interm[k2] * symmat[k2][m-i-1]; } // if (evals[m-i-1] > 0.0005) /* Guard against zero eigenvalue */ // symmat2[j][i] /= sqrt(evals[m-i-1]); /* Rescale */ // else // symmat2[j][i] = 0.0; /* Standard kludge */ // } // } /* printf("\nProjections of column-points on first 3 prin. comps.:\n"); for (j = 0; j < m; j++) { for (k = 0; k < 3; k++) { printf("%12.4f", symmat2[j][k]); } printf("\n"); } */ for (i = 0; i < m; i++) free(symmat[i]); free(symmat); //FREE_ARRAY(symmat2,m); free(evals); free(interm); }