/* * Copyright (C) 2014-2015 Tim Mayberry * Copyright (C) 2014-2018 Paul Davis * Copyright (C) 2014-2019 Robin Gareus * Copyright (C) 2016-2017 John Emmas * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #ifdef PLATFORM_WINDOWS #include #include #endif #include "dummy_audiobackend.h" #include "dummy_midi_seq.h" #include "pbd/error.h" #include "pbd/compose.h" #include "pbd/pthread_utils.h" #include "ardour/debug.h" #include "ardour/port_manager.h" #include "pbd/i18n.h" using namespace ARDOUR; static std::string s_instance_name; size_t DummyAudioBackend::_max_buffer_size = 8192; std::vector DummyAudioBackend::_midi_options; std::vector DummyAudioBackend::_device_status; std::vector DummyAudioBackend::_driver_speed; static int64_t _x_get_monotonic_usec() { #ifdef PLATFORM_WINDOWS return PBD::get_microseconds(); #endif return g_get_monotonic_time(); } DummyAudioBackend::DummyAudioBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , PortEngineSharedImpl (e, s_instance_name) , _running (false) , _freewheel (false) , _freewheeling (false) , _speedup (1.0) , _device ("") , _samplerate (48000) , _samples_per_period (1024) , _dsp_load (0) , _n_inputs (0) , _n_outputs (0) , _n_midi_inputs (0) , _n_midi_outputs (0) , _midi_mode (MidiNoEvents) , _systemic_input_latency (0) , _systemic_output_latency (0) , _processed_samples (0) { _instance_name = s_instance_name; _device = _("Silence"); if (_driver_speed.empty()) { _driver_speed.push_back (DriverSpeed (_("Half Speed"), 2.0f)); _driver_speed.push_back (DriverSpeed (_("Normal Speed"), 1.0f)); _driver_speed.push_back (DriverSpeed (_("Double Speed"), 0.5f)); _driver_speed.push_back (DriverSpeed (_("5x Speed"), 0.2f)); _driver_speed.push_back (DriverSpeed (_("10x Speed"), 0.1f)); _driver_speed.push_back (DriverSpeed (_("15x Speed"), 0.06666f)); _driver_speed.push_back (DriverSpeed (_("20x Speed"), 0.05f)); _driver_speed.push_back (DriverSpeed (_("50x Speed"), 0.02f)); } } DummyAudioBackend::~DummyAudioBackend () { clear_ports (); } /* AUDIOBACKEND API */ std::string DummyAudioBackend::name () const { return X_("Dummy"); // internal name } bool DummyAudioBackend::is_realtime () const { return false; } std::vector DummyAudioBackend::enumerate_devices () const { if (_device_status.empty()) { _device_status.push_back (DeviceStatus (_("Silence"), true)); _device_status.push_back (DeviceStatus (_("DC -6dBFS (+.5)"), true)); _device_status.push_back (DeviceStatus (_("Demolition"), true)); _device_status.push_back (DeviceStatus (_("Sine Wave"), true)); _device_status.push_back (DeviceStatus (_("Sine Wave 1K, 1/3 Oct"), true)); _device_status.push_back (DeviceStatus (_("Square Wave"), true)); _device_status.push_back (DeviceStatus (_("Impulses"), true)); _device_status.push_back (DeviceStatus (_("Uniform White Noise"), true)); _device_status.push_back (DeviceStatus (_("Gaussian White Noise"), true)); _device_status.push_back (DeviceStatus (_("Pink Noise"), true)); _device_status.push_back (DeviceStatus (_("Pink Noise (low CPU)"), true)); _device_status.push_back (DeviceStatus (_("Sine Sweep"), true)); _device_status.push_back (DeviceStatus (_("Sine Sweep Swell"), true)); _device_status.push_back (DeviceStatus (_("Square Sweep"), true)); _device_status.push_back (DeviceStatus (_("Square Sweep Swell"), true)); _device_status.push_back (DeviceStatus (_("Engine Pulse"), true)); _device_status.push_back (DeviceStatus (_("LTC"), true)); _device_status.push_back (DeviceStatus (_("Loopback"), true)); } return _device_status; } std::vector DummyAudioBackend::available_sample_rates (const std::string&) const { std::vector sr; sr.push_back (8000.0); sr.push_back (22050.0); sr.push_back (24000.0); sr.push_back (44100.0); sr.push_back (48000.0); sr.push_back (88200.0); sr.push_back (96000.0); sr.push_back (176400.0); sr.push_back (192000.0); return sr; } std::vector DummyAudioBackend::available_buffer_sizes (const std::string&) const { std::vector bs; bs.push_back (4); bs.push_back (8); bs.push_back (16); bs.push_back (32); bs.push_back (64); bs.push_back (128); bs.push_back (256); bs.push_back (512); bs.push_back (1024); bs.push_back (2048); bs.push_back (4096); bs.push_back (8192); return bs; } uint32_t DummyAudioBackend::available_input_channel_count (const std::string&) const { return 128; } uint32_t DummyAudioBackend::available_output_channel_count (const std::string&) const { return 128; } bool DummyAudioBackend::can_change_sample_rate_when_running () const { return false; } bool DummyAudioBackend::can_change_buffer_size_when_running () const { return true; } std::vector DummyAudioBackend::enumerate_drivers () const { std::vector speed_drivers; for (std::vector::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) { speed_drivers.push_back (it->name); } return speed_drivers; } std::string DummyAudioBackend::driver_name () const { for (std::vector::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) { if (rintf (1e6f * _speedup) == rintf (1e6f * it->speedup)) { return it->name; } } assert (0); return _("Normal Speed"); } int DummyAudioBackend::set_driver (const std::string& d) { for (std::vector::const_iterator it = _driver_speed.begin () ; it != _driver_speed.end (); ++it) { if (d == it->name) { _speedup = it->speedup; return 0; } } assert (0); return -1; } int DummyAudioBackend::set_device_name (const std::string& d) { _device = d; return 0; } int DummyAudioBackend::set_sample_rate (float sr) { if (sr <= 0) { return -1; } _samplerate = sr; engine.sample_rate_change (sr); return 0; } int DummyAudioBackend::set_buffer_size (uint32_t bs) { if (bs <= 0 || bs > _max_buffer_size) { return -1; } _samples_per_period = bs; /* update port latencies * with 'Loopback' there is exactly once cycle latency, * divide it between In + Out; */ LatencyRange lr; lr.min = lr.max = _systemic_input_latency; for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { set_latency_range (*it, false, lr); } for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) { set_latency_range (*it, false, lr); } lr.min = lr.max = _systemic_output_latency; for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) { set_latency_range (*it, true, lr); } for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) { set_latency_range (*it, true, lr); } engine.buffer_size_change (bs); return 0; } int DummyAudioBackend::set_interleaved (bool yn) { if (!yn) { return 0; } return -1; } int DummyAudioBackend::set_input_channels (uint32_t cc) { _n_inputs = cc; return 0; } int DummyAudioBackend::set_output_channels (uint32_t cc) { _n_outputs = cc; return 0; } int DummyAudioBackend::set_systemic_input_latency (uint32_t sl) { _systemic_input_latency = sl; return 0; } int DummyAudioBackend::set_systemic_output_latency (uint32_t sl) { _systemic_output_latency = sl; return 0; } /* Retrieving parameters */ std::string DummyAudioBackend::device_name () const { return _device; } float DummyAudioBackend::sample_rate () const { return _samplerate; } uint32_t DummyAudioBackend::buffer_size () const { return _samples_per_period; } bool DummyAudioBackend::interleaved () const { return false; } uint32_t DummyAudioBackend::input_channels () const { return _n_inputs; } uint32_t DummyAudioBackend::output_channels () const { return _n_outputs; } uint32_t DummyAudioBackend::systemic_input_latency () const { return _systemic_input_latency; } uint32_t DummyAudioBackend::systemic_output_latency () const { return _systemic_output_latency; } /* MIDI */ std::vector DummyAudioBackend::enumerate_midi_options () const { if (_midi_options.empty()) { _midi_options.push_back (_("1 in, 1 out, Silence")); _midi_options.push_back (_("2 in, 2 out, Silence")); _midi_options.push_back (_("8 in, 8 out, Silence")); _midi_options.push_back (_("Midi Event Generators")); _midi_options.push_back (_("Engine Pulse")); _midi_options.push_back (_("8 in, 8 out, Loopback")); _midi_options.push_back (_("MIDI to Audio, Loopback")); _midi_options.push_back (_("No MIDI I/O")); } return _midi_options; } int DummyAudioBackend::set_midi_option (const std::string& opt) { _midi_mode = MidiNoEvents; if (opt == _("1 in, 1 out, Silence")) { _n_midi_inputs = _n_midi_outputs = 1; } else if (opt == _("2 in, 2 out, Silence")) { _n_midi_inputs = _n_midi_outputs = 2; } else if (opt == _("8 in, 8 out, Silence")) { _n_midi_inputs = _n_midi_outputs = 8; } else if (opt == _("Engine Pulse")) { _n_midi_inputs = _n_midi_outputs = 1; _midi_mode = MidiOneHz; } else if (opt == _("Midi Event Generators")) { _n_midi_inputs = _n_midi_outputs = NUM_MIDI_EVENT_GENERATORS; _midi_mode = MidiGenerator; } else if (opt == _("8 in, 8 out, Loopback")) { _n_midi_inputs = _n_midi_outputs = 8; _midi_mode = MidiLoopback; } else if (opt == _("MIDI to Audio, Loopback")) { _n_midi_inputs = _n_midi_outputs = UINT32_MAX; _midi_mode = MidiToAudio; } else { _n_midi_inputs = _n_midi_outputs = 0; } return 0; } std::string DummyAudioBackend::midi_option () const { return ""; // TODO } /* State Control */ static void * pthread_process (void *arg) { DummyAudioBackend *d = static_cast(arg); d->main_process_thread (); pthread_exit (0); return 0; } int DummyAudioBackend::_start (bool /*for_latency_measurement*/) { if (_running) { PBD::error << _("DummyAudioBackend: already active.") << endmsg; return BackendReinitializationError; } clear_ports (); if (register_system_ports()) { PBD::error << _("DummyAudioBackend: failed to register system ports.") << endmsg; return PortRegistrationError; } engine.sample_rate_change (_samplerate); engine.buffer_size_change (_samples_per_period); if (engine.reestablish_ports ()) { PBD::error << _("DummyAudioBackend: Could not re-establish ports.") << endmsg; stop (); return PortReconnectError; } engine.reconnect_ports (); _port_change_flag.store (0); if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &_main_thread, pthread_process, this)) { PBD::error << _("DummyAudioBackend: cannot start.") << endmsg; } int timeout = 5000; while (!_running && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_running) { PBD::error << _("DummyAudioBackend: failed to start process thread.") << endmsg; return ProcessThreadStartError; } return NoError; } int DummyAudioBackend::stop () { void *status; if (!_running) { return 0; } _running = false; if (pthread_join (_main_thread, &status)) { PBD::error << _("DummyAudioBackend: failed to terminate.") << endmsg; return -1; } unregister_ports(); return 0; } int DummyAudioBackend::freewheel (bool onoff) { _freewheeling = onoff; return 0; } float DummyAudioBackend::dsp_load () const { return 100.f * _dsp_load; } size_t DummyAudioBackend::raw_buffer_size (DataType t) { switch (t) { case DataType::AUDIO: return _samples_per_period * sizeof(Sample); case DataType::MIDI: return _max_buffer_size; // XXX not really limited } return 0; } /* Process time */ samplepos_t DummyAudioBackend::sample_time () { return _processed_samples; } samplepos_t DummyAudioBackend::sample_time_at_cycle_start () { return _processed_samples; } pframes_t DummyAudioBackend::samples_since_cycle_start () { return 0; } void * DummyAudioBackend::dummy_process_thread (void *arg) { ThreadData* td = reinterpret_cast (arg); boost::function f = td->f; delete td; f (); return 0; } int DummyAudioBackend::create_process_thread (boost::function func) { pthread_t thread_id; ThreadData* td = new ThreadData (this, func, PBD_RT_STACKSIZE_PROC); if (pbd_pthread_create (PBD_RT_STACKSIZE_PROC, &thread_id, dummy_process_thread, td)) { PBD::error << _("AudioEngine: cannot create process thread.") << endmsg; return -1; } _threads.push_back (thread_id); return 0; } int DummyAudioBackend::join_process_threads () { int rv = 0; for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { void *status; if (pthread_join (*i, &status)) { PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg; rv -= 1; } } _threads.clear (); return rv; } bool DummyAudioBackend::in_process_thread () { if (pthread_equal (_main_thread, pthread_self()) != 0) { return true; } for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { return true; } } return false; } uint32_t DummyAudioBackend::process_thread_count () { return _threads.size (); } void DummyAudioBackend::update_latencies () { // trigger latency callback in RT thread (locked graph) port_connect_add_remove_callback(); } /* PORTENGINE API */ void* DummyAudioBackend::private_handle () const { return NULL; } const std::string& DummyAudioBackend::my_name () const { return _instance_name; } int DummyAudioBackend::register_system_ports() { LatencyRange lr; enum DummyAudioPort::GeneratorType gt; if (_device == _("Uniform White Noise")) { gt = DummyAudioPort::UniformWhiteNoise; } else if (_device == _("Gaussian White Noise")) { gt = DummyAudioPort::GaussianWhiteNoise; } else if (_device == _("Pink Noise")) { gt = DummyAudioPort::PinkNoise; } else if (_device == _("Pink Noise (low CPU)")) { gt = DummyAudioPort::PonyNoise; } else if (_device == _("Sine Wave")) { gt = DummyAudioPort::SineWave; } else if (_device == _("Sine Wave 1K, 1/3 Oct")) { gt = DummyAudioPort::SineWaveOctaves; } else if (_device == _("Square Wave")) { gt = DummyAudioPort::SquareWave; } else if (_device == _("Impulses")) { gt = DummyAudioPort::KronekerDelta; } else if (_device == _("Sine Sweep")) { gt = DummyAudioPort::SineSweep; } else if (_device == _("Sine Sweep Swell")) { gt = DummyAudioPort::SineSweepSwell; } else if (_device == _("Square Sweep")) { gt = DummyAudioPort::SquareSweep; } else if (_device == _("Square Sweep Swell")) { gt = DummyAudioPort::SquareSweepSwell; } else if (_device == _("Engine Pulse")) { gt = DummyAudioPort::OneHz; } else if (_device == _("LTC")) { gt = DummyAudioPort::LTC; } else if (_device == _("Loopback")) { gt = DummyAudioPort::Loopback; } else if (_device == _("Demolition")) { gt = DummyAudioPort::Demolition; } else if (_device == _("DC -6dBFS (+.5)")) { gt = DummyAudioPort::DC05; } else { gt = DummyAudioPort::Silence; } if (_midi_mode == MidiToAudio) { gt = DummyAudioPort::Loopback; } const int a_ins = _n_inputs > 0 ? _n_inputs : 8; const int a_out = _n_outputs > 0 ? _n_outputs : 8; const int m_ins = _n_midi_inputs == UINT_MAX ? 0 : _n_midi_inputs; const int m_out = _n_midi_outputs == UINT_MAX ? a_ins : _n_midi_outputs; /* audio ports */ lr.min = lr.max = _systemic_input_latency; for (int i = 1; i <= a_ins; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:capture_%d", i); PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); std::shared_ptr dp = std::dynamic_pointer_cast(p); _system_inputs.push_back (dp); std::string name = dp->setup_generator (gt, _samplerate, i - 1, a_ins); if (!name.empty ()) { dp->set_hw_port_name (name); } } lr.min = lr.max = _systemic_output_latency; for (int i = 1; i <= a_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:playback_%d", i); PortPtr p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); _system_outputs.push_back (std::dynamic_pointer_cast(p)); } /* midi ports */ lr.min = lr.max = _systemic_input_latency; for (int i = 0; i < m_ins; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:midi_capture_dummy_%d", i+1); PortPtr p = add_port(std::string(tmp), DataType::MIDI, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); std::shared_ptr dp = std::dynamic_pointer_cast(p); _system_midi_in.push_back (dp); if (_midi_mode == MidiGenerator) { std::string name = dp->setup_generator (i % NUM_MIDI_EVENT_GENERATORS, _samplerate); if (!name.empty ()) { dp->set_hw_port_name (name); } } else if (_midi_mode == MidiOneHz) { std::string name = dp->setup_generator (-1, _samplerate); if (!name.empty ()) { dp->set_hw_port_name (name); } } } lr.min = lr.max = _systemic_output_latency; for (int i = 1; i <= m_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:midi_playback_dummy_%d", i); PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); std::shared_ptr dp = std::dynamic_pointer_cast(p); _system_midi_out.push_back (dp); if (_device == _("Loopback") && _midi_mode == MidiToAudio) { std::stringstream ss; ss << "Midi2Audio"; for (int apc = 0; apc < (int)_system_inputs.size(); ++apc) { if ((apc % m_out) + 1 == i) { ss << " >" << (apc + 1); } } dp->set_hw_port_name (ss.str()); } } return 0; } BackendPort* DummyAudioBackend::port_factory (std::string const & name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { BackendPort* port = 0; switch (type) { case DataType::AUDIO: port = new DummyAudioPort (*this, name, flags); break; case DataType::MIDI: port = new DummyMidiPort (*this, name, flags); break; default: PBD::error << string_compose (_("%1::register_port: Invalid Data Type."), _instance_name) << endmsg; return 0; } return port; } /* MIDI */ int DummyAudioBackend::midi_event_get ( pframes_t& timestamp, size_t& size, uint8_t const** buf, void* port_buffer, uint32_t event_index) { assert (buf && port_buffer); DummyMidiBuffer& source = * static_cast(port_buffer); if (event_index >= source.size ()) { return -1; } DummyMidiEvent * const event = source[event_index].get (); timestamp = event->timestamp (); size = event->size (); *buf = event->data (); return 0; } int DummyAudioBackend::midi_event_put ( void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size) { assert (buffer && port_buffer); DummyMidiBuffer& dst = * static_cast(port_buffer); if (dst.size () && (pframes_t)dst.back ()->timestamp () > timestamp) { // nevermind, ::get_buffer() sorts events, but always print warning fprintf (stderr, "DummyMidiBuffer: it's too late for this event %d > %d.\n", (pframes_t)dst.back ()->timestamp (), timestamp); } dst.push_back (std::shared_ptr(new DummyMidiEvent (timestamp, buffer, size))); #if 0 // DEBUG MIDI EVENTS printf("DummyAudioBackend::midi_event_put %d, %zu: ", timestamp, size); for (size_t xx = 0; xx < size; ++xx) { printf(" %02x", buffer[xx]); } printf("\n"); #endif return 0; } uint32_t DummyAudioBackend::get_midi_event_count (void* port_buffer) { assert (port_buffer); return static_cast(port_buffer)->size (); } void DummyAudioBackend::midi_clear (void* port_buffer) { assert (port_buffer); DummyMidiBuffer * buf = static_cast(port_buffer); assert (buf); buf->clear (); } /* Monitoring */ bool DummyAudioBackend::can_monitor_input () const { return false; } int DummyAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool) { return -1; } int DummyAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool) { return -1; } bool DummyAudioBackend::monitoring_input (PortEngine::PortHandle) { return false; } /* Latency management */ void DummyAudioBackend::set_latency_range (PortEngine::PortHandle port_handle, bool for_playback, LatencyRange latency_range) { BackendPortPtr port = std::dynamic_pointer_cast (port_handle); if (!valid_port (port)) { DEBUG_TRACE (PBD::DEBUG::BackendPorts, "DummyPort::set_latency_range (): invalid port."); return; } port->set_latency_range (latency_range, for_playback); } LatencyRange DummyAudioBackend::get_latency_range (PortEngine::PortHandle port_handle, bool for_playback) { LatencyRange r; BackendPortPtr port = std::dynamic_pointer_cast (port_handle); if (!valid_port (port)) { DEBUG_TRACE (PBD::DEBUG::BackendPorts, "DummyPort::get_latency_range (): invalid port."); r.min = 0; r.max = 0; return r; } r = port->latency_range (for_playback); #ifndef ZERO_LATENCY if (port->is_physical() && port->is_terminal()) { if (port->is_input() && for_playback) { const size_t l_in = _samples_per_period * .25; r.min += l_in; r.max += l_in; } if (port->is_output() && !for_playback) { /* with 'Loopback' there is exactly once cycle latency, divide it between In + Out; */ const size_t l_in = _samples_per_period * .25; const size_t l_out = _samples_per_period - l_in; r.min += l_out; r.max += l_out; } } #endif return r; } /* Getting access to the data buffer for a port */ void* DummyAudioBackend::get_buffer (PortEngine::PortHandle port_handle, pframes_t nframes) { BackendPortPtr port = std::dynamic_pointer_cast (port_handle); assert (port); assert (valid_port (port)); return port->get_buffer (nframes); } /* Engine Process */ void * DummyAudioBackend::main_process_thread () { AudioEngine::thread_init_callback (this); _running = true; _processed_samples = 0; manager.registration_callback(); manager.graph_order_callback(); #ifdef PLATFORM_WINDOWS PBD::MMTIMERS::set_min_resolution(); #endif int64_t clock1; clock1 = -1; while (_running) { const size_t samples_per_period = _samples_per_period; if (_freewheeling != _freewheel) { _freewheel = _freewheeling; engine.freewheel_callback (_freewheel); } // re-set input buffers, generate on demand. for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { std::dynamic_pointer_cast(*it)->next_period (); } for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) { std::dynamic_pointer_cast(*it)->next_period (); } if (engine.process_callback (samples_per_period)) { return 0; } _processed_samples += samples_per_period; if (_device == _("Loopback") && _midi_mode != MidiToAudio) { int opn = 0; int opc = _system_outputs.size(); for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) { BackendPortPtr op = _system_outputs[(opn % opc)]; std::dynamic_pointer_cast(*it)->fill_wavetable ((const float*)op->get_buffer (samples_per_period), samples_per_period); } } if (_midi_mode == MidiLoopback) { int opn = 0; int opc = _system_midi_out.size(); for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++opn) { std::shared_ptr op = std::dynamic_pointer_cast (_system_midi_out[(opn % opc)]); op->get_buffer(0); // mix-down std::dynamic_pointer_cast(*it)->set_loopback (op->const_buffer()); } } else if (_midi_mode == MidiToAudio) { int opn = 0; int opc = _system_midi_out.size(); for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++opn) { std::shared_ptr op = std::dynamic_pointer_cast (_system_midi_out[(opn % opc)]); op->get_buffer(0); // mix-down std::dynamic_pointer_cast(*it)->midi_to_wavetable (op->const_buffer(), samples_per_period); } } if (!_freewheel) { _dsp_load_calc.set_max_time (_samplerate, samples_per_period); _dsp_load_calc.set_start_timestamp_us (clock1); _dsp_load_calc.set_stop_timestamp_us (_x_get_monotonic_usec()); _dsp_load = _dsp_load_calc.get_dsp_load_unbound (); const int64_t elapsed_time = _dsp_load_calc.elapsed_time_us (); const int64_t nominal_time = _dsp_load_calc.get_max_time_us (); if (elapsed_time < nominal_time) { const int64_t sleepy = _speedup * (nominal_time - elapsed_time); Glib::usleep (std::max ((int64_t) 100, sleepy)); } else { Glib::usleep (100); // don't hog cpu } } else { _dsp_load = 1.0f; Glib::usleep (100); // don't hog cpu } /* beginning of next cycle */ clock1 = _x_get_monotonic_usec(); bool connections_changed = false; bool ports_changed = false; if (!pthread_mutex_trylock (&_port_callback_mutex)) { int canderef (1); if (_port_change_flag.compare_exchange_strong (canderef, 0)) { ports_changed = true; } if (!_port_connection_queue.empty ()) { connections_changed = true; } while (!_port_connection_queue.empty ()) { PortConnectData *c = _port_connection_queue.back (); manager.connect_callback (c->a, c->b, c->c); _port_connection_queue.pop_back (); delete c; } pthread_mutex_unlock (&_port_callback_mutex); } if (ports_changed) { manager.registration_callback(); } if (connections_changed) { manager.graph_order_callback(); } if (connections_changed || ports_changed) { update_system_port_latencies (); engine.latency_callback(false); engine.latency_callback(true); } } #ifdef PLATFORM_WINDOWS PBD::MMTIMERS::reset_resolution(); #endif _running = false; return 0; } /******************************************************************************/ static std::shared_ptr _instance; static std::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { _("None (Dummy)"), instantiate, deinstantiate, backend_factory, already_configured, available }; static std::shared_ptr backend_factory (AudioEngine& e) { if (!_instance) { _instance.reset (new DummyAudioBackend (e, _descriptor)); } return _instance; } static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; return 0; } static int deinstantiate () { _instance.reset (); return 0; } static bool already_configured () { // special-case: unit-tests require backend to be pre-configured. if (s_instance_name == "Unit-Test") { return true; } return false; } static bool available () { return true; } extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; } /******************************************************************************/ DummyPort::DummyPort (DummyAudioBackend &b, const std::string& name, PortFlags flags) : BackendPort (b, name, flags) , _rseed (0) , _gen_cycle (false) , _engine (b) { } DummyPort::~DummyPort () { } void DummyPort::setup_random_number_generator () { #ifdef PLATFORM_WINDOWS LARGE_INTEGER Count; if (QueryPerformanceCounter (&Count)) { _rseed = Count.QuadPart; } else #endif { _rseed = g_get_monotonic_time(); } _rseed = (_rseed + (uint64_t)this) % INT_MAX; if (_rseed == 0) _rseed = 1; } inline uint32_t DummyPort::randi () { // 31bit Park-Miller-Carta Pseudo-Random Number Generator // http://www.firstpr.com.au/dsp/rand31/ uint32_t hi, lo; lo = 16807 * (_rseed & 0xffff); hi = 16807 * (_rseed >> 16); lo += (hi & 0x7fff) << 16; lo += hi >> 15; #if 1 lo = (lo & 0x7fffffff) + (lo >> 31); #else if (lo > 0x7fffffff) { lo -= 0x7fffffff; } #endif return (_rseed = lo); } inline float DummyPort::randf () { return (randi() / 1073741824.f) - 1.f; } pframes_t DummyPort::pulse_position () const { samplecnt_t sr = _engine.sample_rate (); samplepos_t st = _engine.sample_time_at_cycle_start(); return (sr - (st % sr)) % sr; } /******************************************************************************/ DummyAudioPort::DummyAudioPort (DummyAudioBackend &b, const std::string& name, PortFlags flags) : DummyPort (b, name, flags) , _gen_type (Silence) , _b0 (0) , _b1 (0) , _b2 (0) , _b3 (0) , _b4 (0) , _b5 (0) , _b6 (0) , _wavetable (0) , _gen_period (0) , _gen_offset (0) , _gen_perio2 (0) , _gen_count2 (0) , _pass (false) , _rn1 (0) , _ltc (0) , _ltcbuf (0) { memset (_buffer, 0, sizeof (_buffer)); } DummyAudioPort::~DummyAudioPort () { free(_wavetable); ltc_encoder_free (_ltc); delete _ltcbuf; _wavetable = 0; _ltc = 0; _ltcbuf = 0; } static std::string format_hz (float freq) { std::stringstream ss; if (freq >= 10000) { ss << std::setprecision (1) << std::fixed << freq / 1000 << "kHz"; } else if (freq >= 1000) { ss << std::setprecision (2) << std::fixed << freq / 1000 << "kHz"; } else { ss << std::setprecision (1) << std::fixed << freq << "Hz"; } return ss.str (); } static size_t fit_wave (float freq, float rate, float precision = 0.001) { const size_t max_mult = floor (freq * rate); float minErr = 2; size_t fact = 1; for (size_t i = 1; i < max_mult; ++i) { const float isc = rate * (float)i / freq; // ideal sample count const float rsc = rintf (isc); // rounded sample count const float err = fabsf (isc - rsc); if (err < minErr) { minErr = err; fact = i; } if (err < precision) { break; } } //printf(" FIT %8.1f Hz / %8.1f Hz * %ld = %.0f (err: %e)\n", freq, rate, fact, fact * rate / freq, minErr); return fact; } std::string DummyAudioPort::setup_generator (GeneratorType const g, float const samplerate, int c, int total) { std::string name; DummyPort::setup_random_number_generator(); _gen_type = g; switch (_gen_type) { case PinkNoise: case PonyNoise: case UniformWhiteNoise: case GaussianWhiteNoise: case DC05: case Silence: break; case OneHz: name = string_compose ("One Hz (%1)", 1 + c); break; case Demolition: _gen_period = 3 * samplerate; break; case KronekerDelta: _gen_period = (5 + randi() % (int)(samplerate / 20.f)); name = "Delta " + format_hz (samplerate / _gen_period); break; case SquareWave: _gen_period = (5 + randi() % (int)(samplerate / 20.f)) & ~1; name = "Square " + format_hz (samplerate / _gen_period); break; case SineWaveOctaves: { const int x = c - floor (((float)total / 2)); float f = powf (2.f, x / 3.f) * 1000.f; f = std::max (10.f, std::min (samplerate *.5f, f)); const size_t mult = fit_wave (f, samplerate); _gen_period = rintf ((float)mult * samplerate / f); name = "Sine " + format_hz (samplerate * mult / (float)_gen_period); _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample)); for (uint32_t i = 0 ; i < _gen_period; ++i) { _wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)mult * (float)i / (float)(_gen_period)); // -18dBFS } } break; case SineWave: _gen_period = 5 + randi() % (int)(samplerate / 20.f); name = "Sine " + format_hz (samplerate / _gen_period); _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample)); for (uint32_t i = 0 ; i < _gen_period; ++i) { _wavetable[i] = .12589f * sinf(2.0f * M_PI * (float)i / (float)_gen_period); // -18dBFS } break; case SquareSweep: case SquareSweepSwell: case SineSweep: case SineSweepSwell: { _gen_period = 5 * samplerate + randi() % (int)(samplerate * 10.f); _gen_period &= ~1; _gen_perio2 = 1 | (int)ceilf (_gen_period * .89f); // Volume Swell period const double f_min = 20.; const double f_max = samplerate * .5; const double g_p2 = _gen_period * .5; #ifdef LINEAR_SWEEP const double b = (f_max - f_min) / (2. * samplerate * g_p2); const double a = f_min / samplerate; #else const double b = log (f_max / f_min) / g_p2; const double a = f_min / (b * samplerate); #endif const uint32_t g_p2i = rint(g_p2); _wavetable = (Sample*) malloc (_gen_period * sizeof(Sample)); for (uint32_t i = 0 ; i < g_p2i; ++i) { #ifdef LINEAR_SWEEP const double phase = i * (a + b * i); #else const double phase = a * exp (b * i) - a; #endif _wavetable[i] = (float)sin (2. * M_PI * (phase - floor (phase))); } for (uint32_t i = g_p2i; i < _gen_period; ++i) { const uint32_t j = _gen_period - i; #ifdef LINEAR_SWEEP const double phase = j * (a + b * j); #else const double phase = a * exp (b * j) - a; #endif _wavetable[i] = -(float)sin (2. * M_PI * (phase - floor (phase))); } if (_gen_type == SquareSweep) { for (uint32_t i = 0 ; i < _gen_period; ++i) { _wavetable[i] = _wavetable[i] < 0 ? -.40709f : .40709f; } } else if (_gen_type == SquareSweepSwell) { for (uint32_t i = 0 ; i < _gen_period; ++i) { _wavetable[i] = _wavetable[i] < 0 ? -1 : 1; } } } break; case LTC: switch (c % 4) { case 0: _ltc = ltc_encoder_create (samplerate, 25, LTC_TV_625_50, 0); name = "LTC25"; break; case 1: _ltc = ltc_encoder_create (samplerate, 30, LTC_TV_1125_60, 0); name = "LTC30"; break; case 2: _ltc = ltc_encoder_create (samplerate, 30001.f / 1001.f, LTC_TV_525_60, 0); name = "LTC29df"; break; case 3: _ltc = ltc_encoder_create (samplerate, 24, LTC_TV_FILM_24, 0); name = "LTC24"; break; } _ltc_spd = 1.0; _ltc_rand = floor((float)c / 4) * .001f; if (c < 4) { name += " (locked)"; } else { name += " (varspd)"; } SMPTETimecode tc; tc.years = 0; tc.months = 0; tc.days = 0; tc.hours = (3 * (c / 4)) % 24; // XXX tc.mins = 0; tc.secs = 0; tc.frame = 0; ltc_encoder_set_timecode (_ltc, &tc); name += string_compose ("@%1h", (int)tc.hours); _ltcbuf = new PBD::RingBuffer (std::max (DummyAudioBackend::max_buffer_size() * 2.f, samplerate)); break; case Loopback: _wavetable = (Sample*) calloc (DummyAudioBackend::max_buffer_size(), sizeof(Sample)); break; } return name; } void DummyAudioPort::midi_to_wavetable (DummyMidiBuffer const * const src, size_t n_samples) { memset(_wavetable, 0, n_samples * sizeof(float)); /* generate an audio spike for every midi message * to verify layency-compensation alignment * (here: midi-out playback-latency + audio-in capture-latency) */ for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { const pframes_t t = (*it)->timestamp(); assert(t < n_samples); // somewhat arbitrary mapping for quick visual feedback float v = -.5f; if ((*it)->size() == 3) { const unsigned char *d = (*it)->data(); if ((d[0] & 0xf0) == 0x90) { // note on v = .25f + d[2] / 512.f; } else if ((d[0] & 0xf0) == 0x80) { // note off v = .3f - d[2] / 640.f; } else if ((d[0] & 0xf0) == 0xb0) { // CC v = -.1f - d[2] / 256.f; } } _wavetable[t] += v; } } float DummyAudioPort::grandf () { // Gaussian White Noise // http://www.musicdsp.org/archive.php?classid=0#109 float x1, x2, r; if (_pass) { _pass = false; return _rn1; } do { x1 = randf (); x2 = randf (); r = x1 * x1 + x2 * x2; } while ((r >= 1.0f) || (r < 1e-22f)); r = sqrtf (-2.f * logf (r) / r); _pass = true; _rn1 = r * x2; return r * x1; } /* inspired by jack-demolition by Steve Harris */ static const float _demolition[] = { 0.0f, /* special case - 0dbFS white noise */ 0.0f, /* zero, may cause denomrals following a signal */ 0.73 / 1e45, /* very small - should be denormal when floated */ 3.7f, /* arbitrary number > 0dBFS */ -4.3f, /* arbitrary negative number > 0dBFS */ 4294967395.0f, /* 2^16 + 100 */ -4294967395.0f, 3.402823466e+38F, /* HUGE, HUGEVALF, non-inf number */ INFINITY, /* +inf */ -INFINITY, /* -inf */ -NAN, /* -nan */ NAN, /* nan */ 0.0f, /* some silence to check for recovery */ }; void DummyAudioPort::generate (const pframes_t n_samples) { Glib::Threads::Mutex::Lock lm (generator_lock); if (_gen_cycle) { return; } switch (_gen_type) { case Silence: memset (_buffer, 0, n_samples * sizeof (Sample)); break; case DC05: for (pframes_t i = 0 ; i < n_samples; ++i) { _buffer[i] = 0.5f; } break; case Demolition: switch (_gen_count2) { case 0: // noise for (pframes_t i = 0 ; i < n_samples; ++i) { _buffer[i] = randf(); } break; default: for (pframes_t i = 0 ; i < n_samples; ++i) { _buffer[i] = _demolition [_gen_count2]; } break; } _gen_offset += n_samples; if (_gen_offset > _gen_period) { _gen_offset = 0; _gen_count2 = (_gen_count2 + 1) % (sizeof (_demolition) / sizeof (float)); } break; case SquareWave: assert(_gen_period > 0); for (pframes_t i = 0 ; i < n_samples; ++i) { if (_gen_offset < _gen_period * .5f) { _buffer[i] = .40709f; // -6dBFS } else { _buffer[i] = -.40709f; } _gen_offset = (_gen_offset + 1) % _gen_period; } break; case KronekerDelta: assert(_gen_period > 0); memset (_buffer, 0, n_samples * sizeof (Sample)); for (pframes_t i = 0; i < n_samples; ++i) { if (_gen_offset == 0) { _buffer[i] = 1.0f; } _gen_offset = (_gen_offset + 1) % _gen_period; } break; case OneHz: memset (_buffer, 0, n_samples * sizeof (Sample)); { pframes_t pp = pulse_position (); /* MIDI Pulse needs 2 samples: Note on + off */ if (pp < n_samples - 1) { _buffer[pp] = 1.0f; _buffer[pp + 1] = -1.0f; } } break; case SineSweepSwell: case SquareSweepSwell: assert(_wavetable && _gen_period > 0); { const float vols = 2.f / (float)_gen_perio2; for (pframes_t i = 0; i < n_samples; ++i) { const float g = fabsf (_gen_count2 * vols - 1.f); _buffer[i] = g * _wavetable[_gen_offset]; _gen_offset = (_gen_offset + 1) % _gen_period; _gen_count2 = (_gen_count2 + 1) % _gen_perio2; } } break; case Loopback: memcpy((void*)_buffer, (void*)_wavetable, n_samples * sizeof(Sample)); break; case SineWave: case SineWaveOctaves: case SineSweep: case SquareSweep: assert(_wavetable && _gen_period > 0); { pframes_t written = 0; while (written < n_samples) { const uint32_t remain = n_samples - written; const uint32_t to_copy = std::min(remain, _gen_period - _gen_offset); memcpy((void*)&_buffer[written], (void*)&_wavetable[_gen_offset], to_copy * sizeof(Sample)); written += to_copy; _gen_offset = (_gen_offset + to_copy) % _gen_period; } } break; case UniformWhiteNoise: for (pframes_t i = 0 ; i < n_samples; ++i) { _buffer[i] = .158489f * randf(); } break; case GaussianWhiteNoise: for (pframes_t i = 0 ; i < n_samples; ++i) { _buffer[i] = .089125f * grandf(); } break; case PinkNoise: for (pframes_t i = 0 ; i < n_samples; ++i) { // Paul Kellet's refined method // http://www.musicdsp.org/files/pink.txt // NB. If 'white' consists of uniform random numbers, // the pink noise will have an almost gaussian distribution. const float white = .0498f * randf (); _b0 = .99886f * _b0 + white * .0555179f; _b1 = .99332f * _b1 + white * .0750759f; _b2 = .96900f * _b2 + white * .1538520f; _b3 = .86650f * _b3 + white * .3104856f; _b4 = .55000f * _b4 + white * .5329522f; _b5 = -.7616f * _b5 - white * .0168980f; _buffer[i] = _b0 + _b1 + _b2 + _b3 + _b4 + _b5 + _b6 + white * 0.5362f; _b6 = white * 0.115926f; } break; case PonyNoise: for (pframes_t i = 0 ; i < n_samples; ++i) { const float white = 0.0498f * randf (); // Paul Kellet's economy method // http://www.musicdsp.org/files/pink.txt _b0 = 0.99765f * _b0 + white * 0.0990460f; _b1 = 0.96300f * _b1 + white * 0.2965164f; _b2 = 0.57000f * _b2 + white * 1.0526913f; _buffer[i] = _b0 + _b1 + _b2 + white * 0.1848f; } break; case LTC: while (_ltcbuf->read_space () < n_samples) { // we should pre-allocate (or add a zero-copy libltc API), whatever. ltcsnd_sample_t* enc_buf = (ltcsnd_sample_t*) malloc (ltc_encoder_get_buffersize (_ltc) * sizeof (ltcsnd_sample_t)); for (int byteCnt = 0; byteCnt < 10; byteCnt++) { if (_ltc_rand != 0.f) { _ltc_spd += randf () * _ltc_rand; _ltc_spd = std::min (1.5f, std::max (0.5f, _ltc_spd)); } ltc_encoder_encode_byte (_ltc, byteCnt, _ltc_spd); const int len = ltc_encoder_get_buffer (_ltc, enc_buf); for (int i = 0; i < len; ++i) { const float v1 = enc_buf[i] - 128; Sample v = v1 * 0.002; _ltcbuf->write (&v, 1); } } ltc_encoder_inc_timecode (_ltc); free (enc_buf); } _ltcbuf->read (_buffer, n_samples); break; } _gen_cycle = true; } void* DummyAudioPort::get_buffer (pframes_t n_samples) { if (is_input ()) { const std::set& connections = get_connections (); std::set::const_iterator it = connections.begin (); if (it == connections.end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { std::shared_ptr source = std::dynamic_pointer_cast(*it); assert (source && source->is_output ()); if (source->is_physical() && source->is_terminal()) { source->get_buffer(n_samples); // generate signal. } memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); while (++it != connections.end ()) { source = std::dynamic_pointer_cast(*it); assert (source && source->is_output ()); Sample* dst = buffer (); if (source->is_physical() && source->is_terminal()) { source->get_buffer(n_samples); // generate signal. } const Sample* src = source->const_buffer (); for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) { *dst += *src; } } } } else if (is_output () && is_physical () && is_terminal()) { if (!_gen_cycle) { generate(n_samples); } } return _buffer; } DummyMidiPort::DummyMidiPort (DummyAudioBackend &b, const std::string& name, PortFlags flags) : DummyPort (b, name, flags) , _midi_seq_spb (0) , _midi_seq_time (0) , _midi_seq_pos (0) , _midi_seq_dat (0) { _buffer.clear (); _loopback.clear (); } DummyMidiPort::~DummyMidiPort () { _buffer.clear (); _loopback.clear (); } struct MidiEventSorter { bool operator() (const std::shared_ptr& a, const std::shared_ptr& b) { return *a < *b; } }; void DummyMidiPort::set_loopback (DummyMidiBuffer const * const src) { _loopback.clear (); for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { _loopback.push_back (std::shared_ptr(new DummyMidiEvent (**it))); } } std::string DummyMidiPort::setup_generator (int seq_id, const float sr) { DummyPort::setup_random_number_generator(); if (seq_id < 0) { _midi_seq_spb = sr; return "One Hz"; } _midi_seq_dat = DummyMidiData::sequences[seq_id % NUM_MIDI_EVENT_GENERATORS]; _midi_seq_spb = sr * .5f; // 120 BPM, beat_time 1.0 per beat. _midi_seq_pos = 0; _midi_seq_time = 0; if (_midi_seq_dat && _midi_seq_dat[0].beat_time < -1) { _midi_seq_spb = sr / 25; // 25fps MTC } else if (_midi_seq_dat && _midi_seq_dat[0].beat_time < 0) { /* MIDI Clock 120 BPM */ const double bpm = 120; double quarter_notes_per_beat = 1.0; const double samples_per_beat = sr * 60.0 / bpm; const double samples_per_quarter_note = samples_per_beat / quarter_notes_per_beat; const double clock_tick_interval = samples_per_quarter_note / 24.0; _midi_seq_spb = clock_tick_interval; } return DummyMidiData::sequence_names[seq_id]; } void DummyMidiPort::midi_generate (const pframes_t n_samples) { Glib::Threads::Mutex::Lock lm (generator_lock); if (_gen_cycle) { return; } _buffer.clear (); _gen_cycle = true; if (_midi_seq_spb != 0 && !_midi_seq_dat) { /* 1 Hz Note Events */ pframes_t pp = pulse_position (); if (pp < n_samples - 1) { uint8_t md[3] = {0x90, 0x3c, 0x7f}; _buffer.push_back (std::shared_ptr(new DummyMidiEvent (pp, md, 3))); md[0] = 0x80; md[2] = 0; _buffer.push_back (std::shared_ptr(new DummyMidiEvent (pp + 1, md, 3))); } return; } if (_midi_seq_spb == 0 || !_midi_seq_dat) { for (DummyMidiBuffer::const_iterator it = _loopback.begin (); it != _loopback.end (); ++it) { _buffer.push_back (std::shared_ptr(new DummyMidiEvent (**it))); } return; } if (_midi_seq_dat[0].beat_time < -2) { static const uint8_t mmc_seq[][14] = { {13, 0xf0, 0x7f, 0x7f, 0x06, 0x44, 0x06, 0x01, // Locate to 00:01:02:03 /*H*/ 0x00, /*M*/ 0x01, /*S*/ 0x02, /*F*/ 0x03, /*SF*/ 0x00, 0xf7}, { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x01, 0xf7}, // Stop { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x02, 0xf7}, // Play { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x01, 0xf7}, // Stop { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x04, 0xf7}, // Fast Foward { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x02, 0xf7}, // Roll { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x05, 0xf7}, // Rewind { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x01, 0xf7}, // Stop {13, 0xf0, 0x7f, 0x7f, 0x06, 0x44, 0x06, 0x01, // Locate to 00:00:00:00 /*H*/ 0x00, /*M*/ 0x00, /*S*/ 0x00, /*F*/ 0x00, /*SF*/ 0x00, 0xf7}, { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x03, 0xf7}, // Deferred Play { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x09, 0xf7}, // Pause { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x06, 0xf7}, // Record Strobe (implies play) { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x07, 0xf7}, // Record Exit (keeps rolling) { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x08, 0xf7}, // Record Pause (rec again) { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x09, 0xf7}, // Pause { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x01, 0xf7}, // Stop {10, 0xf0, 0x7f, 0x7f, 0x06, 0x47, 0x03, // Shuttle (set speed) /*SH*/ 0x02, /*SM*/ 0x40, /*SL*/ 0x00, 0xf7}, // 2 + 8192 / 16384 { 6, 0xf0, 0x7f, 0x7f, 0x06, 0x02, 0xf7}, // Play // TODO cmdStep(0x48), cmdWrite(0x40/0x41)+recArm(0x4f), cmdWrite(0x40/0x41)+mute(0x62) }; /* MMC */ pframes_t pp = pulse_position (); if (pp < n_samples - 1) { static const int dly_sec = 3; int n_cmds = sizeof (mmc_seq) / sizeof (mmc_seq[0]); if (0 == (_midi_seq_time % dly_sec)) { int seq = _midi_seq_time / dly_sec; _buffer.push_back (std::shared_ptr(new DummyMidiEvent (pp, &mmc_seq[seq][1], mmc_seq[seq][0]))); } _midi_seq_time = (_midi_seq_time + 1) % (dly_sec * n_cmds); } return; } else if (_midi_seq_dat[0].beat_time < -1) { /* MTC generator */ const int audio_samples_per_video_frame = _midi_seq_spb; // sample-rate / 25 const int audio_samples_per_qf = audio_samples_per_video_frame / 4; samplepos_t tc_frame = _midi_seq_time / audio_samples_per_video_frame; samplepos_t tc_sample = tc_frame * audio_samples_per_video_frame; int qf = (tc_frame & 1) ? 4 : 0; while (tc_sample < _midi_seq_time + n_samples) { if (tc_sample >= _midi_seq_time) { uint8_t buf[2]; buf[0] = 0xf1; int frame = tc_frame % 25; int second = (tc_frame / 25) % 60; int minute = ((tc_frame / 25) / 60) % 60; int hour = (((tc_frame / 25) / 60) / 60); switch(qf & 7) { case 0: buf[1] = 0x00 | (frame & 0x0f); break; case 1: buf[1] = 0x10 | ((frame & 0xf0) >> 4); break; case 2: buf[1] = 0x20 | (second & 0x0f); break; case 3: buf[1] = 0x30 | ((second & 0xf0) >> 4); break; case 4: buf[1] = 0x40 | (minute & 0x0f); break; case 5: buf[1] = 0x50 | ((minute & 0xf0) >> 4); break; case 6: buf[1] = 0x60 | ((/* 25fps*/ 0x20 | hour) & 0x0f); break; case 7: buf[1] = 0x70 | (((/* 25fps*/ 0x20 | hour) & 0xf0)>>4); break; } _buffer.push_back (std::shared_ptr(new DummyMidiEvent (tc_sample - _midi_seq_time, buf, 2))); } tc_sample += audio_samples_per_qf; if (++qf == 8) { ++tc_frame; qf = 0; } } _midi_seq_time += n_samples; if (_midi_seq_time >= /* 24 * 3600 * 25 */ 2160000LL * audio_samples_per_video_frame) { _midi_seq_time -= 2160000LL * audio_samples_per_video_frame; // 24h @ 25fps } return; } else if (_midi_seq_dat[0].beat_time < 0) { /* MClk generator */ uint8_t buf[3]; if (_midi_seq_time == 0) { /* Position Message */ int64_t bcnt = 0; // beat count buf[0] = 0xf2; buf[1] = bcnt & 0x7f; // LSB buf[2] = (bcnt >> 7) & 0x7f; // MSB _buffer.push_back (std::shared_ptr(new DummyMidiEvent (0, buf, 3))); } /* MIDI System Real-Time Messages */ #define MIDI_RT_CLOCK (0xF8) #define MIDI_RT_START (0xFA) #define MIDI_RT_CONTINUE (0xFB) #define MIDI_RT_STOP (0xFC) if (_midi_seq_time == 0) { /* start */ buf[0] = MIDI_RT_START; _buffer.push_back (std::shared_ptr(new DummyMidiEvent (0, buf, 1))); } const int clock_tick_interval = _midi_seq_spb; // samples per clock-tick samplepos_t clk_tick = _midi_seq_time / clock_tick_interval; samplepos_t clk_sample = clk_tick * clock_tick_interval; while (clk_sample < _midi_seq_time + n_samples) { if (clk_sample >= _midi_seq_time) { buf[0] = MIDI_RT_CLOCK; _buffer.push_back (std::shared_ptr(new DummyMidiEvent (clk_sample - _midi_seq_time, buf, 1))); } clk_sample += clock_tick_interval; } _midi_seq_time += n_samples; if (_midi_seq_time >= 16384 * 24 * clock_tick_interval) { _midi_seq_time -= 16384 * 24 * clock_tick_interval; } return; } while (1) { const int32_t ev_beat_time = _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb - _midi_seq_time; if (ev_beat_time < 0) { break; } if ((pframes_t) ev_beat_time >= n_samples) { break; } _buffer.push_back (std::shared_ptr(new DummyMidiEvent ( ev_beat_time, _midi_seq_dat[_midi_seq_pos].event, _midi_seq_dat[_midi_seq_pos].size ))); ++_midi_seq_pos; if (_midi_seq_dat[_midi_seq_pos].event[0] == 0xff && _midi_seq_dat[_midi_seq_pos].event[1] == 0xff) { _midi_seq_time -= _midi_seq_dat[_midi_seq_pos].beat_time * _midi_seq_spb; _midi_seq_pos = 0; } } _midi_seq_time += n_samples; } void* DummyMidiPort::get_buffer (pframes_t n_samples) { if (is_input ()) { _buffer.clear (); const std::set& connections = get_connections (); for (std::set::const_iterator i = connections.begin (); i != connections.end (); ++i) { std::shared_ptr source = std::dynamic_pointer_cast(*i); if (source->is_physical() && source->is_terminal()) { source->get_buffer(n_samples); // generate signal. } const DummyMidiBuffer *src = source->const_buffer (); for (DummyMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { _buffer.push_back (std::shared_ptr(new DummyMidiEvent (**it))); } } std::stable_sort (_buffer.begin (), _buffer.end (), MidiEventSorter()); } else if (is_output () && is_physical () && is_terminal()) { if (!_gen_cycle) { midi_generate(n_samples); } } return &_buffer; } DummyMidiEvent::DummyMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size) : _size (size) , _timestamp (timestamp) , _data (0) { if (size > 0) { _data = (uint8_t*) malloc (size); memcpy (_data, data, size); } } DummyMidiEvent::DummyMidiEvent (const DummyMidiEvent& other) : _size (other.size ()) , _timestamp (other.timestamp ()) , _data (0) { if (other.size () && other.data ()) { _data = (uint8_t*) malloc (other.size ()); memcpy (_data, other.data (), other.size ()); } }; DummyMidiEvent::~DummyMidiEvent () { free (_data); };