/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Rubber Band An audio time-stretching and pitch-shifting library. Copyright 2007-2008 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #ifndef _RUBBERBAND_RINGBUFFER_H_ #define _RUBBERBAND_RINGBUFFER_H_ #include #include #include #ifndef _WIN32 #include #endif #include "Scavenger.h" #include "Profiler.h" //#define DEBUG_RINGBUFFER 1 #ifdef _WIN32 #define MLOCK(a,b) 1 #define MUNLOCK(a,b) 1 #else #define MLOCK(a,b) ::mlock(a,b) #define MUNLOCK(a,b) ::munlock(a,b) #endif #ifdef DEBUG_RINGBUFFER #include #endif namespace RubberBand { /** * RingBuffer implements a lock-free ring buffer for one writer and N * readers, that is to be used to store a sample type T. */ template class RingBuffer { public: /** * Create a ring buffer with room to write n samples. * * Note that the internal storage size will actually be n+1 * samples, as one element is unavailable for administrative * reasons. Since the ring buffer performs best if its size is a * power of two, this means n should ideally be some power of two * minus one. */ RingBuffer(int n); virtual ~RingBuffer(); /** * Return the total capacity of the ring buffer in samples. * (This is the argument n passed to the constructor.) */ int getSize() const; /** * Resize the ring buffer. This also empties it; use resized() * below if you do not want this to happen. Actually swaps in a * new, larger buffer; the old buffer is scavenged after a seemly * delay. Should be called from the write thread. */ void resize(int newSize); /** * Return a new ring buffer (allocated with "new" -- called must * delete when no longer needed) of the given size, containing the * same data as this one. If another thread reads from or writes * to this buffer during the call, the results may be incomplete * or inconsistent. If this buffer's data will not fit in the new * size, the contents are undefined. */ RingBuffer *resized(int newSize, int R = 0) const; /** * Lock the ring buffer into physical memory. Returns true * for success. */ bool mlock(); /** * Reset read and write pointers, thus emptying the buffer. * Should be called from the write thread. */ void reset(); /** * Return the amount of data available for reading by reader R, in * samples. */ int getReadSpace(int R = 0) const; /** * Return the amount of space available for writing, in samples. */ int getWriteSpace() const; /** * Read n samples from the buffer, for reader R. If fewer than n * are available, the remainder will be zeroed out. Returns the * number of samples actually read. */ int read(T *R__ destination, int n, int R = 0); /** * Read n samples from the buffer, for reader R, adding them to * the destination. If fewer than n are available, the remainder * will be left alone. Returns the number of samples actually * read. */ int readAdding(T *R__ destination, int n, int R = 0); /** * Read one sample from the buffer, for reader R. If no sample is * available, this will silently return zero. Calling this * repeatedly is obviously slower than calling read once, but it * may be good enough if you don't want to allocate a buffer to * read into. */ T readOne(int R = 0); /** * Read n samples from the buffer, if available, for reader R, * without advancing the read pointer -- i.e. a subsequent read() * or skip() will be necessary to empty the buffer. If fewer than * n are available, the remainder will be zeroed out. Returns the * number of samples actually read. */ int peek(T *R__ destination, int n, int R = 0) const; /** * Read one sample from the buffer, if available, without * advancing the read pointer -- i.e. a subsequent read() or * skip() will be necessary to empty the buffer. Returns zero if * no sample was available. */ T peekOne(int R = 0) const; /** * Pretend to read n samples from the buffer, for reader R, * without actually returning them (i.e. discard the next n * samples). Returns the number of samples actually available for * discarding. */ int skip(int n, int R = 0); /** * Write n samples to the buffer. If insufficient space is * available, not all samples may actually be written. Returns * the number of samples actually written. */ int write(const T *source, int n); /** * Write n zero-value samples to the buffer. If insufficient * space is available, not all zeros may actually be written. * Returns the number of zeroes actually written. */ int zero(int n); protected: T *R__ m_buffer; volatile int m_writer; volatile int m_readers[N]; int m_size; bool m_mlocked; static Scavenger > m_scavenger; private: RingBuffer(const RingBuffer &); // not provided RingBuffer &operator=(const RingBuffer &); // not provided }; template Scavenger > RingBuffer::m_scavenger; template RingBuffer::RingBuffer(int n) : m_buffer(new T[n + 1]), m_writer(0), m_size(n + 1), m_mlocked(false) { #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::RingBuffer(" << n << ")" << std::endl; #endif for (int i = 0; i < N; ++i) m_readers[i] = 0; m_scavenger.scavenge(); } template RingBuffer::~RingBuffer() { #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::~RingBuffer" << std::endl; #endif if (m_mlocked) { MUNLOCK((void *)m_buffer, m_size * sizeof(T)); } delete[] m_buffer; m_scavenger.scavenge(); } template int RingBuffer::getSize() const { #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::getSize(): " << m_size-1 << std::endl; #endif return m_size - 1; } template void RingBuffer::resize(int newSize) { #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::resize(" << newSize << ")" << std::endl; #endif m_scavenger.scavenge(); if (m_mlocked) { MUNLOCK((void *)m_buffer, m_size * sizeof(T)); } m_scavenger.claim(new ScavengerArrayWrapper(m_buffer)); reset(); m_buffer = new T[newSize + 1]; m_size = newSize + 1; if (m_mlocked) { if (MLOCK((void *)m_buffer, m_size * sizeof(T))) { m_mlocked = false; } } } template RingBuffer * RingBuffer::resized(int newSize, int R) const { RingBuffer *newBuffer = new RingBuffer(newSize); int w = m_writer; int r = m_readers[R]; while (r != w) { T value = m_buffer[r]; newBuffer->write(&value, 1); if (++r == m_size) r = 0; } return newBuffer; } template bool RingBuffer::mlock() { if (MLOCK((void *)m_buffer, m_size * sizeof(T))) return false; m_mlocked = true; return true; } template void RingBuffer::reset() { #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::reset" << std::endl; #endif m_writer = 0; for (int i = 0; i < N; ++i) m_readers[i] = 0; } template int RingBuffer::getReadSpace(int R) const { int writer = m_writer; int reader = m_readers[R]; int space; #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::getReadSpace(" << R << "): reader " << reader << ", writer " << writer << std::endl; #endif if (writer > reader) space = writer - reader; else if (writer < reader) space = (writer + m_size) - reader; else space = 0; #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::getReadSpace(" << R << "): " << space << std::endl; #endif return space; } template int RingBuffer::getWriteSpace() const { int space = 0; for (int i = 0; i < N; ++i) { int writer = m_writer; int reader = m_readers[i]; int here = (reader + m_size - writer - 1); if (here >= m_size) here -= m_size; if (i == 0 || here < space) space = here; } #ifdef DEBUG_RINGBUFFER int rs(getReadSpace()), rp(m_readers[0]); std::cerr << "RingBuffer: write space " << space << ", read space " << rs << ", total " << (space + rs) << ", m_size " << m_size << std::endl; std::cerr << "RingBuffer: reader " << rp << ", writer " << m_writer << std::endl; #endif #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::getWriteSpace(): " << space << std::endl; #endif return space; } template int RingBuffer::read(T *R__ destination, int n, int R) { Profiler profiler("RingBuffer::read"); #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::read(dest, " << n << ", " << R << ")" << std::endl; #endif int available = getReadSpace(R); if (n > available) { #ifdef DEBUG_RINGBUFFER std::cerr << "WARNING: Only " << available << " samples available" << std::endl; #endif for (int i = available; i < n; ++i) { destination[i] = 0; } n = available; } if (n == 0) return n; int reader = m_readers[R]; int here = m_size - reader; T *const R__ bufbase = m_buffer + reader; if (here >= n) { for (int i = 0; i < n; ++i) { destination[i] = bufbase[i]; } } else { for (int i = 0; i < here; ++i) { destination[i] = bufbase[i]; } T *const R__ destbase = destination + here; const int nh = n - here; for (int i = 0; i < nh; ++i) { destbase[i] = m_buffer[i]; } } reader += n; while (reader >= m_size) reader -= m_size; m_readers[R] = reader; #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::read: read " << n << ", reader now " << m_readers[R] << std::endl; #endif return n; } template int RingBuffer::readAdding(T *R__ destination, int n, int R) { Profiler profiler("RingBuffer::readAdding"); #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::readAdding(dest, " << n << ", " << R << ")" << std::endl; #endif int available = getReadSpace(R); if (n > available) { #ifdef DEBUG_RINGBUFFER std::cerr << "WARNING: Only " << available << " samples available" << std::endl; #endif n = available; } if (n == 0) return n; int reader = m_readers[R]; int here = m_size - reader; const T *const R__ bufbase = m_buffer + reader; if (here >= n) { for (int i = 0; i < n; ++i) { destination[i] += bufbase[i]; } } else { for (int i = 0; i < here; ++i) { destination[i] += bufbase[i]; } T *const R__ destbase = destination + here; const int nh = n - here; for (int i = 0; i < nh; ++i) { destbase[i] += m_buffer[i]; } } reader += n; while (reader >= m_size) reader -= m_size; m_readers[R] = reader; return n; } template T RingBuffer::readOne(int R) { #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::readOne(" << R << ")" << std::endl; #endif if (m_writer == m_readers[R]) { #ifdef DEBUG_RINGBUFFER std::cerr << "WARNING: No sample available" << std::endl; #endif return 0; } int reader = m_readers[R]; T value = m_buffer[reader]; if (++reader == m_size) reader = 0; m_readers[R] = reader; return value; } template int RingBuffer::peek(T *R__ destination, int n, int R) const { Profiler profiler("RingBuffer::peek"); #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::peek(dest, " << n << ", " << R << ")" << std::endl; #endif int available = getReadSpace(R); if (n > available) { #ifdef DEBUG_RINGBUFFER std::cerr << "WARNING: Only " << available << " samples available" << std::endl; #endif memset(destination + available, 0, (n - available) * sizeof(T)); n = available; } if (n == 0) return n; int reader = m_readers[R]; int here = m_size - reader; const T *const R__ bufbase = m_buffer + reader; if (here >= n) { for (int i = 0; i < n; ++i) { destination[i] = bufbase[i]; } } else { for (int i = 0; i < here; ++i) { destination[i] = bufbase[i]; } T *const R__ destbase = destination + here; const int nh = n - here; for (int i = 0; i < nh; ++i) { destbase[i] = m_buffer[i]; } } #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::peek: read " << n << std::endl; #endif return n; } template T RingBuffer::peekOne(int R) const { #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::peek(" << R << ")" << std::endl; #endif if (m_writer == m_readers[R]) { #ifdef DEBUG_RINGBUFFER std::cerr << "WARNING: No sample available" << std::endl; #endif return 0; } T value = m_buffer[m_readers[R]]; return value; } template int RingBuffer::skip(int n, int R) { #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::skip(" << n << ", " << R << ")" << std::endl; #endif int available = getReadSpace(R); if (n > available) { #ifdef DEBUG_RINGBUFFER std::cerr << "WARNING: Only " << available << " samples available" << std::endl; #endif n = available; } if (n == 0) return n; int reader = m_readers[R]; reader += n; while (reader >= m_size) reader -= m_size; m_readers[R] = reader; return n; } template int RingBuffer::write(const T *source, int n) { Profiler profiler("RingBuffer::write"); #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::write(" << n << ")" << std::endl; #endif int available = getWriteSpace(); if (n > available) { #ifdef DEBUG_RINGBUFFER std::cerr << "WARNING: Only room for " << available << " samples" << std::endl; #endif n = available; } if (n == 0) return n; int writer = m_writer; int here = m_size - writer; T *const R__ bufbase = m_buffer + writer; if (here >= n) { for (int i = 0; i < n; ++i) { bufbase[i] = source[i]; } } else { for (int i = 0; i < here; ++i) { bufbase[i] = source[i]; } const int nh = n - here; const T *const R__ srcbase = source + here; T *const R__ buf = m_buffer; for (int i = 0; i < nh; ++i) { buf[i] = srcbase[i]; } } writer += n; while (writer >= m_size) writer -= m_size; m_writer = writer; #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::write: wrote " << n << ", writer now " << m_writer << std::endl; #endif return n; } template int RingBuffer::zero(int n) { Profiler profiler("RingBuffer::zero"); #ifdef DEBUG_RINGBUFFER std::cerr << "RingBuffer[" << this << "]::zero(" << n << ")" << std::endl; #endif int available = getWriteSpace(); if (n > available) { #ifdef DEBUG_RINGBUFFER std::cerr << "WARNING: Only room for " << available << " samples" << std::endl; #endif n = available; } if (n == 0) return n; int writer = m_writer; int here = m_size - writer; T *const R__ bufbase = m_buffer + writer; if (here >= n) { for (int i = 0; i < n; ++i) { bufbase[i] = 0; } } else { for (int i = 0; i < here; ++i) { bufbase[i] = 0; } const int nh = n - here; for (int i = 0; i < nh; ++i) { m_buffer[i] = 0; } } writer += n; while (writer >= m_size) writer -= m_size; m_writer = writer; #ifdef DEBUG_RINGBUFFER std::cerr << "writer -> " << m_writer << std::endl; #endif return n; } } //#include "RingBuffer.cpp" #endif // _RINGBUFFER_H_