/* * Copyright (C) 2006-2010 David Robillard * Copyright (C) 2006-2018 Paul Davis * Copyright (C) 2008-2012 Carl Hetherington * Copyright (C) 2012-2017 Tim Mayberry * Copyright (C) 2015-2019 Robin Gareus * Copyright (C) 2015 Len Ovens * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #ifdef COMPILER_MSVC #include // Microsoft's nearest equivalent to #include #else #include #endif #include #include #include "pbd/compose.h" #include "pbd/convert.h" #include "pbd/error.h" #include "pbd/failed_constructor.h" #include "pbd/file_utils.h" #include "pbd/strsplit.h" #include "pbd/types_convert.h" #include "pbd/xml++.h" #include "midi++/port.h" #include "ardour/async_midi_port.h" #include "ardour/audioengine.h" #include "ardour/auditioner.h" #include "ardour/directory_names.h" #include "ardour/filename_extensions.h" #include "ardour/search_paths.h" #include "ardour/session.h" #include "ardour/midi_ui.h" #include "ardour/plugin_insert.h" #include "ardour/rc_configuration.h" #include "ardour/midiport_manager.h" #include "ardour/debug.h" #include "ardour/well_known_enum.h" #include "generic_midi_control_protocol.h" #include "midicontrollable.h" #include "midifunction.h" #include "midiaction.h" #include "pbd/abstract_ui.inc.cc" // instantiate template #include "pbd/i18n.h" using namespace ARDOUR; using namespace PBD; using namespace Glib; using namespace std; GenericMidiControlProtocol::GenericMidiControlProtocol (Session& s) : ControlProtocol (s, _("Generic MIDI")) , AbstractUI (name()) , connection_state (ConnectionState (0)) , _motorised (false) , _threshold (10) , gui (0) { std::shared_ptr inp; std::shared_ptr outp; inp = AudioEngine::instance()->register_input_port (DataType::MIDI, _("MIDI Control In"), true); outp = AudioEngine::instance()->register_output_port (DataType::MIDI, _("MIDI Control Out"), true); if (inp == 0 || outp == 0) { throw failed_constructor(); } _input_port = std::dynamic_pointer_cast(inp); _output_port = std::dynamic_pointer_cast(outp); _input_bundle.reset (new ARDOUR::Bundle (_("Generic MIDI Control In"), true)); _output_bundle.reset (new ARDOUR::Bundle (_("Generic MIDI Control Out"), false)); _input_bundle->add_channel ( "", ARDOUR::DataType::MIDI, session->engine().make_port_name_non_relative (inp->name()) ); _output_bundle->add_channel ( "", ARDOUR::DataType::MIDI, session->engine().make_port_name_non_relative (outp->name()) ); session->BundleAddedOrRemoved (); do_feedback = false; _feedback_interval = 10000; // microseconds last_feedback_time = 0; _current_bank = 0; _bank_size = 0; /* these signals are emitted by our event loop thread * and we may as well handle them right there in the same the same * thread */ Controllable::StartLearning.connect_same_thread (*this, std::bind (&GenericMidiControlProtocol::start_learning, this, _1)); Controllable::StopLearning.connect_same_thread (*this, std::bind (&GenericMidiControlProtocol::stop_learning, this, _1)); /* this signal is emitted by the process() callback, and if * send_feedback() is going to do anything, it should do it in the * context of the process() callback itself. */ Session::SendFeedback.connect_same_thread (*this, std::bind (&GenericMidiControlProtocol::send_feedback, this)); /* this one is cross-thread */ PresentationInfo::Change.connect (*this, MISSING_INVALIDATOR, std::bind (&GenericMidiControlProtocol::reset_controllables, this), this); /* Catch port connections and disconnections (cross-thread) */ ARDOUR::AudioEngine::instance()->PortConnectedOrDisconnected.connect (_port_connection, MISSING_INVALIDATOR, std::bind (&GenericMidiControlProtocol::connection_handler, this, _1, _2, _3, _4, _5), this); reload_maps (); } GenericMidiControlProtocol::~GenericMidiControlProtocol () { set_active (false); if (_input_port) { DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("unregistering input port %1\n", std::shared_ptr(_input_port)->name())); Glib::Threads::Mutex::Lock em (AudioEngine::instance()->process_lock()); AudioEngine::instance()->unregister_port (_input_port); _input_port.reset (); } if (_output_port) { _output_port->drain (10000, 250000); /* check every 10 msecs, wait up to 1/4 second for the port to drain */ DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("unregistering output port %1\n", std::shared_ptr(_output_port)->name())); Glib::Threads::Mutex::Lock em (AudioEngine::instance()->process_lock()); AudioEngine::instance()->unregister_port (_output_port); _output_port.reset (); } drop_all (); } list > GenericMidiControlProtocol::bundles () { list > b; if (_input_bundle) { b.push_back (_input_bundle); b.push_back (_output_bundle); } return b; } static bool midi_map_filter (const string &str, void* /*arg*/) { return (str.length() > strlen(midi_map_suffix) && str.find (midi_map_suffix) == (str.length() - strlen (midi_map_suffix))); } void GenericMidiControlProtocol::reload_maps () { vector midi_maps; Searchpath spath (system_midi_map_search_path()); spath += user_midi_map_directory (); find_files_matching_filter (midi_maps, spath, midi_map_filter, 0, false, true); if (midi_maps.empty()) { cerr << "No MIDI maps found using " << spath.to_string() << endl; return; } for (vector::iterator i = midi_maps.begin(); i != midi_maps.end(); ++i) { string fullpath = *i; XMLTree tree; if (!tree.read (fullpath.c_str())) { continue; } MapInfo mi; std::string str; if (!tree.root()->get_property ("name", str)) { continue; } mi.name = str; mi.path = fullpath; map_info.push_back (mi); } } void GenericMidiControlProtocol::drop_all () { DEBUG_TRACE (DEBUG::GenericMidi, "Drop all bindings\n"); Glib::Threads::Mutex::Lock lm (pending_lock); Glib::Threads::Mutex::Lock lm2 (controllables_lock); for (MIDIControllables::iterator i = controllables.begin(); i != controllables.end(); ++i) { delete *i; } controllables.clear (); for (MIDIPendingControllables::iterator i = pending_controllables.begin(); i != pending_controllables.end(); ++i) { (*i)->connection.disconnect(); if ((*i)->own_mc) { delete (*i)->mc; } delete *i; } pending_controllables.clear (); for (MIDIFunctions::iterator i = functions.begin(); i != functions.end(); ++i) { delete *i; } functions.clear (); for (MIDIActions::iterator i = actions.begin(); i != actions.end(); ++i) { delete *i; } actions.clear (); } void GenericMidiControlProtocol::drop_bindings () { DEBUG_TRACE (DEBUG::GenericMidi, "Drop bindings, leave learned\n"); Glib::Threads::Mutex::Lock lm2 (controllables_lock); for (MIDIControllables::iterator i = controllables.begin(); i != controllables.end(); ) { if (!(*i)->learned()) { delete *i; i = controllables.erase (i); } else { ++i; } } for (MIDIFunctions::iterator i = functions.begin(); i != functions.end(); ++i) { delete *i; } functions.clear (); _current_binding = ""; _bank_size = 0; _current_bank = 0; } void GenericMidiControlProtocol::do_request (GenericMIDIRequest* req) { if (req->type == CallSlot) { call_slot (MISSING_INVALIDATOR, req->the_slot); } else if (req->type == Quit) { stop (); } } int GenericMidiControlProtocol::stop () { tear_down_gui (); BaseUI::quit (); return 0; } void GenericMidiControlProtocol::thread_init () { PBD::notify_event_loops_about_thread_creation (pthread_self(), event_loop_name(), 2048); ARDOUR::SessionEvent::create_per_thread_pool (event_loop_name(), 128); set_thread_priority (); } int GenericMidiControlProtocol::set_active (bool yn) { DEBUG_TRACE (DEBUG::GenericMidi, string_compose("GenericMIDI::set_active init with yn: '%1'\n", yn)); if (yn == active()) { return 0; } if (yn) { BaseUI::run (); } else { tear_down_gui (); BaseUI::quit (); } ControlProtocol::set_active (yn); DEBUG_TRACE (DEBUG::GenericMidi, string_compose("GenericMIDI::set_active done with yn: '%1'\n", yn)); return 0; } void GenericMidiControlProtocol::set_feedback_interval (microseconds_t ms) { _feedback_interval = ms; } void GenericMidiControlProtocol::send_feedback () { /* This is executed in RT "process" context", so no blocking calls */ if (!do_feedback) { return; } microseconds_t now = get_microseconds (); if (last_feedback_time != 0) { if ((now - last_feedback_time) < _feedback_interval) { return; } } _send_feedback (); last_feedback_time = now; } void GenericMidiControlProtocol::_send_feedback () { /* This is executed in RT "process" context", so no blocking calls */ const int32_t bufsize = 16 * 1024; /* XXX too big */ MIDI::byte buf[bufsize]; int32_t bsize = bufsize; /* XXX: due to bugs in some ALSA / JACK MIDI bridges, we have to do separate writes for each controllable here; if we send more than one MIDI message in a single jack_midi_event_write then some bridges will only pass the first on to ALSA. */ Glib::Threads::Mutex::Lock lm (controllables_lock, Glib::Threads::TRY_LOCK); if (!lm.locked ()) { return; } for (MIDIControllables::iterator r = controllables.begin(); r != controllables.end(); ++r) { MIDI::byte* end = (*r)->write_feedback (buf, bsize); if (end != buf) { _output_port->write (buf, (int32_t) (end - buf), 0); } } } bool GenericMidiControlProtocol::start_learning (std::weak_ptr wc) { std::shared_ptr c = wc.lock (); if (!c) { return false; } Glib::Threads::Mutex::Lock lm2 (controllables_lock); DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Learn binding: Controlable number: %1\n", c)); /* drop any existing mappings for the same controllable for which * learning has just started. */ MIDIControllables::iterator tmp; for (MIDIControllables::iterator i = controllables.begin(); i != controllables.end(); ) { tmp = i; ++tmp; if ((*i)->get_controllable() == c) { delete (*i); controllables.erase (i); } i = tmp; } /* check pending controllables (those for which a learn is underway) to * see if it is for the same one for which learning has just started. */ { Glib::Threads::Mutex::Lock lm (pending_lock); for (MIDIPendingControllables::iterator i = pending_controllables.begin(); i != pending_controllables.end(); ) { if (((*i)->mc)->get_controllable() == c) { (*i)->connection.disconnect(); if ((*i)->own_mc) { delete (*i)->mc; } delete *i; i = pending_controllables.erase (i); } else { ++i; } } } MIDIControllable* mc = 0; bool own_mc = false; for (MIDIControllables::iterator i = controllables.begin(); i != controllables.end(); ++i) { if ((*i)->get_controllable() && ((*i)->get_controllable()->id() == c->id())) { mc = *i; break; } } if (!mc) { mc = new MIDIControllable (this, *_input_port->parser(), c, false); own_mc = true; } /* stuff the new controllable into pending */ { Glib::Threads::Mutex::Lock lm (pending_lock); MIDIPendingControllable* element = new MIDIPendingControllable (mc, own_mc); c->LearningFinished.connect_same_thread (element->connection, std::bind (&GenericMidiControlProtocol::learning_stopped, this, mc)); pending_controllables.push_back (element); } mc->learn_about_external_control (); return true; } void GenericMidiControlProtocol::learning_stopped (MIDIControllable* mc) { Glib::Threads::Mutex::Lock lm (pending_lock); Glib::Threads::Mutex::Lock lm2 (controllables_lock); for (MIDIPendingControllables::iterator i = pending_controllables.begin(); i != pending_controllables.end(); ) { if ( (*i)->mc == mc) { (*i)->connection.disconnect(); delete *i; i = pending_controllables.erase(i); } else { ++i; } } /* add the controllable for which learning stopped to our list of * controllables */ controllables.push_back (mc); } void GenericMidiControlProtocol::stop_learning (std::weak_ptr wc) { std::shared_ptr c = wc.lock (); if (!c) { return; } Glib::Threads::Mutex::Lock lm (pending_lock); Glib::Threads::Mutex::Lock lm2 (controllables_lock); MIDIControllable* dptr = 0; /* learning timed out, and we've been told to consider this attempt to learn to be cancelled. find the relevant MIDIControllable and remove it from the pending list. */ for (MIDIPendingControllables::iterator i = pending_controllables.begin(); i != pending_controllables.end(); ++i) { if (((*i)->mc)->get_controllable() == c) { (*i)->mc->stop_learning (); dptr = (*i)->mc; (*i)->connection.disconnect(); delete *i; pending_controllables.erase (i); break; } } delete dptr; } void GenericMidiControlProtocol::check_used_event (int pos, int control_number) { Glib::Threads::Mutex::Lock lm2 (controllables_lock); MIDI::channel_t channel = (pos & 0xf); MIDI::byte value = control_number; DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("checking for used event: Channel: %1 Controller: %2 value: %3\n", (int) channel, (pos & 0xf0), (int) value)); // Remove any old binding for this midi channel/type/value pair for (MIDIControllables::iterator iter = controllables.begin(); iter != controllables.end();) { MIDIControllable* existingBinding = (*iter); if ( (existingBinding->get_control_type() & 0xf0 ) == (pos & 0xf0) && (existingBinding->get_control_channel() & 0xf ) == channel ) { if ( ((int) existingBinding->get_control_additional() == (int) value) || ((pos & 0xf0) == MIDI::pitchbend)) { DEBUG_TRACE (DEBUG::GenericMidi, "checking: found match, delete old binding.\n"); delete existingBinding; iter = controllables.erase (iter); } else { ++iter; } } else { ++iter; } } for (MIDIFunctions::iterator iter = functions.begin(); iter != functions.end();) { MIDIFunction* existingBinding = (*iter); if ( (existingBinding->get_control_type() & 0xf0 ) == (pos & 0xf0) && (existingBinding->get_control_channel() & 0xf ) == channel ) { if ( ((int) existingBinding->get_control_additional() == (int) value) || ((pos & 0xf0) == MIDI::pitchbend)) { DEBUG_TRACE (DEBUG::GenericMidi, "checking: found match, delete old binding.\n"); delete existingBinding; iter = functions.erase (iter); } else { ++iter; } } else { ++iter; } } for (MIDIActions::iterator iter = actions.begin(); iter != actions.end();) { MIDIAction* existingBinding = (*iter); if ( (existingBinding->get_control_type() & 0xf0 ) == (pos & 0xf0) && (existingBinding->get_control_channel() & 0xf ) == channel ) { if ( ((int) existingBinding->get_control_additional() == (int) value) || ((pos & 0xf0) == MIDI::pitchbend)) { DEBUG_TRACE (DEBUG::GenericMidi, "checking: found match, delete old binding.\n"); delete existingBinding; iter = actions.erase (iter); } else { ++iter; } } else { ++iter; } } } XMLNode& GenericMidiControlProtocol::get_state () const { XMLNode& node (ControlProtocol::get_state()); XMLNode* child; child = new XMLNode (X_("Input")); child->add_child_nocopy (std::shared_ptr(_input_port)->get_state()); node.add_child_nocopy (*child); child = new XMLNode (X_("Output")); child->add_child_nocopy (std::shared_ptr(_output_port)->get_state()); node.add_child_nocopy (*child); node.set_property (X_("feedback-interval"), _feedback_interval); node.set_property (X_("threshold"), _threshold); node.set_property (X_("motorized"), _motorised); if (!_current_binding.empty()) { node.set_property ("binding", _current_binding); } XMLNode* children = new XMLNode (X_("Controls")); node.add_child_nocopy (*children); Glib::Threads::Mutex::Lock lm2 (controllables_lock); for (auto const & c : controllables) { /* we don't care about bindings that come from a bindings map, because they will all be reset/recreated when we load the relevant bindings file. */ if (c->get_controllable() && c->learned()) { children->add_child_nocopy (c->get_state()); } } return node; } int GenericMidiControlProtocol::set_state (const XMLNode& node, int version) { XMLNodeList nlist; XMLNodeConstIterator niter; XMLNode const* child; if (ControlProtocol::set_state (node, version)) { return -1; } if ((child = node.child (X_("Input"))) != 0) { XMLNode* portnode = child->child (Port::state_node_name.c_str()); if (portnode) { portnode->remove_property ("name"); std::shared_ptr(_input_port)->set_state (*portnode, version); } } if ((child = node.child (X_("Output"))) != 0) { XMLNode* portnode = child->child (Port::state_node_name.c_str()); if (portnode) { portnode->remove_property ("name"); std::shared_ptr(_output_port)->set_state (*portnode, version); } } if (!node.get_property ("feedback-interval", _feedback_interval)) { _feedback_interval = 10000; } std::shared_ptr c; { Glib::Threads::Mutex::Lock lm (pending_lock); for (MIDIPendingControllables::iterator i = pending_controllables.begin(); i != pending_controllables.end(); ++i) { (*i)->connection.disconnect(); if ((*i)->own_mc) { delete (*i)->mc; } delete *i; } pending_controllables.clear (); } std::string str; // midi map has to be loaded first so learned binding can go on top if (node.get_property ("binding", str)) { for (list::iterator x = map_info.begin(); x != map_info.end(); ++x) { if (str == (*x).name) { load_bindings ((*x).path); break; } } } /* Restore any custom settings which may have been overwritten by load_bindings */ if (!node.get_property ("threshold", _threshold)) { _threshold = 10; } if (!node.get_property ("motorized", _motorised)) { _motorised = false; } /* Load up specific bindings from the * ... section */ bool load_dynamic_bindings = false; node.get_property ("session-state", load_dynamic_bindings); if (load_dynamic_bindings) { Glib::Threads::Mutex::Lock lm2 (controllables_lock); XMLNode* controls_node = node.child (X_("Controls")); if (controls_node) { nlist = controls_node->children(); if (!nlist.empty()) { for (niter = nlist.begin(); niter != nlist.end(); ++niter) { PBD::ID id; if ((*niter)->get_property ("id", id)) { DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Relearned binding for session: Control ID: %1\n", id.to_s())); std::shared_ptr c = Controllable::by_id (id); if (c) { MIDIControllable* mc = new MIDIControllable (this, *_input_port->parser(), c, false); if (mc->set_state (**niter, version) == 0) { controllables.push_back (mc); } else { warning << string_compose ("Generic MIDI control: Failed to set state for Control ID: %1\n", id.to_s()); delete mc; } } else { warning << string_compose ( _("Generic MIDI control: controllable %1 not found in session (ignored)"), id.to_s()) << endmsg; } } } } } } return 0; } int GenericMidiControlProtocol::set_feedback (bool yn) { do_feedback = yn; last_feedback_time = 0; return 0; } bool GenericMidiControlProtocol::get_feedback () const { return do_feedback; } int GenericMidiControlProtocol::load_bindings (const string& xmlpath) { DEBUG_TRACE (DEBUG::GenericMidi, "Load bindings: Reading midi map\n"); XMLTree state_tree; if (!state_tree.read (xmlpath.c_str())) { error << string_compose(_("Could not understand MIDI bindings file %1"), xmlpath) << endmsg; return -1; } XMLNode* root = state_tree.root(); if (root->name() != X_("ArdourMIDIBindings")) { error << string_compose (_("MIDI Bindings file %1 is not really a MIDI bindings file"), xmlpath) << endmsg; return -1; } const XMLProperty* prop; if ((prop = root->property ("version")) == 0) { return -1; } const XMLNodeList& children (root->children()); XMLNodeConstIterator citer; MIDIControllable* mc; drop_all (); DEBUG_TRACE (DEBUG::GenericMidi, "Loading bindings\n"); for (citer = children.begin(); citer != children.end(); ++citer) { if ((*citer)->name() == "DeviceInfo") { if ((*citer)->get_property ("bank-size", _bank_size)) { _current_bank = 0; } if (!(*citer)->get_property ("motorized", _motorised)) { _motorised = false; } if (!(*citer)->get_property ("threshold", _threshold)) { _threshold = 10; } } if ((*citer)->name() == "Binding") { const XMLNode* child = *citer; if (child->property ("uri")) { /* controllable */ Glib::Threads::Mutex::Lock lm2 (controllables_lock); if ((mc = create_binding (*child)) != 0) { controllables.push_back (mc); } } else if (child->property ("function")) { /* function */ MIDIFunction* mf; if ((mf = create_function (*child)) != 0) { functions.push_back (mf); } } else if (child->property ("action")) { MIDIAction* ma; if ((ma = create_action (*child)) != 0) { actions.push_back (ma); } } } } if ((prop = root->property ("name")) != 0) { _current_binding = prop->value (); } reset_controllables (); return 0; } MIDIControllable* GenericMidiControlProtocol::create_binding (const XMLNode& node) { const XMLProperty* prop; MIDI::byte detail; MIDI::channel_t channel; string uri; MIDI::eventType ev; int intval; bool momentary; MIDIControllable::CtlType ctltype; MIDIControllable::Encoder encoder = MIDIControllable::No_enc; bool rpn_value = false; bool nrpn_value = false; bool rpn_change = false; bool nrpn_change = false; if ((prop = node.property (X_("ctl"))) != 0) { ctltype = MIDIControllable::Ctl_Momentary; ev = MIDI::controller; } else if ((prop = node.property (X_("ctl-toggle"))) !=0) { ctltype = MIDIControllable::Ctl_Toggle; ev = MIDI::controller; } else if ((prop = node.property (X_("ctl-dial"))) !=0) { ctltype = MIDIControllable::Ctl_Dial; ev = MIDI::controller; } else if ((prop = node.property (X_("note"))) != 0) { ev = MIDI::on; } else if ((prop = node.property (X_("pgm"))) != 0) { ev = MIDI::program; } else if ((prop = node.property (X_("pb"))) != 0) { ev = MIDI::pitchbend; } else if ((prop = node.property (X_("enc-l"))) != 0) { encoder = MIDIControllable::Enc_L; ev = MIDI::controller; } else if ((prop = node.property (X_("enc-r"))) != 0) { encoder = MIDIControllable::Enc_R; ev = MIDI::controller; } else if ((prop = node.property (X_("enc-2"))) != 0) { encoder = MIDIControllable::Enc_2; ev = MIDI::controller; } else if ((prop = node.property (X_("enc-b"))) != 0) { encoder = MIDIControllable::Enc_B; ev = MIDI::controller; } else if ((prop = node.property (X_("rpn"))) != 0) { rpn_value = true; } else if ((prop = node.property (X_("nrpn"))) != 0) { nrpn_value = true; } else if ((prop = node.property (X_("rpn-delta"))) != 0) { rpn_change = true; } else if ((prop = node.property (X_("nrpn-delta"))) != 0) { nrpn_change = true; } else { return 0; } if (sscanf (prop->value().c_str(), "%d", &intval) != 1) { return 0; } detail = (MIDI::byte) intval; if ((prop = node.property (X_("channel"))) == 0) { return 0; } if (sscanf (prop->value().c_str(), "%d", &intval) != 1) { return 0; } channel = (MIDI::channel_t) intval; /* adjust channel to zero-based counting */ if (channel > 0) { channel -= 1; } if ((prop = node.property (X_("momentary"))) != 0) { momentary = string_to (prop->value()); } else { momentary = false; } prop = node.property (X_("uri")); uri = prop->value(); MIDIControllable* mc = new MIDIControllable (this, *_input_port->parser(), momentary); if (mc->init (uri)) { delete mc; return 0; } if (rpn_value) { mc->bind_rpn_value (channel, detail); } else if (nrpn_value) { mc->bind_nrpn_value (channel, detail); } else if (rpn_change) { mc->bind_rpn_change (channel, detail); } else if (nrpn_change) { mc->bind_nrpn_change (channel, detail); } else { mc->set_ctltype (ctltype); mc->set_encoder (encoder); mc->bind_midi (channel, ev, detail); } return mc; } void GenericMidiControlProtocol::reset_controllables () { Glib::Threads::Mutex::Lock lm2 (controllables_lock); for (MIDIControllables::iterator iter = controllables.begin(); iter != controllables.end(); ) { MIDIControllable* existingBinding = (*iter); MIDIControllables::iterator next = iter; ++next; if (!existingBinding->learned()) { /* its entirely possible that the session doesn't have * the specified controllable (e.g. it has too few * tracks). if we find this to be the case, we just leave * the binding around, unbound, and it will do "late * binding" (or "lazy binding") if/when any data arrives. */ existingBinding->lookup_controllable (); } iter = next; } } std::shared_ptr GenericMidiControlProtocol::lookup_controllable (const string & str, MIDIControllable& mc) const { std::shared_ptr c; DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("lookup controllable from \"%1\"\n", str)); if (!session) { DEBUG_TRACE (DEBUG::GenericMidi, "no session\n"); return c; } /* step 1: split string apart */ string::size_type first_space = str.find_first_of (" "); if (first_space == string::npos) { return c; } string front = str.substr (0, first_space); vector path; split (front, path, '/'); if (path.size() < 2) { return c; } string back = str.substr (first_space); vector rest; split (back, rest, ' '); if (rest.empty()) { return c; } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("parsed into path of %1, rest of %1\n", path.size(), rest.size())); /* Step 2: analyse parts of the string to figure out what type of * Stripable we're looking for */ enum Type { Selection, PresentationOrder, Named, }; Type type = Named; int id = 1; string name; static regex_t compiled_pattern; static bool compiled = false; if (!compiled) { const char * const pattern = "^[BS]?[0-9]+"; /* this pattern compilation is not going to fail */ regcomp (&compiled_pattern, pattern, REG_EXTENDED|REG_NOSUB); /* leak compiled pattern */ compiled = true; } /* Step 3: identify what "rest" looks like - name, or simple nueric, or * banked/selection specifier */ bool matched = (regexec (&compiled_pattern, rest[0].c_str(), 0, 0, 0) == 0); if (matched) { bool banked = false; if (rest[0][0] == 'B') { banked = true; /* already matched digits, so we know atoi() will succeed */ id = atoi (rest[0].substr (1)); type = PresentationOrder; } else if (rest[0][0] == 'S') { /* already matched digits, so we know atoi() will succeed */ id = atoi (rest[0].substr (1)); type = Selection; } else if (isdigit (rest[0][0])) { /* already matched digits, so we know atoi() will succeed */ id = atoi (rest[0]); type = PresentationOrder; } else { return c; } id -= 1; /* order is zero-based, but maps use 1-based */ if (banked) { id += _current_bank * _bank_size; } } else { type = Named; name = rest[0]; } /* step 4: find the reference Stripable */ std::shared_ptr s; if (path[0] == X_("route") || path[0] == X_("rid")) { std::string name; switch (type) { case PresentationOrder: s = session->get_remote_nth_stripable (id, PresentationInfo::Route); break; case Named: /* name */ name = rest[0]; if (name == "Master" || name == X_("master")) { s = session->master_out(); } else if (name == X_("control") || name == X_("listen") || name == X_("monitor") || name == "Monitor") { s = session->monitor_out(); } else if (name == X_("auditioner")) { s = session->the_auditioner(); } else { s = session->route_by_name (name); } break; case Selection: s = session->route_by_selected_count (id); break; } } else if (path[0] == X_("vca")) { s = session->get_remote_nth_stripable (id, PresentationInfo::VCA); } else if (path[0] == X_("bus")) { switch (type) { case Named: name = rest[0]; if (name == "Master" || name == X_("master")) { s = session->master_out(); } else if (name == X_("control") || name == X_("listen") || name == X_("monitor") || name == "Monitor") { s = session->monitor_out(); } else if (name == X_("auditioner")) { s = session->the_auditioner(); } else { s = session->route_by_name (name); } break; default: s = session->get_remote_nth_stripable (id, PresentationInfo::Bus); } } else if (path[0] == X_("track")) { switch (type) { case Named: s = session->route_by_name (name); break; default: s = session->get_remote_nth_stripable (id, PresentationInfo::Track); } } if (!s) { DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("no stripable found for \"%1\"\n", str)); return c; } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("found stripable %1\n", s->name())); /* step 5: find the referenced controllable for that stripable. * * Some controls exist only for Route, so we need that too */ std::shared_ptr r = std::dynamic_pointer_cast (s); if (path[1] == X_("gain")) { c = s->gain_control(); } else if (path[1] == X_("trim")) { c = s->trim_control (); } else if (path[1] == X_("solo")) { c = s->solo_control(); } else if (path[1] == X_("mute")) { c = s->mute_control(); } else if (path[1] == X_("recenable")) { c = s->rec_enable_control (); } else if (path[1] == X_("panwidth")) { c = s->pan_width_control (); } else if (path[1] == X_("pandirection") || path[1] == X_("balance")) { c = s->pan_azimuth_control (); } else if (path[1] == X_("plugin")) { /* /route/plugin/parameter */ if (path.size() == 3 && rest.size() == 3) { if (path[2] == X_("parameter")) { int plugin = atoi (rest[1]); int parameter_index = atoi (rest[2]); /* revert to zero based counting */ if (plugin > 0) { --plugin; } if (parameter_index > 0) { --parameter_index; } if (r) { std::shared_ptr proc = r->nth_plugin (plugin); if (proc) { std::shared_ptr p = std::dynamic_pointer_cast (proc); if (p) { uint32_t param; bool ok; param = p->plugin()->nth_parameter (parameter_index, ok); if (ok) { c = std::dynamic_pointer_cast (proc->control (Evoral::Parameter (PluginAutomation, 0, param))); } } } } } } } else if (path[1] == X_("send")) { if (path.size() == 3 && rest.size() == 2) { if (path[2] == X_("gain")) { uint32_t send = atoi (rest[1]); if (send > 0) { --send; } c = s->send_level_controllable (send); } else if (path[2] == X_("direction")) { /* XXX not implemented yet */ } else if (path[2] == X_("enable")) { /* XXX not implemented yet */ } } } else if (path[1] == X_("eq")) { /* /route/eq/enable */ /* /route/eq/gain/ */ /* /route/eq/freq/ */ /* /route/eq/q/ */ /* /route/eq/shape/ */ if (path.size() == 3) { if (path[2] == X_("enable")) { c = s->mapped_control (EQ_Enable); } } else if (path.size() == 4) { int band = atoi (path[3]); /* band number */ if (path[2] == X_("gain")) { c = s->mapped_control (EQ_BandGain, band); } else if (path[2] == X_("freq")) { c = s->mapped_control (EQ_BandFreq, band); } else if (path[2] == X_("q")) { c = s->mapped_control (EQ_BandQ, band); } else if (path[2] == X_("shape")) { c = s->mapped_control (EQ_BandShape, band); } } } else if (path[1] == X_("filter")) { /* /route/filter/hi/freq */ if (path.size() == 4) { int filter; if (path[2] == X_("hi")) { filter = 1; /* high pass filter */ } else { filter = 0; /* low pass filter */ } if (path[3] == X_("enable")) { c = s->mapped_control (filter ? HPF_Enable : LPF_Enable); } else if (path[3] == X_("freq")) { c = s->mapped_control (filter ? HPF_Freq : LPF_Freq); } else if (path[3] == X_("slope")) { c = s->mapped_control (filter ? HPF_Slope : LPF_Slope); } } } else if (path[1] == X_("compressor")) { if (path.size() == 3) { if (path[2] == X_("enable")) { c = s->mapped_control (Comp_Enable); } else if (path[2] == X_("threshold")) { c = s->mapped_control (Comp_Threshold); } else if (path[2] == X_("mode")) { c = s->mapped_control (Comp_Mode); } else if (path[2] == X_("attack")) { c = s->mapped_control (Comp_Attack); } else if (path[2] == X_("release")) { c = s->mapped_control (Comp_Release); } else if (path[2] == X_("makeup")) { c = s->mapped_control (Comp_Makeup); } else if (path[2] == X_("ratio")) { c = s->mapped_control (Comp_Ratio); } else if (path[2] == X_("key_filter_freq")) { c = s->mapped_control (Comp_KeyFilterFreq); } } } else if (path[1] == X_("gate")) { if (path.size() == 3) { if (path[2] == X_("enable")) { c = s->mapped_control (Gate_Enable); } else if (path[2] == X_("threshold")) { c = s->mapped_control (Gate_Threshold); } else if (path[2] == X_("mode")) { c = s->mapped_control (Gate_Mode); } else if (path[2] == X_("ratio")) { c = s->mapped_control (Gate_Ratio); } else if (path[2] == X_("knee")) { c = s->mapped_control (Gate_Knee); } else if (path[2] == X_("depth")) { c = s->mapped_control (Gate_Depth); } else if (path[2] == X_("hysteresis")) { c = s->mapped_control (Gate_Hysteresis); } else if (path[2] == X_("hold")) { c = s->mapped_control (Gate_Hold); } else if (path[2] == X_("attack")) { c = s->mapped_control (Gate_Attack); } else if (path[2] == X_("release")) { c = s->mapped_control (Gate_Release); } else if (path[2] == X_("key_listen")) { c = s->mapped_control (Gate_KeyListen); } else if (path[2] == X_("key_filter_enable")) { c = s->mapped_control (Gate_KeyFilterEnable); } else if (path[2] == X_("key_filter_freq")) { c = s->mapped_control (Gate_KeyFilterFreq); } } } else if (path[1] == X_("tape")) { if (path.size() == 3) { if (path[2] == X_("drive")) { c = s->mapped_control (TapeDrive_Drive); } else if (path[2] == X_("mode")) { c = s->mapped_control (TapeDrive_Mode); } } } if (c) { DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("found controllable \"%1\"\n", c->name())); mc.bind_remap (r); } else { DEBUG_TRACE (DEBUG::GenericMidi, "no controllable found\n"); } return c; } MIDIFunction* GenericMidiControlProtocol::create_function (const XMLNode& node) { const XMLProperty* prop; int intval; MIDI::byte detail = 0; MIDI::channel_t channel = 0; string uri; MIDI::eventType ev; MIDI::byte* data = 0; uint32_t data_size = 0; string argument; if ((prop = node.property (X_("ctl"))) != 0) { ev = MIDI::controller; } else if ((prop = node.property (X_("note"))) != 0) { ev = MIDI::on; } else if ((prop = node.property (X_("pgm"))) != 0) { ev = MIDI::program; } else if ((prop = node.property (X_("sysex"))) != 0 || (prop = node.property (X_("msg"))) != 0) { if (prop->name() == X_("sysex")) { ev = MIDI::sysex; } else { ev = MIDI::any; } int val; uint32_t cnt; { cnt = 0; stringstream ss (prop->value()); ss << hex; while (ss >> val) { cnt++; } } if (cnt == 0) { return 0; } data = new MIDI::byte[cnt]; data_size = cnt; { stringstream ss (prop->value()); ss << hex; cnt = 0; while (ss >> val) { data[cnt++] = (MIDI::byte) val; } } } else { warning << "Binding ignored - unknown type" << endmsg; return 0; } if (data_size == 0) { if (sscanf (prop->value().c_str(), "%d", &intval) != 1) { return 0; } detail = (MIDI::byte) intval; if ((prop = node.property (X_("channel"))) == 0) { return 0; } if (sscanf (prop->value().c_str(), "%d", &intval) != 1) { return 0; } channel = (MIDI::channel_t) intval; /* adjust channel to zero-based counting */ if (channel > 0) { channel -= 1; } } if ((prop = node.property (X_("arg"))) != 0 || (prop = node.property (X_("argument"))) != 0 || (prop = node.property (X_("arguments"))) != 0) { argument = prop->value (); } prop = node.property (X_("function")); MIDIFunction* mf = new MIDIFunction (*_input_port->parser()); if (mf->setup (*this, prop->value(), argument, data, data_size)) { delete mf; return 0; } mf->bind_midi (channel, ev, detail); return mf; } MIDIAction* GenericMidiControlProtocol::create_action (const XMLNode& node) { const XMLProperty* prop; int intval; MIDI::byte detail = 0; MIDI::channel_t channel = 0; string uri; MIDI::eventType ev; MIDI::byte* data = 0; uint32_t data_size = 0; if ((prop = node.property (X_("ctl"))) != 0) { ev = MIDI::controller; } else if ((prop = node.property (X_("note"))) != 0) { ev = MIDI::on; } else if ((prop = node.property (X_("pgm"))) != 0) { ev = MIDI::program; } else if ((prop = node.property (X_("sysex"))) != 0 || (prop = node.property (X_("msg"))) != 0) { if (prop->name() == X_("sysex")) { ev = MIDI::sysex; } else { ev = MIDI::any; } int val; uint32_t cnt; { cnt = 0; stringstream ss (prop->value()); ss << hex; while (ss >> val) { cnt++; } } if (cnt == 0) { return 0; } data = new MIDI::byte[cnt]; data_size = cnt; { stringstream ss (prop->value()); ss << hex; cnt = 0; while (ss >> val) { data[cnt++] = (MIDI::byte) val; } } } else { warning << "Binding ignored - unknown type" << endmsg; return 0; } if (data_size == 0) { if (sscanf (prop->value().c_str(), "%d", &intval) != 1) { return 0; } detail = (MIDI::byte) intval; if ((prop = node.property (X_("channel"))) == 0) { return 0; } if (sscanf (prop->value().c_str(), "%d", &intval) != 1) { return 0; } channel = (MIDI::channel_t) intval; /* adjust channel to zero-based counting */ if (channel > 0) { channel -= 1; } } prop = node.property (X_("action")); MIDIAction* ma = new MIDIAction (*_input_port->parser()); if (ma->init (*this, prop->value(), data, data_size)) { delete ma; return 0; } ma->bind_midi (channel, ev, detail); return ma; } void GenericMidiControlProtocol::set_current_bank (uint32_t b) { _current_bank = b; reset_controllables (); } void GenericMidiControlProtocol::next_bank () { _current_bank++; reset_controllables (); } void GenericMidiControlProtocol::prev_bank() { if (_current_bank) { _current_bank--; reset_controllables (); } } void GenericMidiControlProtocol::set_motorised (bool m) { _motorised = m; } void GenericMidiControlProtocol::set_threshold (int t) { _threshold = t; } bool GenericMidiControlProtocol::connection_handler (std::weak_ptr, std::string name1, std::weak_ptr, std::string name2, bool yn) { bool input_was_connected = (connection_state & InputConnected); if (!_input_port || !_output_port) { return false; } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("connection change: %1 and %2 connected ? %3\n", name1, name2, yn)); string ni = ARDOUR::AudioEngine::instance()->make_port_name_non_relative (std::shared_ptr(_input_port)->name()); string no = ARDOUR::AudioEngine::instance()->make_port_name_non_relative (std::shared_ptr(_output_port)->name()); if (ni == name1 || ni == name2) { if (yn) { connection_state |= InputConnected; } else { connection_state &= ~InputConnected; } } else if (no == name1 || no == name2) { if (yn) { connection_state |= OutputConnected; } else { connection_state &= ~OutputConnected; } } else { /* not our ports */ return false; } if (connection_state & InputConnected) { if (!input_was_connected) { start_midi_handling (); } } else { if (input_was_connected) { stop_midi_handling (); } } ConnectionChange (); /* emit signal for our GUI */ return true; /* connection status changed */ } std::shared_ptr GenericMidiControlProtocol::output_port() const { return _output_port; } std::shared_ptr GenericMidiControlProtocol::input_port() const { return _input_port; } void GenericMidiControlProtocol::maybe_start_touch (std::shared_ptr controllable) { std::shared_ptr actl = std::dynamic_pointer_cast (controllable); if (actl) { actl->start_touch (timepos_t (session->audible_sample ())); } } void GenericMidiControlProtocol::start_midi_handling () { /* This connection means that whenever data is ready from the input * port, the relevant thread will invoke our ::midi_input_handler() * method, which will read the data, and invoke the parser. */ _input_port->xthread().set_receive_handler (sigc::bind (sigc::mem_fun (this, &GenericMidiControlProtocol::midi_input_handler), std::weak_ptr (_input_port))); _input_port->xthread().attach (main_loop()->get_context()); } void GenericMidiControlProtocol::stop_midi_handling () { midi_connections.drop_connections (); /* Note: the input handler is still active at this point, but we're no * longer connected to any of the parser signals */ } bool GenericMidiControlProtocol::midi_input_handler (Glib::IOCondition ioc, std::weak_ptr wport) { std::shared_ptr port (wport.lock()); if (!port) { return false; } DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("something happened on %1\n", std::shared_ptr(port)->name())); if (ioc & ~IO_IN) { return false; } if (ioc & IO_IN) { port->clear (); DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("data available on %1\n", std::shared_ptr(port)->name())); samplepos_t now = session->engine().sample_time(); port->parse (now); } return true; } void GenericMidiControlProtocol::add_rid_to_selection (int rid) { int id = rid + (_current_bank * _bank_size); ControlProtocol::add_rid_to_selection (id); } void GenericMidiControlProtocol::set_rid_selection (int rid) { int id = rid + (_current_bank * _bank_size); ControlProtocol::set_rid_selection (id); } void GenericMidiControlProtocol::toggle_rid_selection (int rid) { int id = rid + (_current_bank * _bank_size); ControlProtocol::toggle_rid_selection (id); } void GenericMidiControlProtocol::remove_rid_from_selection (int rid) { int id = rid + (_current_bank * _bank_size); ControlProtocol::remove_rid_from_selection (id); }