13
0

cleanup: unhardcode spectrum size, logscale, whitespace fixes

This commit is contained in:
Robin Gareus 2016-02-10 19:28:21 +01:00
parent 4928d53f8d
commit d8b04d3124
2 changed files with 39 additions and 25 deletions

View File

@ -55,6 +55,7 @@ class /*LIBAUDIOGRAPHER_API*/ Analyser : public ListedSource<float>, public Sink
framecnt_t _n_samples;
framecnt_t _pos;
framecnt_t _spp;
framecnt_t _fpp;
float* _bufs[2];

View File

@ -30,26 +30,32 @@ Analyser::Analyser (float sample_rate, unsigned int channels, framecnt_t bufsize
, _pos (0)
{
assert (bufsize % channels == 0);
//printf("NEW ANALYSER %p r:%.1f c:%d f:%ld l%ld\n", this, sample_rate, channels, bufsize, n_samples);
//printf ("NEW ANALYSER %p r:%.1f c:%d f:%ld l%ld\n", this, sample_rate, channels, bufsize, n_samples);
if (channels > 0 && channels <= 2) {
using namespace Vamp::HostExt;
PluginLoader* loader (PluginLoader::getInstance());
PluginLoader* loader (PluginLoader::getInstance ());
_ebur128_plugin = loader->loadPlugin ("libardourvampplugins:ebur128", sample_rate, PluginLoader::ADAPT_ALL_SAFE);
assert (_ebur128_plugin);
_ebur128_plugin->reset ();
_ebur128_plugin->initialise (channels, _bufsize, _bufsize);
}
_bufs[0] = (float*) malloc (sizeof(float) * _bufsize);
_bufs[1] = (float*) malloc (sizeof(float) * _bufsize);
const size_t peaks = sizeof(_result.peaks) / sizeof (ARDOUR::PeakData::PeakDatum) / 2;
_bufs[0] = (float*) malloc (sizeof (float) * _bufsize);
_bufs[1] = (float*) malloc (sizeof (float) * _bufsize);
const size_t peaks = sizeof (_result.peaks) / sizeof (ARDOUR::PeakData::PeakDatum) / 2;
_spp = ceil ((_n_samples + 1.f) / (float) peaks);
const size_t swh = sizeof (_result.spectrum) / sizeof (float);
const size_t height = sizeof (_result.spectrum[0]) / sizeof (float);
const size_t width = swh / height;
_fpp = ceil ((_n_samples + 1.f) / (float) width);
_fft_data_size = _bufsize / 2;
_fft_freq_per_bin = sample_rate / _fft_data_size / 2.f;
_fft_data_in = (float *) fftwf_malloc (sizeof(float) * _bufsize);
_fft_data_out = (float *) fftwf_malloc (sizeof(float) * _bufsize);
_fft_power = (float *) malloc (sizeof(float) * _fft_data_size);
_fft_data_in = (float *) fftwf_malloc (sizeof (float) * _bufsize);
_fft_data_out = (float *) fftwf_malloc (sizeof (float) * _bufsize);
_fft_power = (float *) malloc (sizeof (float) * _fft_data_size);
for (uint32_t i = 0; i < _fft_data_size; ++i) {
_fft_power[i] = 0;
@ -60,7 +66,7 @@ Analyser::Analyser (float sample_rate, unsigned int channels, framecnt_t bufsize
_fft_plan = fftwf_plan_r2r_1d (_bufsize, _fft_data_in, _fft_data_out, FFTW_R2HC, FFTW_MEASURE);
_hann_window = (float *) malloc(sizeof(float) * _bufsize);
_hann_window = (float *) malloc (sizeof (float) * _bufsize);
double sum = 0.0;
for (uint32_t i = 0; i < _bufsize; ++i) {
@ -88,10 +94,10 @@ Analyser::~Analyser ()
void
Analyser::process (ProcessContext<float> const & c)
{
framecnt_t n_samples = c.frames() / c.channels();
assert (c.frames() % c.channels() == 0);
framecnt_t n_samples = c.frames () / c.channels ();
assert (c.frames () % c.channels () == 0);
assert (n_samples <= _bufsize);
//printf("PROC %p @%ld F: %ld, S: %ld C:%d\n", this, _pos, c.frames(), n_samples, c.channels());
//printf ("PROC %p @%ld F: %ld, S: %ld C:%d\n", this, _pos, c.frames (), n_samples, c.channels ());
float const * d = c.data ();
framecnt_t s;
for (s = 0; s < n_samples; ++s) {
@ -127,43 +133,50 @@ Analyser::process (ProcessContext<float> const & c)
#undef FRe
#undef FIm
// TODO: get geometry from ExportAnalysis
const framecnt_t x0 = _pos / _spp;
const framecnt_t x1 = (_pos + n_samples) / _spp;
const size_t height = sizeof (_result.spectrum[0]) / sizeof (float);
const framecnt_t x0 = _pos / _fpp;
framecnt_t x1 = (_pos + n_samples) / _fpp;
if (x0 == x1) x1 = x0 + 1;
const float range = 80; // dB
const double ypb = 200.0 / _fft_data_size;
for (uint32_t i = 1; i < _fft_data_size - 1; ++i) {
const float level = fft_power_at_bin (i, i);
if (level < -range) continue;
const float pk = level > 0.0 ? 1.0 : (range + level) / range;
const uint32_t y = 200 - ceil (i * ypb); // log-y?
assert (y < 200);
#if 0 // linear
const uint32_t y0 = height - ceil (i * (float) height / _fft_data_size);
uint32_t y1= height - ceil (i * (float) height / _fft_data_size);
#else // logscale
const uint32_t y0 = height - ceilf (height * logf (1.f + .02f * i) / logf (1.f + .02f * _fft_data_size));
uint32_t y1 = height - ceilf (height * logf (1.f + .02f * (i + 1.f)) / logf (1.f + .02f * _fft_data_size));
#endif
if (y0 == y1 && y0 > 0) y1 = y0 - 1;
for (int x = x0; x < x1; ++x) {
assert (x >= 0 && x < 800);
if (_result.spectrum[x][y] < pk) { _result.spectrum[x][y] = pk; }
for (uint32_t y = y0; y > y1; --y) {
if (_result.spectrum[x][y] < pk) { _result.spectrum[x][y] = pk; }
}
}
}
_pos += n_samples;
/* pass audio audio through */
ListedSource<float>::output(c);
ListedSource<float>::output (c);
}
ARDOUR::ExportAnalysisPtr
Analyser::result ()
{
//printf("PROCESSED %ld / %ld samples\n", _pos, _n_samples);
//printf ("PROCESSED %ld / %ld samples\n", _pos, _n_samples);
if (_pos == 0) {
return ARDOUR::ExportAnalysisPtr ();
}
if (_ebur128_plugin) {
Vamp::Plugin::FeatureSet features = _ebur128_plugin->getRemainingFeatures ();
if (!features.empty() && features.size() == 3) {
if (!features.empty () && features.size () == 3) {
_result.loudness = features[0][0].values[0];
_result.loudness_range = features[1][0].values[0];
assert (features[2][0].values.size() == 540);
assert (features[2][0].values.size () == 540);
for (int i = 0; i < 540; ++i) {
_result.loudness_hist[i] = features[2][0].values[i];
if (_result.loudness_hist[i] > _result.loudness_hist_max) {
@ -179,5 +192,5 @@ float
Analyser::fft_power_at_bin (const uint32_t b, const float norm) const
{
const float a = _fft_power[b] * norm;
return a > 1e-12 ? 10.0 * fast_log10(a) : -INFINITY;
return a > 1e-12 ? 10.0 * fast_log10 (a) : -INFINITY;
}