13
0

use a centripetal catmull-rom curve to smooth ArdourCanvas::Curve

See http://en.wikipedia.org/wiki/Centripetal_Catmull-Rom to understand the benefits of this.
This commit is contained in:
Paul Davis 2014-03-05 11:37:13 -05:00
parent f3300ec03c
commit 58a30da03d
2 changed files with 201 additions and 176 deletions

View File

@ -30,25 +30,30 @@ class LIBCANVAS_API Curve : public PolyItem, public Fill
{
public:
Curve (Group *);
enum SplineType {
CatmullRomUniform,
CatmullRomCentripetal,
};
void compute_bounding_box () const;
void render (Rect const & area, Cairo::RefPtr<Cairo::Context>) const;
void set (Points const &);
void set_n_segments (uint32_t n);
void set_n_samples (Points::size_type);
void set_points_per_segment (uint32_t n);
bool covers (Duple const &) const;
private:
Points samples;
Points::size_type n_samples;
uint32_t n_segments;
uint32_t points_per_segment;
SplineType curve_type;
void smooth (Points::size_type p1, Points::size_type p2, Points::size_type p3, Points::size_type p4,
double xfront, double xextent);
double map_value (double) const;
void interpolate ();
static void interpolate (const Points& coordinates, uint32_t points_per_segment, SplineType, bool closed, Points& results);
};
}

View File

@ -17,6 +17,7 @@
*/
#include <cmath>
#include <exception>
#include <algorithm>
@ -31,24 +32,9 @@ Curve::Curve (Group* parent)
, PolyItem (parent)
, Fill (parent)
, n_samples (0)
, n_segments (512)
, points_per_segment (16)
, curve_type (CatmullRomCentripetal)
{
set_n_samples (256);
}
/** Set the number of points to compute when we smooth the data points into a
* curve.
*/
void
Curve::set_n_samples (Points::size_type n)
{
/* this only changes our appearance rather than the bounding box, so we
just need to schedule a redraw rather than notify the parent of any
changes
*/
n_samples = n;
samples.assign (n_samples, Duple (0.0, 0.0));
interpolate ();
}
/** When rendering the curve, we will always draw a fixed number of straight
@ -57,13 +43,14 @@ Curve::set_n_samples (Points::size_type n)
* render.
*/
void
Curve::set_n_segments (uint32_t n)
Curve::set_points_per_segment (uint32_t n)
{
/* this only changes our appearance rather than the bounding box, so we
just need to schedule a redraw rather than notify the parent of any
changes
*/
n_segments = n;
points_per_segment = n;
interpolate ();
redraw ();
}
@ -85,171 +72,204 @@ Curve::set (Points const& p)
void
Curve::interpolate ()
{
Points::size_type npoints = _points.size ();
if (npoints < 3) {
return;
}
Duple p;
double boundary;
const double xfront = _points.front().x;
const double xextent = _points.back().x - xfront;
/* initialize boundary curve points */
p = _points.front();
boundary = round (((p.x - xfront)/xextent) * (n_samples - 1));
for (Points::size_type i = 0; i < boundary; ++i) {
samples[i] = Duple (i, p.y);
}
p = _points.back();
boundary = round (((p.x - xfront)/xextent) * (n_samples - 1));
for (Points::size_type i = boundary; i < n_samples; ++i) {
samples[i] = Duple (i, p.y);
}
for (int i = 0; i < (int) npoints - 1; ++i) {
Points::size_type p1, p2, p3, p4;
p1 = max (i - 1, 0);
p2 = i;
p3 = i + 1;
p4 = min (i + 2, (int) npoints - 1);
smooth (p1, p2, p3, p4, xfront, xextent);
}
/* make sure that actual data points are used with their exact values */
for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {
uint32_t idx = (((*p).x - xfront)/xextent) * (n_samples - 1);
samples[idx].y = (*p).y;
}
samples.clear ();
interpolate (_points, points_per_segment, CatmullRomCentripetal, false, samples);
n_samples = samples.size();
}
/*
* This function calculates the curve values between the control points
* p2 and p3, taking the potentially existing neighbors p1 and p4 into
* account.
/* Cartmull-Rom code from http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/19283471#19283471
*
* Thanks to Ted for his Java version, which I translated into Ardour-idiomatic
* C++ here.
*/
/**
* Calculate the same values but introduces the ability to "parameterize" the t
* values used in the calculation. This is based on Figure 3 from
* http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
*
* This function uses a cubic bezier curve for the individual segments and
* calculates the necessary intermediate control points depending on the
* neighbor curve control points.
* @param p An array of double values of length 4, where interpolation
* occurs from p1 to p2.
* @param time An array of time measures of length 4, corresponding to each
* p value.
* @param t the actual interpolation ratio from 0 to 1 representing the
* position between p1 and p2 to interpolate the value.
*/
static double
__interpolate (double p[4], double time[4], double t)
{
const double L01 = p[0] * (time[1] - t) / (time[1] - time[0]) + p[1] * (t - time[0]) / (time[1] - time[0]);
const double L12 = p[1] * (time[2] - t) / (time[2] - time[1]) + p[2] * (t - time[1]) / (time[2] - time[1]);
const double L23 = p[2] * (time[3] - t) / (time[3] - time[2]) + p[3] * (t - time[2]) / (time[3] - time[2]);
const double L012 = L01 * (time[2] - t) / (time[2] - time[0]) + L12 * (t - time[0]) / (time[2] - time[0]);
const double L123 = L12 * (time[3] - t) / (time[3] - time[1]) + L23 * (t - time[1]) / (time[3] - time[1]);
const double C12 = L012 * (time[2] - t) / (time[2] - time[1]) + L123 * (t - time[1]) / (time[2] - time[1]);
return C12;
}
/**
* Given a list of control points, this will create a list of points_per_segment
* points spaced uniformly along the resulting Catmull-Rom curve.
*
* @param points The list of control points, leading and ending with a
* coordinate that is only used for controling the spline and is not visualized.
* @param index The index of control point p0, where p0, p1, p2, and p3 are
* used in order to create a curve between p1 and p2.
* @param points_per_segment The total number of uniformly spaced interpolated
* points to calculate for each segment. The larger this number, the
* smoother the resulting curve.
* @param curve_type Clarifies whether the curve should use uniform, chordal
* or centripetal curve types. Uniform can produce loops, chordal can
* produce large distortions from the original lines, and centripetal is an
* optimal balance without spaces.
* @return the list of coordinates that define the CatmullRom curve
* between the points defined by index+1 and index+2.
*/
static void
_interpolate (const Points& points, Points::size_type index, int points_per_segment, Curve::SplineType curve_type, Points& results)
{
double x[4];
double y[4];
double time[4];
for (int i = 0; i < 4; i++) {
x[i] = points[index + i].x;
y[i] = points[index + i].y;
time[i] = i;
}
double tstart = 1;
double tend = 2;
if (curve_type != Curve::CatmullRomUniform) {
double total = 0;
for (int i = 1; i < 4; i++) {
double dx = x[i] - x[i - 1];
double dy = y[i] - y[i - 1];
if (curve_type == Curve::CatmullRomCentripetal) {
total += pow (dx * dx + dy * dy, .25);
} else {
total += pow (dx * dx + dy * dy, .5);
}
time[i] = total;
}
tstart = time[1];
tend = time[2];
}
int segments = points_per_segment - 1;
results.push_back (points[index + 1]);
for (int i = 1; i < segments; i++) {
double xi = __interpolate (x, time, tstart + (i * (tend - tstart)) / segments);
double yi = __interpolate (y, time, tstart + (i * (tend - tstart)) / segments);
results.push_back (Duple (xi, yi));
}
results.push_back (points[index + 2]);
}
/**
* This method will calculate the Catmull-Rom interpolation curve, returning
* it as a list of Coord coordinate objects. This method in particular
* adds the first and last control points which are not visible, but required
* for calculating the spline.
*
* @param coordinates The list of original straight line points to calculate
* an interpolation from.
* @param points_per_segment The integer number of equally spaced points to
* return along each curve. The actual distance between each
* point will depend on the spacing between the control points.
* @return The list of interpolated coordinates.
* @param curve_type Chordal (stiff), Uniform(floppy), or Centripetal(medium)
* @throws gov.ca.water.shapelite.analysis.CatmullRomException if
* points_per_segment is less than 2.
*/
void
Curve::smooth (Points::size_type p1, Points::size_type p2, Points::size_type p3, Points::size_type p4,
double xfront, double xextent)
Curve::interpolate (const Points& coordinates, uint32_t points_per_segment, SplineType curve_type, bool closed, Points& results)
{
int i;
double x0, x3;
double y0, y1, y2, y3;
double dx, dy;
double slope;
if (points_per_segment < 2) {
return;
}
// Cannot interpolate curves given only two points. Two points
// is best represented as a simple line segment.
if (coordinates.size() < 3) {
results = coordinates;
return;
}
/* the outer control points for the bezier curve. */
// Copy the incoming coordinates. We need to modify it during interpolation
Points vertices = coordinates;
// Test whether the shape is open or closed by checking to see if
// the first point intersects with the last point. M and Z are ignored.
if (closed) {
// Use the second and second from last points as control points.
// get the second point.
Duple p2 = vertices[1];
// get the point before the last point
Duple pn1 = vertices[vertices.size() - 2];
// insert the second from the last point as the first point in the list
// because when the shape is closed it keeps wrapping around to
// the second point.
vertices.insert(vertices.begin(), pn1);
// add the second point to the end.
vertices.push_back(p2);
} else {
// The shape is open, so use control points that simply extend
// the first and last segments
// Get the change in x and y between the first and second coordinates.
double dx = vertices[1].x - vertices[0].x;
double dy = vertices[1].y - vertices[0].y;
// Then using the change, extrapolate backwards to find a control point.
double x1 = vertices[0].x - dx;
double y1 = vertices[0].y - dy;
// Actaully create the start point from the extrapolated values.
Duple start (x1, y1);
// Repeat for the end control point.
int n = vertices.size() - 1;
dx = vertices[n].x - vertices[n - 1].x;
dy = vertices[n].y - vertices[n - 1].y;
double xn = vertices[n].x + dx;
double yn = vertices[n].y + dy;
Duple end (xn, yn);
// insert the start control point at the start of the vertices list.
vertices.insert (vertices.begin(), start);
// append the end control ponit to the end of the vertices list.
vertices.push_back (end);
}
// When looping, remember that each cycle requires 4 points, starting
// with i and ending with i+3. So we don't loop through all the points.
for (Points::size_type i = 0; i < vertices.size() - 3; i++) {
x0 = _points[p2].x;
y0 = _points[p2].y;
x3 = _points[p3].x;
y3 = _points[p3].y;
// Actually calculate the Catmull-Rom curve for one segment.
Points r;
/*
* the x values of the inner control points are fixed at
* x1 = 2/3*x0 + 1/3*x3 and x2 = 1/3*x0 + 2/3*x3
* this ensures that the x values increase linearily with the
* parameter t and enables us to skip the calculation of the x
* values altogehter - just calculate y(t) evenly spaced.
*/
_interpolate (vertices, i, points_per_segment, curve_type, r);
// Since the middle points are added twice, once for each bordering
// segment, we only add the 0 index result point for the first
// segment. Otherwise we will have duplicate points.
dx = x3 - x0;
dy = y3 - y0;
if (results.size() > 0) {
r.erase (r.begin());
}
// Add the coordinates for the segment to the result list.
if (dx <= 0) {
/* error? */
return;
}
if (p1 == p2 && p3 == p4) {
/* No information about the neighbors,
* calculate y1 and y2 to get a straight line
*/
y1 = y0 + dy / 3.0;
y2 = y0 + dy * 2.0 / 3.0;
} else if (p1 == p2 && p3 != p4) {
/* only the right neighbor is available. Make the tangent at the
* right endpoint parallel to the line between the left endpoint
* and the right neighbor. Then point the tangent at the left towards
* the control handle of the right tangent, to ensure that the curve
* does not have an inflection point.
*/
slope = (_points[p4].y - y0) / (_points[p4].x - x0);
y2 = y3 - slope * dx / 3.0;
y1 = y0 + (y2 - y0) / 2.0;
} else if (p1 != p2 && p3 == p4) {
/* see previous case */
slope = (y3 - _points[p1].y) / (x3 - _points[p1].x);
y1 = y0 + slope * dx / 3.0;
y2 = y3 + (y1 - y3) / 2.0;
} else /* (p1 != p2 && p3 != p4) */ {
/* Both neighbors are available. Make the tangents at the endpoints
* parallel to the line between the opposite endpoint and the adjacent
* neighbor.
*/
slope = (y3 - _points[p1].y) / (x3 - _points[p1].x);
y1 = y0 + slope * dx / 3.0;
slope = (_points[p4].y - y0) / (_points[p4].x - x0);
y2 = y3 - slope * dx / 3.0;
}
/*
* finally calculate the y(t) values for the given bezier values. We can
* use homogenously distributed values for t, since x(t) increases linearily.
*/
dx = dx / xextent;
int limit = round (dx * (n_samples - 1));
const int idx_offset = round (((x0 - xfront)/xextent) * (n_samples - 1));
for (i = 0; i <= limit; i++) {
double y, t;
Points::size_type index;
t = i / dx / (n_samples - 1);
y = y0 * (1-t) * (1-t) * (1-t) +
3 * y1 * (1-t) * (1-t) * t +
3 * y2 * (1-t) * t * t +
y3 * t * t * t;
index = i + idx_offset;
if (index < n_samples) {
Duple d (i, max (y, 0.0));
samples[index] = d;
}
}
results.insert (results.end(), r.begin(), r.end());
}
}
/** Given a fractional position within the x-axis range of the