13
0

change API and implementation for CubicInterpolation and Interpolation.

Also remove LinearInterpolation which is not used
This commit is contained in:
Paul Davis 2017-10-02 12:42:44 -04:00
parent 4b9bf57b39
commit 45b1f6f6b8
2 changed files with 189 additions and 131 deletions

View File

@ -40,7 +40,7 @@ protected:
public:
Interpolation () { _speed = 1.0; _target_speed = 1.0; }
~Interpolation () { phase.clear(); }
virtual ~Interpolation() {}
void set_speed (double new_speed) { _speed = new_speed; _target_speed = new_speed; }
void set_target_speed (double new_speed) { _target_speed = new_speed; }
@ -48,31 +48,31 @@ public:
double target_speed() const { return _target_speed; }
double speed() const { return _speed; }
void add_channel_to (int /*input_buffer_size*/, int /*output_buffer_size*/) { phase.push_back (0.0); }
void remove_channel_from () { phase.pop_back (); }
void add_channel () { phase.push_back (0.0); }
void remove_channel () { phase.pop_back (); }
void reset () {
virtual void reset () {
for (size_t i = 0; i < phase.size(); i++) {
phase[i] = 0.0;
}
}
};
class LIBARDOUR_API LinearInterpolation : public Interpolation {
public:
samplecnt_t interpolate (int channel, samplecnt_t nframes, Sample* input, Sample* output);
};
class LIBARDOUR_API CubicInterpolation : public Interpolation {
public:
samplecnt_t interpolate (int channel, samplecnt_t nframes, Sample* input, Sample* output);
};
public:
CubicInterpolation ();
samplecnt_t interpolate (int channel, samplecnt_t input_samples, Sample* input, samplecnt_t & output_samples, Sample* output);
samplecnt_t distance (samplecnt_t nframes);
void reset ();
class BufferSet;
private:
Sample z[4];
char valid_z_bits;
class LIBARDOUR_API CubicMidiInterpolation : public Interpolation {
public:
samplecnt_t distance (samplecnt_t nframes, bool roll = true);
bool is_valid (int n) const { return valid_z_bits & (1<<n); }
bool invalid (int n) const { return !is_valid (n); }
void validate (int n) { valid_z_bits |= (1<<n); }
void invalidate (int n) { valid_z_bits &= (1<<n); }
};
} // namespace ARDOUR

View File

@ -17,151 +17,209 @@
*/
#include <stdint.h>
#include <limits>
#include <cstdio>
#include <stdint.h>
#include "ardour/interpolation.h"
#include "ardour/midi_buffer.h"
using namespace ARDOUR;
using std::cerr;
using std::endl;
samplecnt_t
LinearInterpolation::interpolate (int channel, samplecnt_t nframes, Sample *input, Sample *output)
CubicInterpolation::CubicInterpolation ()
: valid_z_bits (0)
{
// index in the input buffers
samplecnt_t i = 0;
double acceleration = 0;
if (_speed != _target_speed) {
acceleration = _target_speed - _speed;
}
for (samplecnt_t outsample = 0; outsample < nframes; ++outsample) {
double const d = phase[channel] + outsample * (_speed + acceleration);
i = floor(d);
Sample fractional_phase_part = d - i;
if (fractional_phase_part >= 1.0) {
fractional_phase_part -= 1.0;
i++;
}
if (input && output) {
// Linearly interpolate into the output buffer
output[outsample] =
input[i] * (1.0f - fractional_phase_part) +
input[i+1] * fractional_phase_part;
}
}
double const distance = phase[channel] + nframes * (_speed + acceleration);
i = floor(distance);
phase[channel] = distance - i;
return i;
}
samplecnt_t
CubicInterpolation::interpolate (int channel, samplecnt_t nframes, Sample *input, Sample *output)
CubicInterpolation::interpolate (int channel, samplecnt_t input_samples, Sample *input, samplecnt_t & output_samples, Sample *output)
{
// index in the input buffers
samplecnt_t i = 0;
assert (input_samples > 0);
assert (output_samples > 0);
assert (input);
assert (output);
double acceleration;
double distance = phase[channel];
_speed = fabs (_speed);
if (_speed != _target_speed) {
acceleration = _target_speed - _speed;
} else {
acceleration = 0.0;
}
if (invalid (0)) {
if (nframes < 3) {
/* no interpolation possible */
/* z[0] not set. Two possibilities
*
* 1) we have just been constructed or ::reset()
*
* 2) we were only given 1 sample after construction or
* ::reset, and stored it in z[1]
*/
if (input && output) {
for (i = 0; i < nframes; ++i) {
output[i] = input[i];
if (invalid (1)) {
/* first call after construction or after ::reset */
switch (input_samples) {
case 1:
/* store one sample for use next time. We don't
* have enough points to interpolate or even
* compute the first z[0] value, but keep z[1]
* around.
*/
z[1] = input[0]; validate (1);
output_samples = 0;
return 0;
case 2:
/* store two samples for use next time, and
* compute a value for z[0] that will maintain
* the slope of the first actual segment. We
* still don't have enough samples to interpolate.
*/
z[0] = input[0] - (input[1] - input[0]); validate (0);
z[1] = input[0]; validate (1);
z[2] = input[1]; validate (2);
output_samples = 0;
return 0;
default:
/* We have enough samples to interpolate this time,
* but don't have a valid z[0] value because this is the
* first call after construction or ::reset.
*
* First point is based on a requirement to maintain
* the slope of the first actual segment
*/
z[0] = input[0] - (input[1] - input[0]); validate (0);
break;
}
} else {
/* at least one call since construction or
* after::reset, since we have z[1] set
*
* we can now compute z[0] as required
*/
z[0] = z[1] - (input[0] - z[1]); validate (0);
/* we'll check the number of samples we've been given
in the next switch() statement below, and either
just save some more samples or actual interpolate
*/
}
phase[channel] = 0;
return nframes;
assert (is_valid (0));
}
/* keep this condition out of the inner loop */
if (input && output) {
/* best guess for the fake point we have to add to be able to interpolate at i == 0:
* .... maintain slope of first actual segment ...
*/
Sample inm1 = input[i] - (input[i+1] - input[i]);
for (samplecnt_t outsample = 0; outsample < nframes; ++outsample) {
/* get the index into the input we should start with */
i = floor (distance);
float fractional_phase_part = fmod (distance, 1.0);
// Cubically interpolate into the output buffer: keep this inlined for speed and rely on compiler
// optimization to take care of the rest
// shamelessly ripped from Steve Harris' swh-plugins (ladspa-util.h)
output[outsample] = input[i] + 0.5f * fractional_phase_part * (input[i+1] - inm1 +
fractional_phase_part * (4.0f * input[i+1] + 2.0f * inm1 - 5.0f * input[i] - input[i+2] +
fractional_phase_part * (3.0f * (input[i] - input[i+1]) - inm1 + input[i+2])));
distance += _speed + acceleration;
inm1 = input[i];
switch (input_samples) {
case 1:
/* one more sample of input. find the right vX to store
it in, and decide if we're ready to interpolate
*/
if (invalid (1)) {
z[1] = input[0]; validate (1);
/* still not ready to interpolate */
output_samples = 0;
return 0;
} else if (invalid (2)) {
/* still not ready to interpolate */
z[2] = input[0]; validate (2);
output_samples = 0;
return 0;
} else if (invalid (3)) {
z[3] = input[0]; validate (3);
/* ready to interpolate */
}
i = floor (distance);
phase[channel] = fmod (distance, 1.0);
} else {
/* used to calculate play-distance with acceleration (silent roll)
* (use same algorithm as real playback for identical rounding/floor'ing)
*/
for (samplecnt_t outsample = 0; outsample < nframes; ++outsample) {
distance += _speed + acceleration;
break;
case 2:
/* two more samples of input. find the right vX to store
them in, and decide if we're ready to interpolate
*/
if (invalid (1)) {
z[1] = input[0]; validate (1);
z[2] = input[1]; validate (2);
/* still not ready to interpolate */
output_samples = 0;
return 0;
} else if (invalid (2)) {
z[2] = input[0]; validate (2);
z[3] = input[1]; validate (3);
/* ready to interpolate */
} else if (invalid (3)) {
z[3] = input[0]; validate (3);
/* ready to interpolate */
}
i = floor (distance);
phase[channel] = fmod (distance, 1.0);
break;
default:
/* caller has given us at least enough samples to interpolate a
single value.
*/
z[1] = input[0]; validate (1);
z[2] = input[1]; validate (2);
z[3] = input[2]; validate (3);
}
return i;
}
/* ready to interpolate using z[0], z[1], z[2] and z[3] */
/* CubicMidiInterpolation::distance is identical to
* return CubicInterpolation::interpolate (0, nframes, NULL, NULL);
*/
samplecnt_t
CubicMidiInterpolation::distance (samplecnt_t nframes, bool /*roll*/)
{
assert (phase.size () == 1);
assert (is_valid (0));
assert (is_valid (1));
assert (is_valid (2));
assert (is_valid (3));
/* we can use up to (input_samples - 2) of the input, so compute the
* maximum number of output samples that represents.
*
* Remember that the expected common case here is to be given
* input_samples that is substantially larger than output_samples,
* thus allowing us to always compute output_samples in one call.
*/
const samplecnt_t output_from_input = floor ((input_samples - 2) / _speed);
/* limit output to either the caller's requested number or the number
* determined by the input size.
*/
const samplecnt_t limit = std::min (output_samples, output_from_input);
samplecnt_t outsample = 0;
double distance = phase[channel];
samplecnt_t used = floor (distance);
samplecnt_t i = 0;
double acceleration;
double distance = phase[0];
while (outsample < limit) {
if (nframes < 3) {
/* no interpolation possible */
phase[0] = 0;
return nframes;
i = floor (distance);
/* this call may stop the loop from being vectorized */
float fractional_phase_part = fmod (distance, 1.0);
/* Cubically interpolate into the output buffer */
output[outsample++] = z[1] + 0.5f * fractional_phase_part *
(z[2] - z[0] + fractional_phase_part * (4.0f * z[2] + 2.0f * z[0] - 5.0f * z[1] - z[3] +
fractional_phase_part * (3.0f * (z[1] - z[2]) - z[0] + z[3])));
distance += _speed;
z[0] = z[1];
z[1] = input[i];
z[2] = input[i+1];
z[3] = input[i+2];
}
if (_speed != _target_speed) {
acceleration = _target_speed - _speed;
} else {
acceleration = 0.0;
}
for (samplecnt_t outsample = 0; outsample < nframes; ++outsample) {
distance += _speed + acceleration;
}
i = floor (distance);
phase[0] = fmod (distance, 1.0);
return i;
output_samples = outsample;
phase[channel] = fmod (distance, 1.0);
return i - used;
}
void
CubicInterpolation::reset ()
{
Interpolation::reset ();
valid_z_bits = 0;
}
samplecnt_t
CubicInterpolation::distance (samplecnt_t nsamples)
{
return floor (floor (phase[0]) + (_speed * nsamples));
}