diff --git a/libs/ardour/sse_functions_avx.cc b/libs/ardour/sse_functions_avx.cc new file mode 100644 index 0000000000..8c076aacb5 --- /dev/null +++ b/libs/ardour/sse_functions_avx.cc @@ -0,0 +1,120 @@ +/* + Copyright (C) 2007 Paul sDavis + Written by Sampo Savolainen + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + +*/ + +#include +#include +#include "ardour/types.h" + + +void +x86_sse_avx_find_peaks(const ARDOUR::Sample* buf, ARDOUR::pframes_t nframes, float *min, float *max) +{ + __m256 current_max, current_min, work; + + // Load max and min values into all four slots of the XMM registers + current_min = _mm256_set1_ps(*min); + current_max = _mm256_set1_ps(*max); + + // Work input until "buf" reaches 16 byte alignment + while ( ((intptr_t)buf) % 32 != 0 && nframes > 0) { + + // Load the next float into the work buffer + work = _mm256_set1_ps(*buf); + + current_min = _mm256_min_ps(current_min, work); + current_max = _mm256_max_ps(current_max, work); + + buf++; + nframes--; + } + + // use 64 byte prefetch for quadruple quads: + // load each 64 bytes into cash before processing + while (nframes >= 16) { +#if defined(COMPILER_MSVC) || defined(COMPILER_MINGW) + _mm_prefetch(((char*)buf+64), _mm_hint(0) ); // A total guess! Assumed to be eqivalent to +#else // the line below but waiting to be tested !! + __builtin_prefetch(buf+64,0,0); +#endif + work = _mm256_load_ps(buf); + current_min = _mm256_min_ps(current_min, work); + current_max = _mm256_max_ps(current_max, work); + buf+=8; + work = _mm256_load_ps(buf); + current_min = _mm256_min_ps(current_min, work); + current_max = _mm256_max_ps(current_max, work); + buf+=8; + + nframes-=16; + } + + // work through 32 bytes aligned buffers + while (nframes >= 8) { + + work = _mm256_load_ps(buf); + + current_min = _mm256_min_ps(current_min, work); + current_max = _mm256_max_ps(current_max, work); + + buf+=8; + nframes-=8; + } + + // work through the rest < 4 samples + while ( nframes > 0) { + + // Load the next float into the work buffer + work = _mm256_set1_ps(*buf); + + current_min = _mm256_min_ps(current_min, work); + current_max = _mm256_max_ps(current_max, work); + + buf++; + nframes--; + } + + // Find min & max value in current_max through shuffle tricks + + work = current_min; + work = _mm256_shuffle_ps (current_min, current_min, _MM_SHUFFLE(2, 3, 0, 1)); + current_min = _mm256_min_ps (work, current_min); + work = _mm256_shuffle_ps (current_min, current_min, _MM_SHUFFLE(1, 0, 3, 2)); + current_min = _mm256_min_ps (work, current_min); + work = _mm256_permute2f128_ps( current_min, current_min, 1); + current_min = _mm256_min_ps (work, current_min); + + *min = current_min[0]; + + work = current_max; + work = _mm256_shuffle_ps(current_max, current_max, _MM_SHUFFLE(2, 3, 0, 1)); + current_max = _mm256_max_ps (work, current_max); + work = _mm256_shuffle_ps(current_max, current_max, _MM_SHUFFLE(1, 0, 3, 2)); + current_max = _mm256_max_ps (work, current_max); + work = _mm256_permute2f128_ps( current_max, current_max, 1); + current_max = _mm256_max_ps (work, current_max); + + *max = current_max[0]; + + // zero upper 128 bit of 256 bit ymm register to avoid penalties using non AVX instructions + _mm256_zeroupper (); +} + + +