13
0
livetrax/libs/evoral/src/Sequence.cpp

794 lines
21 KiB
C++
Raw Normal View History

/* This file is part of Evoral.
* Copyright (C) 2008 Dave Robillard <http://drobilla.net>
* Copyright (C) 2000-2008 Paul Davis
*
* Evoral is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* Evoral is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define __STDC_LIMIT_MACROS 1
#include <algorithm>
#include <cmath>
#include <iostream>
#include <limits>
#include <stdexcept>
#include <stdint.h>
#include <cstdio>
#include "evoral/Control.hpp"
#include "evoral/ControlList.hpp"
#include "evoral/ControlSet.hpp"
#include "evoral/EventSink.hpp"
#include "evoral/MIDIParameters.hpp"
#include "evoral/Sequence.hpp"
#include "evoral/TypeMap.hpp"
#include "evoral/midi_util.h"
//#define DEBUG_SEQUENCE 1
#ifdef DEBUG_SEQUENCE
#include <boost/format.hpp>
using boost::format;
#define DUMP(x) cerr << (x);
#else
#define DUMP(x)
#endif
using namespace std;
namespace Evoral {
template<typename Time>
void Sequence<Time>::write_lock() {
_lock.writer_lock();
_control_lock.lock();
}
template<typename Time>
void Sequence<Time>::write_unlock() {
_lock.writer_unlock();
_control_lock.unlock();
}
template<typename Time>
void Sequence<Time>::read_lock() const {
_lock.reader_lock();
}
template<typename Time>
void Sequence<Time>::read_unlock() const {
_lock.reader_unlock();
}
// Read iterator (const_iterator)
template<typename Time>
Sequence<Time>::const_iterator::const_iterator()
: _seq(NULL)
, _is_end(true)
, _locked(false)
, _control_iter(_control_iters.end())
{
_event = boost::shared_ptr< Event<Time> >(new Event<Time>());
}
template<typename Time>
Sequence<Time>::const_iterator::const_iterator(const Sequence<Time>& seq, Time t)
: _seq(&seq)
, _type(NIL)
, _is_end((t == DBL_MAX) || seq.empty())
, _locked(!_is_end)
, _note_iter(seq.notes().end())
, _sysex_iter(seq.sysexes().end())
, _control_iter(_control_iters.end())
{
DUMP(format("Created Iterator @ %1% (is end: %2%)\n)") % t % _is_end);
if (_is_end) {
return;
}
seq.read_lock();
// Find first note which begins after t
for (typename Sequence<Time>::Notes::const_iterator i = seq.notes().begin();
i != seq.notes().end(); ++i) {
if ((*i)->time() >= t) {
_note_iter = i;
break;
}
}
assert(_note_iter == seq.notes().end() || (*_note_iter)->time() >= t);
// Find first sysex event after t
for (typename Sequence<Time>::SysExes::const_iterator i = seq.sysexes().begin();
i != seq.sysexes().end(); ++i) {
if ((*i)->time() >= t) {
_sysex_iter = i;
break;
}
}
assert(_sysex_iter == seq.sysexes().end() || (*_sysex_iter)->time() >= t);
// Find first control event after t
ControlIterator earliest_control(boost::shared_ptr<ControlList>(), DBL_MAX, 0.0);
_control_iters.reserve(seq._controls.size());
bool found = false;
size_t earliest_control_index = 0;
for (Controls::const_iterator i = seq._controls.begin(); i != seq._controls.end(); ++i) {
DUMP(format("Iterator: control: %1%\n") % seq._type_map.to_symbol(i->first));
double x, y;
bool ret = i->second->list()->rt_safe_earliest_event_unlocked(t, DBL_MAX, x, y);
if (!ret) {
DUMP(format("Iterator: CC %1% (size %2%) has no events past %3%\n")
% i->first.id() % i->second->list()->size() % t);
continue;
}
assert(x >= 0);
if (y < i->first.min() || y > i->first.max()) {
cerr << "ERROR: Controller value " << y
<< " out of range [" << i->first.min() << "," << i->first.max()
<< "], event ignored" << endl;
continue;
}
DUMP(format("Iterator: CC %1% added (%2%, %3%)\n") % i->first.id() % x % y);
const ControlIterator new_iter(i->second->list(), x, y);
_control_iters.push_back(new_iter);
// Found a new earliest_control
if (x < earliest_control.x) {
earliest_control = new_iter;
earliest_control_index = _control_iters.size() - 1;
found = true;
}
}
if (found) {
_control_iter = _control_iters.begin() + earliest_control_index;
} else {
_control_iter = _control_iters.end();
}
// Now find the earliest event overall and point to it
Time earliest_t = t;
if (_note_iter != seq.notes().end()) {
_type = NOTE_ON;
earliest_t = (*_note_iter)->time();
}
if (_sysex_iter != seq.sysexes().end() && (*_sysex_iter)->time() < earliest_t) {
_type = SYSEX;
earliest_t = (*_sysex_iter)->time();
}
if (_control_iter != _control_iters.end()
&& earliest_control.list && earliest_control.x >= t
&& earliest_control.x < earliest_t) {
_type = CONTROL;
earliest_t = earliest_control.x;
}
switch (_type) {
case NOTE_ON:
DUMP(format("Starting at note on event @ %1%\n") % earliest_t);
_event = boost::shared_ptr< Event<Time> >(
new Event<Time>((*_note_iter)->on_event(), true));
_active_notes.push(*_note_iter);
break;
case SYSEX:
DUMP(format("Starting at sysex event @ %1%\n") % earliest_t);
_event = boost::shared_ptr< Event<Time> >(
new Event<Time>(*(*_sysex_iter), true));
break;
case CONTROL:
DUMP(format("Starting at control event @ %1%\n") % earliest_t);
seq.control_to_midi_event(_event, earliest_control);
break;
default:
break;
}
if (_type == NIL || !_event || _event->size() == 0) {
DUMP(format("Starting at end @ %1%\n") % t);
_type = NIL;
_is_end = true;
_locked = false;
_seq->read_unlock();
} else {
DUMP(format("New iterator = %1% : %2% @ %3%\n")
% (int)_event->event_type()
% (int)((MIDIEvent<Time>*)_event.get())->type()
% _event->time());
assert(midi_event_is_valid(_event->buffer(), _event->size()));
}
}
template<typename Time>
Sequence<Time>::const_iterator::~const_iterator()
{
if (_locked) {
_seq->read_unlock();
}
}
template<typename Time>
void
Sequence<Time>::const_iterator::invalidate()
{
while (!_active_notes.empty()) {
_active_notes.pop();
}
_type = NIL;
_is_end = true;
if (_seq) {
_note_iter = _seq->notes().end();
_sysex_iter = _seq->sysexes().end();
}
_control_iter = _control_iters.end();
if (_locked) {
_seq->read_unlock();
_locked = false;
}
}
template<typename Time>
const typename Sequence<Time>::const_iterator&
Sequence<Time>::const_iterator::operator++()
{
if (_is_end) {
throw std::logic_error("Attempt to iterate past end of Sequence");
}
DUMP("Sequence::const_iterator++\n");
assert(_event && _event->buffer() && _event->size() > 0);
const MIDIEvent<Time>& ev = *((MIDIEvent<Time>*)_event.get());
if (!( ev.is_note()
|| ev.is_cc()
|| ev.is_pgm_change()
|| ev.is_pitch_bender()
|| ev.is_channel_pressure()
|| ev.is_sysex()) ) {
cerr << "WARNING: Unknown event (type " << _type << "): " << hex
<< int(ev.buffer()[0]) << int(ev.buffer()[1]) << int(ev.buffer()[2]) << endl;
}
double x = 0.0;
double y = 0.0;
bool ret = false;
// Increment past current event
switch (_type) {
case NOTE_ON:
++_note_iter;
break;
case NOTE_OFF:
break;
case CONTROL:
// Increment current controller iterator
ret = _control_iter->list->rt_safe_earliest_event_unlocked(
_control_iter->x, DBL_MAX, x, y, false);
assert(!ret || x > _control_iter->x);
if (ret) {
_control_iter->x = x;
_control_iter->y = y;
} else {
_control_iter->list.reset();
_control_iter->x = DBL_MAX;
_control_iter->y = DBL_MAX;
}
// Find the controller with the next earliest event time
_control_iter = _control_iters.begin();
for (ControlIterators::iterator i = _control_iters.begin();
i != _control_iters.end(); ++i) {
if (i->x < _control_iter->x) {
_control_iter = i;
}
}
break;
case SYSEX:
++_sysex_iter;
break;
default:
assert(false);
}
// Now find the earliest event overall and point to it
_type = NIL;
Time earliest_t = std::numeric_limits<Time>::max();
// Next earliest note on
if (_note_iter != _seq->notes().end()) {
_type = NOTE_ON;
earliest_t = (*_note_iter)->time();
}
// Use the next note off iff it's earlier or the same time as the note on
if (!_seq->percussive() && (!_active_notes.empty())) {
if (_type == NIL || _active_notes.top()->end_time() <= earliest_t) {
_type = NOTE_OFF;
earliest_t = _active_notes.top()->end_time();
}
}
// Use the next earliest controller iff it's earlier than the note event
if (_control_iter != _control_iters.end() && _control_iter->x != DBL_MAX) {
if (_type == NIL || _control_iter->x < earliest_t) {
_type = CONTROL;
earliest_t = _control_iter->x;
}
}
// Use the next earliest SysEx iff it's earlier than the controller
if (_sysex_iter != _seq->sysexes().end()) {
if (_type == NIL || (*_sysex_iter)->time() < earliest_t) {
_type = SYSEX;
earliest_t = (*_sysex_iter)->time();
}
}
// Set event to reflect new position
switch (_type) {
case NOTE_ON:
DUMP("iterator = note on\n");
*_event = (*_note_iter)->on_event();
_active_notes.push(*_note_iter);
break;
case NOTE_OFF:
DUMP("iterator = note off\n");
assert(!_active_notes.empty());
*_event = _active_notes.top()->off_event();
_active_notes.pop();
break;
case CONTROL:
DUMP("iterator = control\n");
_seq->control_to_midi_event(_event, *_control_iter);
break;
case SYSEX:
DUMP("iterator = sysex\n");
*_event = *(*_sysex_iter);
break;
default:
DUMP("iterator = end\n");
_is_end = true;
}
assert(_is_end || (_event->size() > 0 && _event->buffer() && _event->buffer()[0] != '\0'));
return *this;
}
template<typename Time>
bool
Sequence<Time>::const_iterator::operator==(const const_iterator& other) const
{
if (_seq != other._seq) {
return false;
} else if (_is_end || other._is_end) {
return (_is_end == other._is_end);
} else if (_type != other._type) {
return false;
} else {
return (_event == other._event);
}
}
template<typename Time>
typename Sequence<Time>::const_iterator&
Sequence<Time>::const_iterator::operator=(const const_iterator& other)
{
if (_seq != other._seq) {
if (_locked) {
_seq->read_unlock();
}
if (other._locked) {
other._seq->read_lock();
}
} else if (!_locked && other._locked) {
_seq->read_lock();
}
_seq = other._seq;
_event = other._event;
_active_notes = other._active_notes;
_type = other._type;
_is_end = other._is_end;
_locked = other._locked;
_note_iter = other._note_iter;
_sysex_iter = other._sysex_iter;
_control_iters = other._control_iters;
if (other._control_iter == other._control_iters.end()) {
_control_iter = _control_iters.end();
} else {
const size_t index = other._control_iter - other._control_iters.begin();
_control_iter = _control_iters.begin() + index;
}
return *this;
}
// Sequence
template<typename Time>
Sequence<Time>::Sequence(const TypeMap& type_map, size_t size)
: _edited(false)
, _type_map(type_map)
, _notes(size)
, _writing(false)
, _end_iter(*this, DBL_MAX)
, _percussive(false)
, _lowest_note(127)
, _highest_note(0)
{
DUMP(format("Sequence (size %1%) constructed: %2%\n") % size % this);
assert(_end_iter._is_end);
assert( ! _end_iter._locked);
}
/** Write the controller event pointed to by \a iter to \a ev.
* The buffer of \a ev will be allocated or resized as necessary.
* The event_type of \a ev should be set to the expected output type.
* \return true on success
*/
template<typename Time>
bool
Sequence<Time>::control_to_midi_event(
boost::shared_ptr< Event<Time> >& ev,
const ControlIterator& iter) const
{
assert(iter.list.get());
const uint32_t event_type = iter.list->parameter().type();
// initialize the event pointer with a new event, if necessary
if (!ev) {
ev = boost::shared_ptr< Event<Time> >(new Event<Time>(event_type, 0, 3, NULL, true));
}
uint8_t midi_type = _type_map.parameter_midi_type(iter.list->parameter());
ev->set_event_type(_type_map.midi_event_type(midi_type));
switch (midi_type) {
case MIDI_CMD_CONTROL:
assert(iter.list.get());
assert(iter.list->parameter().channel() < 16);
assert(iter.list->parameter().id() <= INT8_MAX);
assert(iter.y <= INT8_MAX);
ev->time() = iter.x;
ev->realloc(3);
ev->buffer()[0] = MIDI_CMD_CONTROL + iter.list->parameter().channel();
ev->buffer()[1] = (uint8_t)iter.list->parameter().id();
ev->buffer()[2] = (uint8_t)iter.y;
break;
case MIDI_CMD_PGM_CHANGE:
assert(iter.list.get());
assert(iter.list->parameter().channel() < 16);
assert(iter.y <= INT8_MAX);
ev->time() = iter.x;
ev->realloc(2);
ev->buffer()[0] = MIDI_CMD_PGM_CHANGE + iter.list->parameter().channel();
ev->buffer()[1] = (uint8_t)iter.y;
break;
case MIDI_CMD_BENDER:
assert(iter.list.get());
assert(iter.list->parameter().channel() < 16);
assert(iter.y < (1<<14));
ev->time() = iter.x;
ev->realloc(3);
ev->buffer()[0] = MIDI_CMD_BENDER + iter.list->parameter().channel();
ev->buffer()[1] = uint16_t(iter.y) & 0x7F; // LSB
ev->buffer()[2] = (uint16_t(iter.y) >> 7) & 0x7F; // MSB
break;
case MIDI_CMD_CHANNEL_PRESSURE:
assert(iter.list.get());
assert(iter.list->parameter().channel() < 16);
assert(iter.y <= INT8_MAX);
ev->time() = iter.x;
ev->realloc(2);
ev->buffer()[0] = MIDI_CMD_CHANNEL_PRESSURE + iter.list->parameter().channel();
ev->buffer()[1] = (uint8_t)iter.y;
break;
default:
return false;
}
return true;
}
/** Clear all events from the model.
*/
template<typename Time>
void
Sequence<Time>::clear()
{
_lock.writer_lock();
_notes.clear();
for (Controls::iterator li = _controls.begin(); li != _controls.end(); ++li)
li->second->list()->clear();
_lock.writer_unlock();
}
/** Begin a write of events to the model.
*
* If \a mode is Sustained, complete notes with length are constructed as note
* on/off events are received. Otherwise (Percussive), only note on events are
* stored; note off events are discarded entirely and all contained notes will
* have length 0.
*/
template<typename Time>
void
Sequence<Time>::start_write()
{
DUMP(format("%1% : start_write (percussive = %2%)\n") % this % _percussive);
write_lock();
_writing = true;
for (int i = 0; i < 16; ++i) {
_write_notes[i].clear();
}
_dirty_controls.clear();
write_unlock();
}
/** Finish a write of events to the model.
*
* If \a delete_stuck is true and the current mode is Sustained, note on events
* that were never resolved with a corresonding note off will be deleted.
* Otherwise they will remain as notes with length 0.
*/
template<typename Time>
void
Sequence<Time>::end_write(bool delete_stuck)
{
write_lock();
assert(_writing);
DUMP(format("%1% : end_write (%2% notes)\n") % this % _notes.size());
if (!_percussive && delete_stuck) {
for (typename Notes::iterator n = _notes.begin(); n != _notes.end() ;) {
if ((*n)->length() == 0) {
cerr << "WARNING: Stuck note lost: " << (*n)->note() << endl;
n = _notes.erase(n);
// we have to break here because erase invalidates the iterator
break;
} else {
++n;
}
}
}
for (int i = 0; i < 16; ++i) {
if (!_write_notes[i].empty()) {
cerr << "WARNING: Sequence<Time>::end_write: Channel " << i << " has "
<< _write_notes[i].size() << " stuck notes" << endl;
}
_write_notes[i].clear();
}
for (ControlLists::const_iterator i = _dirty_controls.begin(); i != _dirty_controls.end(); ++i) {
(*i)->mark_dirty();
}
_writing = false;
write_unlock();
}
/** Append \a ev to model. NOT realtime safe.
*
* Timestamps of events in \a buf are expected to be relative to
* the start of this model (t=0) and MUST be monotonically increasing
* and MUST be >= the latest event currently in the model.
*/
template<typename Time>
void
Sequence<Time>::append(const Event<Time>& event)
{
write_lock();
_edited = true;
const MIDIEvent<Time>& ev = (const MIDIEvent<Time>&)event;
assert(_notes.empty() || ev.time() >= _notes.back()->time());
assert(_writing);
if (!midi_event_is_valid(ev.buffer(), ev.size())) {
cerr << "WARNING: Sequence ignoring illegal MIDI event" << endl;
write_unlock();
return;
}
if (ev.is_note_on()) {
append_note_on_unlocked(ev.channel(), ev.time(), ev.note(), ev.velocity());
} else if (ev.is_note_off()) {
append_note_off_unlocked(ev.channel(), ev.time(), ev.note());
} else if (ev.is_sysex()) {
append_sysex_unlocked(ev);
} else if (!_type_map.type_is_midi(ev.event_type())) {
printf("WARNING: Sequence: Unknown event type %X: ", ev.event_type());
for (size_t i=0; i < ev.size(); ++i) {
printf("%X ", ev.buffer()[i]);
}
printf("\n");
} else if (ev.is_cc()) {
append_control_unlocked(
Evoral::MIDI::ContinuousController(ev.event_type(), ev.channel(), ev.cc_number()),
ev.time(), ev.cc_value());
} else if (ev.is_pgm_change()) {
append_control_unlocked(
Evoral::MIDI::ProgramChange(ev.event_type(), ev.channel()),
ev.time(), ev.pgm_number());
} else if (ev.is_pitch_bender()) {
append_control_unlocked(
Evoral::MIDI::PitchBender(ev.event_type(), ev.channel()),
ev.time(), double( (0x7F & ev.pitch_bender_msb()) << 7
| (0x7F & ev.pitch_bender_lsb()) ));
} else if (ev.is_channel_pressure()) {
append_control_unlocked(
Evoral::MIDI::ChannelPressure(ev.event_type(), ev.channel()),
ev.time(), ev.channel_pressure());
} else {
printf("WARNING: Sequence: Unknown MIDI event type %X\n", ev.type());
}
write_unlock();
}
template<typename Time>
void
Sequence<Time>::append_note_on_unlocked(uint8_t chan, Time time, uint8_t note_num, uint8_t velocity)
{
DUMP(format("%1% c=%2% note %3% on @ %4% v=%5%\n")
% this % (int)chan % (int)note_num % time % (int)velocity);
assert(note_num <= 127);
assert(chan < 16);
assert(_writing);
_edited = true;
if (velocity == 0) {
append_note_off_unlocked(chan, time, note_num);
return;
}
if (note_num < _lowest_note)
_lowest_note = note_num;
if (note_num > _highest_note)
_highest_note = note_num;
boost::shared_ptr< Note<Time> > new_note(new Note<Time>(chan, time, 0, note_num, velocity));
_notes.push_back(new_note);
if (!_percussive) {
DUMP(format("Sustained: Appending active note on %1% channel %2%\n")
% (unsigned)(uint8_t)note_num % chan);
_write_notes[chan].push_back(_notes.size() - 1);
} else {
DUMP("Percussive: NOT appending active note on\n");
}
}
template<typename Time>
void
Sequence<Time>::append_note_off_unlocked(uint8_t chan, Time time, uint8_t note_num)
{
DUMP(format("%1% c=%2% note %3% off @ %4%\n")
% this % (int)chan % (int)note_num % time);
assert(note_num <= 127);
assert(chan < 16);
assert(_writing);
_edited = true;
if (_percussive) {
DUMP("Sequence Ignoring note off (percussive mode)\n");
return;
}
/* FIXME: make _write_notes fixed size (127 noted) for speed */
/* FIXME: note off velocity for that one guy out there who actually has
* keys that send it */
bool resolved = false;
for (WriteNotes::iterator n = _write_notes[chan].begin(); n
!= _write_notes[chan].end(); ++n) {
Note<Time>& note = *_notes[*n].get();
if (note.note() == note_num) {
assert(time >= note.time());
note.set_length(time - note.time());
_write_notes[chan].erase(n);
DUMP(format("resolved note, length: %1%\n") % note.length());
resolved = true;
break;
}
}
if (!resolved) {
cerr << this << " spurious note off chan " << (int)chan
<< ", note " << (int)note_num << " @ " << time << endl;
}
}
template<typename Time>
void
Sequence<Time>::append_control_unlocked(const Parameter& param, Time time, double value)
{
DUMP(format("%1% %2% @ %3%\t=\t%4% # controls: %5%\n")
% this % _type_map.to_symbol(param) % time % value % _controls.size());
boost::shared_ptr<Control> c = control(param, true);
c->list()->rt_add(time, value);
}
template<typename Time>
void
Sequence<Time>::append_sysex_unlocked(const MIDIEvent<Time>& ev)
{
#ifdef DEBUG_SEQUENCE
cerr << this << " SysEx @ " << ev.time() << " \t= \t [ " << hex;
for (size_t i=0; i < ev.size(); ++i) {
cerr << int(ev.buffer()[i]) << " ";
} cerr << "]" << endl;
#endif
boost::shared_ptr<MIDIEvent<Time> > event(new MIDIEvent<Time>(ev, true));
_sysexes.push_back(event);
}
template<typename Time>
void
Sequence<Time>::add_note_unlocked(const boost::shared_ptr< Note<Time> > note)
{
DUMP(format("%1% add note %2% @ %3%\n") % this % (int)note->note() % note->time());
_edited = true;
typename Notes::iterator i = upper_bound(_notes.begin(), _notes.end(), note,
note_time_comparator);
_notes.insert(i, note);
}
template<typename Time>
void
Sequence<Time>::remove_note_unlocked(const boost::shared_ptr< const Note<Time> > note)
{
_edited = true;
DUMP(format("%1% remove note %2% @ %3%\n") % this % (int)note->note() % note->time());
for (typename Notes::iterator n = _notes.begin(); n != _notes.end(); ++n) {
if (*(*n) == *note) {
_notes.erase(n);
break;
}
}
}
template<typename Time>
void
Sequence<Time>::set_notes (const Sequence<Time>::Notes& n)
{
_notes = n;
}
template class Sequence<double>;
} // namespace Evoral