941 lines
25 KiB
C++
941 lines
25 KiB
C++
|
/**
|
||
|
* @file colorspace.c
|
||
|
* @author Pascal Getreuer 2005-2010 <getreuer@gmail.com>
|
||
|
*
|
||
|
* == Summary ==
|
||
|
* This file implements routines for color transformations between the spaces
|
||
|
* sRGB, Y'UV, Y'CbCr, Y'PbPr, Y'DbDr, Y'IQ, HSV, HSL, HSI, CIEXYZ, CIELAB,
|
||
|
* CIELUV, CIELCH, and CIECAT02 LMS.
|
||
|
*
|
||
|
* == Usage ==
|
||
|
* First call GetColorTransform, specifying the source and destination color
|
||
|
* spaces as "dest<-src" or "src->dest". Then call ApplyColorTransform to
|
||
|
* perform the transform:
|
||
|
@code
|
||
|
double S[3] = {173, 0.8, 0.5};
|
||
|
double D[3];
|
||
|
colortransform Trans;
|
||
|
|
||
|
if(!(GetColorTransform(&Trans, "HSI -> Lab")))
|
||
|
{
|
||
|
printf("Invalid syntax or unknown color space\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ApplyColorTransform(Trans, &D[0], &D[1], &D[2], S[0], S[1], S[2]);
|
||
|
@endcode
|
||
|
* "num" is a typedef defined at the beginning of colorspace.h that may be set
|
||
|
* to either double or float, depending on the application.
|
||
|
*
|
||
|
* Specific transformation routines can also be called directly. The following
|
||
|
* converts an sRGB color to CIELAB and then back to sRGB:
|
||
|
@code
|
||
|
double R = 0.85, G = 0.32, B = 0.5;
|
||
|
double L, a, b;
|
||
|
Rgb2Lab(&L, &a, &b, R, G, B);
|
||
|
Lab2Rgb(&R, &G, &B, L, a, b);
|
||
|
@endcode
|
||
|
* Generally, the calling syntax is
|
||
|
@code
|
||
|
Foo2Bar(&B0, &B1, &B2, F0, F1, F2);
|
||
|
@endcode
|
||
|
* where (F0,F1,F2) are the coordinates of a color in space "Foo" and
|
||
|
* (B0,B1,B2) are the transformed coordinates in space "Bar." For any
|
||
|
* transformation routine, its inverse has the sytax
|
||
|
@code
|
||
|
Bar2Foo(&F0, &F1, &F2, B0, B1, B2);
|
||
|
@endcode
|
||
|
*
|
||
|
* The conversion routines are consistently named with the first letter of a
|
||
|
* color space capitalized with following letters in lower case and omitting
|
||
|
* prime symbols. For example, "Rgb2Ydbdr" converts sRGB to Y'DbDr. For
|
||
|
* any transformation routine Foo2Bar, its inverse is Bar2Foo.
|
||
|
*
|
||
|
* All transformations assume a two degree observer angle and a D65 illuminant.
|
||
|
* The white point can be changed by modifying the WHITEPOINT_X, WHITEPOINT_Y,
|
||
|
* WHITEPOINT_Z definitions at the beginning of colorspace.h.
|
||
|
*
|
||
|
* == List of transformation routines ==
|
||
|
* - Rgb2Yuv(double *Y, double *U, double *V, double R, double G, double B)
|
||
|
* - Rgb2Ycbcr(double *Y, double *Cb, double *Cr, double R, double G, double B)
|
||
|
* - Rgb2Jpegycbcr(double *Y, double *Cb, double *Cr, double R, double G, double B)
|
||
|
* - Rgb2Ypbpr(double *Y, double *Pb, double *Pr, double R, double G, double B)
|
||
|
* - Rgb2Ydbdr(double *Y, double *Db, double *Dr, double R, double G, double B)
|
||
|
* - Rgb2Yiq(double *Y, double *I, double *Q, double R, double G, double B)
|
||
|
* - Rgb2Hsv(double *H, double *S, double *V, double R, double G, double B)
|
||
|
* - Rgb2Hsl(double *H, double *S, double *L, double R, double G, double B)
|
||
|
* - Rgb2Hsi(double *H, double *S, double *I, double R, double G, double B)
|
||
|
* - Rgb2Xyz(double *X, double *Y, double *Z, double R, double G, double B)
|
||
|
* - Xyz2Lab(double *L, double *a, double *b, double X, double Y, double Z)
|
||
|
* - Xyz2Luv(double *L, double *u, double *v, double X, double Y, double Z)
|
||
|
* - Xyz2Lch(double *L, double *C, double *h, double X, double Y, double Z)
|
||
|
* - Xyz2Cat02lms(double *L, double *M, double *S, double X, double Y, double Z)
|
||
|
* - Rgb2Lab(double *L, double *a, double *b, double R, double G, double B)
|
||
|
* - Rgb2Luv(double *L, double *u, double *v, double R, double G, double B)
|
||
|
* - Rgb2Lch(double *L, double *C, double *h, double R, double G, double B)
|
||
|
* - Rgb2Cat02lms(double *L, double *M, double *S, double R, double G, double B)
|
||
|
* (Similarly for the inverse transformations.)
|
||
|
*
|
||
|
* It is possible to transform between two arbitrary color spaces by first
|
||
|
* transforming from the source space to sRGB and then transforming from
|
||
|
* sRGB to the desired destination space. For transformations between CIE
|
||
|
* color spaces, it is convenient to use XYZ as the intermediate space. This
|
||
|
* is the strategy used by GetColorTransform and ApplyColorTransform.
|
||
|
*
|
||
|
* == References ==
|
||
|
* The definitions of these spaces and the many of the transformation formulas
|
||
|
* can be found in
|
||
|
*
|
||
|
* Poynton, "Frequently Asked Questions About Gamma"
|
||
|
* http://www.poynton.com/notes/colour_and_gamma/GammaFAQ.html
|
||
|
*
|
||
|
* Poynton, "Frequently Asked Questions About Color"
|
||
|
* http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html
|
||
|
*
|
||
|
* and Wikipedia articles
|
||
|
* http://en.wikipedia.org/wiki/SRGB
|
||
|
* http://en.wikipedia.org/wiki/YUV
|
||
|
* http://en.wikipedia.org/wiki/YCbCr
|
||
|
* http://en.wikipedia.org/wiki/YPbPr
|
||
|
* http://en.wikipedia.org/wiki/YDbDr
|
||
|
* http://en.wikipedia.org/wiki/YIQ
|
||
|
* http://en.wikipedia.org/wiki/HSL_and_HSV
|
||
|
* http://en.wikipedia.org/wiki/CIE_1931_color_space
|
||
|
* http://en.wikipedia.org/wiki/Lab_color_space
|
||
|
* http://en.wikipedia.org/wiki/CIELUV_color_space
|
||
|
* http://en.wikipedia.org/wiki/LMS_color_space
|
||
|
*
|
||
|
* == License (BSD) ==
|
||
|
* Copyright (c) 2005-2010, Pascal Getreuer
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* - Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* - Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
#include <math.h>
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
#include <ctype.h>
|
||
|
|
||
|
#include "canvas/colorspace.h"
|
||
|
|
||
|
/** @brief Min of A and B */
|
||
|
#define MIN(A,B) (((A) <= (B)) ? (A) : (B))
|
||
|
|
||
|
/** @brief Max of A and B */
|
||
|
#define MAX(A,B) (((A) >= (B)) ? (A) : (B))
|
||
|
|
||
|
/** @brief Min of A, B, and C */
|
||
|
#define MIN3(A,B,C) (((A) <= (B)) ? MIN(A,C) : MIN(B,C))
|
||
|
|
||
|
/** @brief Max of A, B, and C */
|
||
|
#define MAX3(A,B,C) (((A) >= (B)) ? MAX(A,C) : MAX(B,C))
|
||
|
|
||
|
#ifndef M_PI
|
||
|
/** @brief The constant pi */
|
||
|
#define M_PI 3.14159265358979323846264338327950288
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* @brief sRGB gamma correction, transforms R to R'
|
||
|
* http://en.wikipedia.org/wiki/SRGB
|
||
|
*/
|
||
|
#define GAMMACORRECTION(t) \
|
||
|
(((t) <= 0.0031306684425005883) ? \
|
||
|
(12.92*(t)) : (1.055*pow((t), 0.416666666666666667) - 0.055))
|
||
|
|
||
|
/**
|
||
|
* @brief Inverse sRGB gamma correction, transforms R' to R
|
||
|
*/
|
||
|
#define INVGAMMACORRECTION(t) \
|
||
|
(((t) <= 0.0404482362771076) ? \
|
||
|
((t)/12.92) : pow(((t) + 0.055)/1.055, 2.4))
|
||
|
|
||
|
/**
|
||
|
* @brief CIE L*a*b* f function (used to convert XYZ to L*a*b*)
|
||
|
* http://en.wikipedia.org/wiki/Lab_color_space
|
||
|
*/
|
||
|
#define LABF(t) \
|
||
|
((t >= 8.85645167903563082e-3) ? \
|
||
|
pow(t,0.333333333333333) : (841.0/108.0)*(t) + (4.0/29.0))
|
||
|
|
||
|
/**
|
||
|
* @brief CIE L*a*b* inverse f function
|
||
|
* http://en.wikipedia.org/wiki/Lab_color_space
|
||
|
*/
|
||
|
#define LABINVF(t) \
|
||
|
((t >= 0.206896551724137931) ? \
|
||
|
((t)*(t)*(t)) : (108.0/841.0)*((t) - (4.0/29.0)))
|
||
|
|
||
|
/** @brief u'v' coordinates of the white point for CIE Lu*v* */
|
||
|
#define WHITEPOINT_U ((4*WHITEPOINT_X) \
|
||
|
/(WHITEPOINT_X + 15*WHITEPOINT_Y + 3*WHITEPOINT_Z))
|
||
|
#define WHITEPOINT_V ((9*WHITEPOINT_Y) \
|
||
|
/(WHITEPOINT_X + 15*WHITEPOINT_Y + 3*WHITEPOINT_Z))
|
||
|
|
||
|
/** @brief Enumeration of the supported color spaces */
|
||
|
#define UNKNOWN_SPACE 0
|
||
|
#define RGB_SPACE 1
|
||
|
#define YUV_SPACE 2
|
||
|
#define YCBCR_SPACE 3
|
||
|
#define JPEGYCBCR_SPACE 4
|
||
|
#define YPBPR_SPACE 5
|
||
|
#define YDBDR_SPACE 6
|
||
|
#define YIQ_SPACE 7
|
||
|
#define HSV_SPACE 8
|
||
|
#define HSL_SPACE 9
|
||
|
#define HSI_SPACE 10
|
||
|
#define XYZ_SPACE 11
|
||
|
#define LAB_SPACE 12
|
||
|
#define LUV_SPACE 13
|
||
|
#define LCH_SPACE 14
|
||
|
#define CAT02LMS_SPACE 15
|
||
|
|
||
|
#define NUM_TRANSFORM_PAIRS 18
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
* == Linear color transformations ==
|
||
|
*
|
||
|
* The following routines implement transformations between sRGB and
|
||
|
* the linearly-related color spaces Y'UV, Y'PbPr, Y'DbDr, and Y'IQ.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Convert sRGB to NTSC/PAL Y'UV Luma + Chroma
|
||
|
*
|
||
|
* @param Y, U, V pointers to hold the result
|
||
|
* @param R, G, B the input sRGB values
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/YUV
|
||
|
*/
|
||
|
void Rgb2Yuv(double *Y, double *U, double *V, double R, double G, double B)
|
||
|
{
|
||
|
*Y = (double)( 0.299*R + 0.587*G + 0.114*B);
|
||
|
*U = (double)(-0.147*R - 0.289*G + 0.436*B);
|
||
|
*V = (double)( 0.615*R - 0.515*G - 0.100*B);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Convert NTSC/PAL Y'UV to sRGB
|
||
|
*
|
||
|
* @param R, G, B pointers to hold the result
|
||
|
* @param Y, U, V the input YUV values
|
||
|
*/
|
||
|
void Yuv2Rgb(double *R, double *G, double *B, double Y, double U, double V)
|
||
|
{
|
||
|
*R = (double)(Y - 3.945707070708279e-05*U + 1.1398279671717170825*V);
|
||
|
*G = (double)(Y - 0.3946101641414141437*U - 0.5805003156565656797*V);
|
||
|
*B = (double)(Y + 2.0319996843434342537*U - 4.813762626262513e-04*V);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief sRGB to Y'CbCr Luma + Chroma */
|
||
|
void Rgb2Ycbcr(double *Y, double *Cb, double *Cr, double R, double G, double B)
|
||
|
{
|
||
|
*Y = (double)( 65.481*R + 128.553*G + 24.966*B + 16);
|
||
|
*Cb = (double)(-37.797*R - 74.203*G + 112.0 *B + 128);
|
||
|
*Cr = (double)(112.0 *R - 93.786*G - 18.214*B + 128);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief Y'CbCr to sRGB */
|
||
|
void Ycbcr2Rgb(double *R, double *G, double *B, double Y, double Cr, double Cb)
|
||
|
{
|
||
|
Y -= 16;
|
||
|
Cb -= 128;
|
||
|
Cr -= 128;
|
||
|
*R = (double)(0.00456621004566210107*Y + 1.1808799897946415e-09*Cr + 0.00625892896994393634*Cb);
|
||
|
*G = (double)(0.00456621004566210107*Y - 0.00153632368604490212*Cr - 0.00318811094965570701*Cb);
|
||
|
*B = (double)(0.00456621004566210107*Y + 0.00791071623355474145*Cr + 1.1977497040190077e-08*Cb);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief sRGB to JPEG-Y'CbCr Luma + Chroma */
|
||
|
void Rgb2Jpegycbcr(double *Y, double *Cb, double *Cr, double R, double G, double B)
|
||
|
{
|
||
|
Rgb2Ypbpr(Y, Cb, Cr, R, G, B);
|
||
|
*Cb += (double)0.5;
|
||
|
*Cr += (double)0.5;
|
||
|
}
|
||
|
|
||
|
/** @brief JPEG-Y'CbCr to sRGB */
|
||
|
void Jpegycbcr2Rgb(double *R, double *G, double *B, double Y, double Cb, double Cr)
|
||
|
{
|
||
|
Cb -= (double)0.5;
|
||
|
Cr -= (double)0.5;
|
||
|
Ypbpr2Rgb(R, G, B, Y, Cb, Cr);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief sRGB to Y'PbPr Luma (ITU-R BT.601) + Chroma */
|
||
|
void Rgb2Ypbpr(double *Y, double *Pb, double *Pr, double R, double G, double B)
|
||
|
{
|
||
|
*Y = (double)( 0.299 *R + 0.587 *G + 0.114 *B);
|
||
|
*Pb = (double)(-0.1687367*R - 0.331264*G + 0.5 *B);
|
||
|
*Pr = (double)( 0.5 *R - 0.418688*G - 0.081312*B);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief Y'PbPr to sRGB */
|
||
|
void Ypbpr2Rgb(double *R, double *G, double *B, double Y, double Pb, double Pr)
|
||
|
{
|
||
|
*R = (double)(0.99999999999914679361*Y - 1.2188941887145875e-06*Pb + 1.4019995886561440468*Pr);
|
||
|
*G = (double)(0.99999975910502514331*Y - 0.34413567816504303521*Pb - 0.71413649331646789076*Pr);
|
||
|
*B = (double)(1.00000124040004623180*Y + 1.77200006607230409200*Pb + 2.1453384174593273e-06*Pr);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief sRGB to SECAM Y'DbDr Luma + Chroma */
|
||
|
void Rgb2Ydbdr(double *Y, double *Db, double *Dr, double R, double G, double B)
|
||
|
{
|
||
|
*Y = (double)( 0.299*R + 0.587*G + 0.114*B);
|
||
|
*Db = (double)(-0.450*R - 0.883*G + 1.333*B);
|
||
|
*Dr = (double)(-1.333*R + 1.116*G + 0.217*B);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief SECAM Y'DbDr to sRGB */
|
||
|
void Ydbdr2Rgb(double *R, double *G, double *B, double Y, double Db, double Dr)
|
||
|
{
|
||
|
*R = (double)(Y + 9.2303716147657e-05*Db - 0.52591263066186533*Dr);
|
||
|
*G = (double)(Y - 0.12913289889050927*Db + 0.26789932820759876*Dr);
|
||
|
*B = (double)(Y + 0.66467905997895482*Db - 7.9202543533108e-05*Dr);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief sRGB to NTSC YIQ */
|
||
|
void Rgb2Yiq(double *Y, double *I, double *Q, double R, double G, double B)
|
||
|
{
|
||
|
*Y = (double)(0.299 *R + 0.587 *G + 0.114 *B);
|
||
|
*I = (double)(0.595716*R - 0.274453*G - 0.321263*B);
|
||
|
*Q = (double)(0.211456*R - 0.522591*G + 0.311135*B);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief Convert NTSC YIQ to sRGB */
|
||
|
void Yiq2Rgb(double *R, double *G, double *B, double Y, double I, double Q)
|
||
|
{
|
||
|
*R = (double)(Y + 0.9562957197589482261*I + 0.6210244164652610754*Q);
|
||
|
*G = (double)(Y - 0.2721220993185104464*I - 0.6473805968256950427*Q);
|
||
|
*B = (double)(Y - 1.1069890167364901945*I + 1.7046149983646481374*Q);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
* == Hue Saturation Value/Lightness/Intensity color transformations ==
|
||
|
*
|
||
|
* The following routines implement transformations between sRGB and
|
||
|
* color spaces HSV, HSL, and HSI.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Convert an sRGB color to Hue-Saturation-Value (HSV)
|
||
|
*
|
||
|
* @param H, S, V pointers to hold the result
|
||
|
* @param R, G, B the input sRGB values scaled in [0,1]
|
||
|
*
|
||
|
* This routine transforms from sRGB to the hexcone HSV color space. The
|
||
|
* sRGB values are assumed to be between 0 and 1. The output values are
|
||
|
* H = hexagonal hue angle (0 <= H < 360),
|
||
|
* S = C/V (0 <= S <= 1),
|
||
|
* V = max(R',G',B') (0 <= V <= 1),
|
||
|
* where C = max(R',G',B') - min(R',G',B'). The inverse color transformation
|
||
|
* is given by Hsv2Rgb.
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/HSL_and_HSV
|
||
|
*/
|
||
|
void Rgb2Hsv(double *H, double *S, double *V, double R, double G, double B)
|
||
|
{
|
||
|
double Max = MAX3(R, G, B);
|
||
|
double Min = MIN3(R, G, B);
|
||
|
double C = Max - Min;
|
||
|
|
||
|
|
||
|
*V = Max;
|
||
|
|
||
|
if(C > 0)
|
||
|
{
|
||
|
if(Max == R)
|
||
|
{
|
||
|
*H = (G - B) / C;
|
||
|
|
||
|
if(G < B)
|
||
|
*H += 6;
|
||
|
}
|
||
|
else if(Max == G)
|
||
|
*H = 2 + (B - R) / C;
|
||
|
else
|
||
|
*H = 4 + (R - G) / C;
|
||
|
|
||
|
*H *= 60;
|
||
|
*S = C / Max;
|
||
|
}
|
||
|
else
|
||
|
*H = *S = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Convert a Hue-Saturation-Value (HSV) color to sRGB
|
||
|
*
|
||
|
* @param R, G, B pointers to hold the result
|
||
|
* @param H, S, V the input HSV values
|
||
|
*
|
||
|
* The input values are assumed to be scaled as
|
||
|
* 0 <= H < 360,
|
||
|
* 0 <= S <= 1,
|
||
|
* 0 <= V <= 1.
|
||
|
* The output sRGB values are scaled between 0 and 1. This is the inverse
|
||
|
* transformation of Rgb2Hsv.
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/HSL_and_HSV
|
||
|
*/
|
||
|
void Hsv2Rgb(double *R, double *G, double *B, double H, double S, double V)
|
||
|
{
|
||
|
double C = S * V;
|
||
|
double Min = V - C;
|
||
|
double X;
|
||
|
|
||
|
|
||
|
H -= 360*floor(H/360);
|
||
|
H /= 60;
|
||
|
X = C*(1 - fabs(H - 2*floor(H/2) - 1));
|
||
|
|
||
|
switch((int)H)
|
||
|
{
|
||
|
case 0:
|
||
|
*R = Min + C;
|
||
|
*G = Min + X;
|
||
|
*B = Min;
|
||
|
break;
|
||
|
case 1:
|
||
|
*R = Min + X;
|
||
|
*G = Min + C;
|
||
|
*B = Min;
|
||
|
break;
|
||
|
case 2:
|
||
|
*R = Min;
|
||
|
*G = Min + C;
|
||
|
*B = Min + X;
|
||
|
break;
|
||
|
case 3:
|
||
|
*R = Min;
|
||
|
*G = Min + X;
|
||
|
*B = Min + C;
|
||
|
break;
|
||
|
case 4:
|
||
|
*R = Min + X;
|
||
|
*G = Min;
|
||
|
*B = Min + C;
|
||
|
break;
|
||
|
case 5:
|
||
|
*R = Min + C;
|
||
|
*G = Min;
|
||
|
*B = Min + X;
|
||
|
break;
|
||
|
default:
|
||
|
*R = *G = *B = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Convert an sRGB color to Hue-Saturation-Lightness (HSL)
|
||
|
*
|
||
|
* @param H, S, L pointers to hold the result
|
||
|
* @param R, G, B the input sRGB values scaled in [0,1]
|
||
|
*
|
||
|
* This routine transforms from sRGB to the double hexcone HSL color space
|
||
|
* The sRGB values are assumed to be between 0 and 1. The outputs are
|
||
|
* H = hexagonal hue angle (0 <= H < 360),
|
||
|
* S = { C/(2L) if L <= 1/2 (0 <= S <= 1),
|
||
|
* { C/(2 - 2L) if L > 1/2
|
||
|
* L = (max(R',G',B') + min(R',G',B'))/2 (0 <= L <= 1),
|
||
|
* where C = max(R',G',B') - min(R',G',B'). The inverse color transformation
|
||
|
* is given by Hsl2Rgb.
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/HSL_and_HSV
|
||
|
*/
|
||
|
void Rgb2Hsl(double *H, double *S, double *L, double R, double G, double B)
|
||
|
{
|
||
|
double Max = MAX3(R, G, B);
|
||
|
double Min = MIN3(R, G, B);
|
||
|
double C = Max - Min;
|
||
|
|
||
|
|
||
|
*L = (Max + Min)/2;
|
||
|
|
||
|
if(C > 0)
|
||
|
{
|
||
|
if(Max == R)
|
||
|
{
|
||
|
*H = (G - B) / C;
|
||
|
|
||
|
if(G < B)
|
||
|
*H += 6;
|
||
|
}
|
||
|
else if(Max == G)
|
||
|
*H = 2 + (B - R) / C;
|
||
|
else
|
||
|
*H = 4 + (R - G) / C;
|
||
|
|
||
|
*H *= 60;
|
||
|
*S = (*L <= 0.5) ? (C/(2*(*L))) : (C/(2 - 2*(*L)));
|
||
|
}
|
||
|
else
|
||
|
*H = *S = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Convert a Hue-Saturation-Lightness (HSL) color to sRGB
|
||
|
*
|
||
|
* @param R, G, B pointers to hold the result
|
||
|
* @param H, S, L the input HSL values
|
||
|
*
|
||
|
* The input values are assumed to be scaled as
|
||
|
* 0 <= H < 360,
|
||
|
* 0 <= S <= 1,
|
||
|
* 0 <= L <= 1.
|
||
|
* The output sRGB values are scaled between 0 and 1. This is the inverse
|
||
|
* transformation of Rgb2Hsl.
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/HSL_and_HSV
|
||
|
*/
|
||
|
void Hsl2Rgb(double *R, double *G, double *B, double H, double S, double L)
|
||
|
{
|
||
|
double C = (L <= 0.5) ? (2*L*S) : ((2 - 2*L)*S);
|
||
|
double Min = L - 0.5*C;
|
||
|
double X;
|
||
|
|
||
|
|
||
|
H -= 360*floor(H/360);
|
||
|
H /= 60;
|
||
|
X = C*(1 - fabs(H - 2*floor(H/2) - 1));
|
||
|
|
||
|
switch((int)H)
|
||
|
{
|
||
|
case 0:
|
||
|
*R = Min + C;
|
||
|
*G = Min + X;
|
||
|
*B = Min;
|
||
|
break;
|
||
|
case 1:
|
||
|
*R = Min + X;
|
||
|
*G = Min + C;
|
||
|
*B = Min;
|
||
|
break;
|
||
|
case 2:
|
||
|
*R = Min;
|
||
|
*G = Min + C;
|
||
|
*B = Min + X;
|
||
|
break;
|
||
|
case 3:
|
||
|
*R = Min;
|
||
|
*G = Min + X;
|
||
|
*B = Min + C;
|
||
|
break;
|
||
|
case 4:
|
||
|
*R = Min + X;
|
||
|
*G = Min;
|
||
|
*B = Min + C;
|
||
|
break;
|
||
|
case 5:
|
||
|
*R = Min + C;
|
||
|
*G = Min;
|
||
|
*B = Min + X;
|
||
|
break;
|
||
|
default:
|
||
|
*R = *G = *B = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Convert an sRGB color to Hue-Saturation-Intensity (HSI)
|
||
|
*
|
||
|
* @param H, S, I pointers to hold the result
|
||
|
* @param R, G, B the input sRGB values scaled in [0,1]
|
||
|
*
|
||
|
* This routine transforms from sRGB to the cylindrical HSI color space. The
|
||
|
* sRGB values are assumed to be between 0 and 1. The output values are
|
||
|
* H = polar hue angle (0 <= H < 360),
|
||
|
* S = 1 - min(R',G',B')/I (0 <= S <= 1),
|
||
|
* I = (R'+G'+B')/3 (0 <= I <= 1).
|
||
|
* The inverse color transformation is given by Hsi2Rgb.
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/HSL_and_HSV
|
||
|
*/
|
||
|
void Rgb2Hsi(double *H, double *S, double *I, double R, double G, double B)
|
||
|
{
|
||
|
double alpha = 0.5*(2*R - G - B);
|
||
|
double beta = 0.866025403784439*(G - B);
|
||
|
|
||
|
|
||
|
*I = (R + G + B)/3;
|
||
|
|
||
|
if(*I > 0)
|
||
|
{
|
||
|
*S = 1 - MIN3(R,G,B) / *I;
|
||
|
*H = atan2(beta, alpha)*(180/M_PI);
|
||
|
|
||
|
if(*H < 0)
|
||
|
*H += 360;
|
||
|
}
|
||
|
else
|
||
|
*H = *S = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Convert a Hue-Saturation-Intesity (HSI) color to sRGB
|
||
|
*
|
||
|
* @param R, G, B pointers to hold the result
|
||
|
* @param H, S, I the input HSI values
|
||
|
*
|
||
|
* The input values are assumed to be scaled as
|
||
|
* 0 <= H < 360,
|
||
|
* 0 <= S <= 1,
|
||
|
* 0 <= I <= 1.
|
||
|
* The output sRGB values are scaled between 0 and 1. This is the inverse
|
||
|
* transformation of Rgb2Hsi.
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/HSL_and_HSV
|
||
|
*/
|
||
|
void Hsi2Rgb(double *R, double *G, double *B, double H, double S, double I)
|
||
|
{
|
||
|
H -= 360*floor(H/360);
|
||
|
|
||
|
if(H < 120)
|
||
|
{
|
||
|
*B = I*(1 - S);
|
||
|
*R = I*(1 + S*cos(H*(M_PI/180))/cos((60 - H)*(M_PI/180)));
|
||
|
*G = 3*I - *R - *B;
|
||
|
}
|
||
|
else if(H < 240)
|
||
|
{
|
||
|
H -= 120;
|
||
|
*R = I*(1 - S);
|
||
|
*G = I*(1 + S*cos(H*(M_PI/180))/cos((60 - H)*(M_PI/180)));
|
||
|
*B = 3*I - *R - *G;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
H -= 240;
|
||
|
*G = I*(1 - S);
|
||
|
*B = I*(1 + S*cos(H*(M_PI/180))/cos((60 - H)*(M_PI/180)));
|
||
|
*R = 3*I - *G - *B;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* == CIE color transformations ==
|
||
|
*
|
||
|
* The following routines implement transformations between sRGB and
|
||
|
* the CIE color spaces XYZ, L*a*b, L*u*v*, and L*C*H*. These
|
||
|
* transforms assume a 2 degree observer angle and a D65 illuminant.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Transform sRGB to CIE XYZ with the D65 white point
|
||
|
*
|
||
|
* @param X, Y, Z pointers to hold the result
|
||
|
* @param R, G, B the input sRGB values
|
||
|
*
|
||
|
* Poynton, "Frequently Asked Questions About Color," page 10
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/SRGB
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/CIE_1931_color_space
|
||
|
*/
|
||
|
void Rgb2Xyz(double *X, double *Y, double *Z, double R, double G, double B)
|
||
|
{
|
||
|
R = INVGAMMACORRECTION(R);
|
||
|
G = INVGAMMACORRECTION(G);
|
||
|
B = INVGAMMACORRECTION(B);
|
||
|
*X = (double)(0.4123955889674142161*R + 0.3575834307637148171*G + 0.1804926473817015735*B);
|
||
|
*Y = (double)(0.2125862307855955516*R + 0.7151703037034108499*G + 0.07220049864333622685*B);
|
||
|
*Z = (double)(0.01929721549174694484*R + 0.1191838645808485318*G + 0.9504971251315797660*B);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Transform CIE XYZ to sRGB with the D65 white point
|
||
|
*
|
||
|
* @param R, G, B pointers to hold the result
|
||
|
* @param X, Y, Z the input XYZ values
|
||
|
*
|
||
|
* Official sRGB specification (IEC 61966-2-1:1999)
|
||
|
* Poynton, "Frequently Asked Questions About Color," page 10
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/SRGB
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/CIE_1931_color_space
|
||
|
*/
|
||
|
void Xyz2Rgb(double *R, double *G, double *B, double X, double Y, double Z)
|
||
|
{
|
||
|
double R1, B1, G1, Min;
|
||
|
|
||
|
|
||
|
R1 = (double)( 3.2406*X - 1.5372*Y - 0.4986*Z);
|
||
|
G1 = (double)(-0.9689*X + 1.8758*Y + 0.0415*Z);
|
||
|
B1 = (double)( 0.0557*X - 0.2040*Y + 1.0570*Z);
|
||
|
|
||
|
Min = MIN3(R1, G1, B1);
|
||
|
|
||
|
/* Force nonnegative values so that gamma correction is well-defined. */
|
||
|
if(Min < 0)
|
||
|
{
|
||
|
R1 -= Min;
|
||
|
G1 -= Min;
|
||
|
B1 -= Min;
|
||
|
}
|
||
|
|
||
|
/* Transform from RGB to R'G'B' */
|
||
|
*R = GAMMACORRECTION(R1);
|
||
|
*G = GAMMACORRECTION(G1);
|
||
|
*B = GAMMACORRECTION(B1);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Convert CIE XYZ to CIE L*a*b* (CIELAB) with the D65 white point
|
||
|
*
|
||
|
* @param L, a, b pointers to hold the result
|
||
|
* @param X, Y, Z the input XYZ values
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/Lab_color_space
|
||
|
*/
|
||
|
void Xyz2Lab(double *L, double *a, double *b, double X, double Y, double Z)
|
||
|
{
|
||
|
X /= WHITEPOINT_X;
|
||
|
Y /= WHITEPOINT_Y;
|
||
|
Z /= WHITEPOINT_Z;
|
||
|
X = LABF(X);
|
||
|
Y = LABF(Y);
|
||
|
Z = LABF(Z);
|
||
|
*L = 116*Y - 16;
|
||
|
*a = 500*(X - Y);
|
||
|
*b = 200*(Y - Z);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Convert CIE L*a*b* (CIELAB) to CIE XYZ with the D65 white point
|
||
|
*
|
||
|
* @param X, Y, Z pointers to hold the result
|
||
|
* @param L, a, b the input L*a*b* values
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/Lab_color_space
|
||
|
*/
|
||
|
void Lab2Xyz(double *X, double *Y, double *Z, double L, double a, double b)
|
||
|
{
|
||
|
L = (L + 16)/116;
|
||
|
a = L + a/500;
|
||
|
b = L - b/200;
|
||
|
*X = WHITEPOINT_X*LABINVF(a);
|
||
|
*Y = WHITEPOINT_Y*LABINVF(L);
|
||
|
*Z = WHITEPOINT_Z*LABINVF(b);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Convert CIE XYZ to CIE L*u*v* (CIELUV) with the D65 white point
|
||
|
*
|
||
|
* @param L, u, v pointers to hold the result
|
||
|
* @param X, Y, Z the input XYZ values
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/CIELUV_color_space
|
||
|
*/
|
||
|
void Xyz2Luv(double *L, double *u, double *v, double X, double Y, double Z)
|
||
|
{
|
||
|
double u1, v1, Denom;
|
||
|
|
||
|
|
||
|
if((Denom = X + 15*Y + 3*Z) > 0)
|
||
|
{
|
||
|
u1 = (4*X) / Denom;
|
||
|
v1 = (9*Y) / Denom;
|
||
|
}
|
||
|
else
|
||
|
u1 = v1 = 0;
|
||
|
|
||
|
Y /= WHITEPOINT_Y;
|
||
|
Y = LABF(Y);
|
||
|
*L = 116*Y - 16;
|
||
|
*u = 13*(*L)*(u1 - WHITEPOINT_U);
|
||
|
*v = 13*(*L)*(v1 - WHITEPOINT_V);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Convert CIE L*u*v* (CIELUV) to CIE XYZ with the D65 white point
|
||
|
*
|
||
|
* @param X, Y, Z pointers to hold the result
|
||
|
* @param L, u, v the input L*u*v* values
|
||
|
*
|
||
|
* Wikipedia: http://en.wikipedia.org/wiki/CIELUV_color_space
|
||
|
*/
|
||
|
void Luv2Xyz(double *X, double *Y, double *Z, double L, double u, double v)
|
||
|
{
|
||
|
*Y = (L + 16)/116;
|
||
|
*Y = WHITEPOINT_Y*LABINVF(*Y);
|
||
|
|
||
|
if(L != 0)
|
||
|
{
|
||
|
u /= L;
|
||
|
v /= L;
|
||
|
}
|
||
|
|
||
|
u = u/13 + WHITEPOINT_U;
|
||
|
v = v/13 + WHITEPOINT_V;
|
||
|
*X = (*Y) * ((9*u)/(4*v));
|
||
|
*Z = (*Y) * ((3 - 0.75*u)/v - 5);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Convert CIE XYZ to CIE L*C*H* with the D65 white point
|
||
|
*
|
||
|
* @param L, C, H pointers to hold the result
|
||
|
* @param X, Y, Z the input XYZ values
|
||
|
*
|
||
|
* CIE L*C*H* is related to CIE L*a*b* by
|
||
|
* a* = C* cos(H* pi/180),
|
||
|
* b* = C* sin(H* pi/180).
|
||
|
*/
|
||
|
void Xyz2Lch(double *L, double *C, double *H, double X, double Y, double Z)
|
||
|
{
|
||
|
double a, b;
|
||
|
|
||
|
|
||
|
Xyz2Lab(L, &a, &b, X, Y, Z);
|
||
|
*C = sqrt(a*a + b*b);
|
||
|
*H = atan2(b, a)*180.0/M_PI;
|
||
|
|
||
|
if(*H < 0)
|
||
|
*H += 360;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Convert CIE L*C*H* to CIE XYZ with the D65 white point
|
||
|
*
|
||
|
* @param X, Y, Z pointers to hold the result
|
||
|
* @param L, C, H the input L*C*H* values
|
||
|
*/
|
||
|
void Lch2Xyz(double *X, double *Y, double *Z, double L, double C, double H)
|
||
|
{
|
||
|
double a = C * cos(H*(M_PI/180.0));
|
||
|
double b = C * sin(H*(M_PI/180.0));
|
||
|
|
||
|
|
||
|
Lab2Xyz(X, Y, Z, L, a, b);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief XYZ to CAT02 LMS */
|
||
|
void Xyz2Cat02lms(double *L, double *M, double *S, double X, double Y, double Z)
|
||
|
{
|
||
|
*L = (double)( 0.7328*X + 0.4296*Y - 0.1624*Z);
|
||
|
*M = (double)(-0.7036*X + 1.6975*Y + 0.0061*Z);
|
||
|
*S = (double)( 0.0030*X + 0.0136*Y + 0.9834*Z);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** @brief CAT02 LMS to XYZ */
|
||
|
void Cat02lms2Xyz(double *X, double *Y, double *Z, double L, double M, double S)
|
||
|
{
|
||
|
*X = (double)( 1.096123820835514*L - 0.278869000218287*M + 0.182745179382773*S);
|
||
|
*Y = (double)( 0.454369041975359*L + 0.473533154307412*M + 0.072097803717229*S);
|
||
|
*Z = (double)(-0.009627608738429*L - 0.005698031216113*M + 1.015325639954543*S);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* == Glue functions for multi-stage transforms ==
|
||
|
*/
|
||
|
|
||
|
void Rgb2Lab(double *L, double *a, double *b, double R, double G, double B)
|
||
|
{
|
||
|
double X, Y, Z;
|
||
|
Rgb2Xyz(&X, &Y, &Z, R, G, B);
|
||
|
Xyz2Lab(L, a, b, X, Y, Z);
|
||
|
}
|
||
|
|
||
|
|
||
|
void Lab2Rgb(double *R, double *G, double *B, double L, double a, double b)
|
||
|
{
|
||
|
double X, Y, Z;
|
||
|
Lab2Xyz(&X, &Y, &Z, L, a, b);
|
||
|
Xyz2Rgb(R, G, B, X, Y, Z);
|
||
|
}
|
||
|
|
||
|
|
||
|
void Rgb2Luv(double *L, double *u, double *v, double R, double G, double B)
|
||
|
{
|
||
|
double X, Y, Z;
|
||
|
Rgb2Xyz(&X, &Y, &Z, R, G, B);
|
||
|
Xyz2Luv(L, u, v, X, Y, Z);
|
||
|
}
|
||
|
|
||
|
|
||
|
void Luv2Rgb(double *R, double *G, double *B, double L, double u, double v)
|
||
|
{
|
||
|
double X, Y, Z;
|
||
|
Luv2Xyz(&X, &Y, &Z, L, u, v);
|
||
|
Xyz2Rgb(R, G, B, X, Y, Z);
|
||
|
}
|
||
|
|
||
|
void Rgb2Lch(double *L, double *C, double *H, double R, double G, double B)
|
||
|
{
|
||
|
double X, Y, Z;
|
||
|
Rgb2Xyz(&X, &Y, &Z, R, G, B);
|
||
|
Xyz2Lch(L, C, H, X, Y, Z);
|
||
|
}
|
||
|
|
||
|
|
||
|
void Lch2Rgb(double *R, double *G, double *B, double L, double C, double H)
|
||
|
{
|
||
|
double X, Y, Z;
|
||
|
Lch2Xyz(&X, &Y, &Z, L, C, H);
|
||
|
Xyz2Rgb(R, G, B, X, Y, Z);
|
||
|
}
|
||
|
|
||
|
|
||
|
void Rgb2Cat02lms(double *L, double *M, double *S, double R, double G, double B)
|
||
|
{
|
||
|
double X, Y, Z;
|
||
|
Rgb2Xyz(&X, &Y, &Z, R, G, B);
|
||
|
Xyz2Cat02lms(L, M, S, X, Y, Z);
|
||
|
}
|
||
|
|
||
|
|
||
|
void Cat02lms2Rgb(double *R, double *G, double *B, double L, double M, double S)
|
||
|
{
|
||
|
double X, Y, Z;
|
||
|
Cat02lms2Xyz(&X, &Y, &Z, L, M, S);
|
||
|
Xyz2Rgb(R, G, B, X, Y, Z);
|
||
|
}
|