13
0
livetrax/libs/backends/portaudio/portaudio_io.cc

997 lines
25 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2015 Robin Gareus <robin@gareus.org>
* Copyright (C) 2015 Tim Mayberry <mojofunk@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <glibmm.h>
#include "portaudio_io.h"
#ifdef WITH_ASIO
#include "pa_asio.h"
#endif
#include "pbd/compose.h"
#include "ardour/audio_backend.h"
#include "debug.h"
#define INTERLEAVED_INPUT
#define INTERLEAVED_OUTPUT
using namespace PBD;
using namespace ARDOUR;
PortAudioIO::PortAudioIO ()
: _capture_channels (0)
, _playback_channels (0)
, _stream (0)
, _input_buffer (0)
, _output_buffer (0)
, _cur_sample_rate (0)
, _cur_input_latency (0)
, _cur_output_latency (0)
, _host_api_index(-1)
{
}
PortAudioIO::~PortAudioIO ()
{
close_stream();
pa_deinitialize ();
clear_device_lists ();
free (_input_buffer); _input_buffer = NULL;
free (_output_buffer); _output_buffer = NULL;
}
std::string
PortAudioIO::control_app_name (int device_id) const
{
#ifdef WITH_ASIO
if (get_current_host_api_type() == paASIO) {
// is this used for anything, or just acts as a boolean?
return "PortaudioASIO";
}
#endif
return std::string();
}
void
PortAudioIO::launch_control_app (int device_id)
{
#ifdef WITH_ASIO
PaError err = PaAsio_ShowControlPanel (device_id, NULL);
if (err != paNoError) {
// error << ?
DEBUG_AUDIO (string_compose (
"Unable to show control panel for device with index %1\n", device_id));
}
#endif
}
void
PortAudioIO::get_default_sample_rates (std::vector<float>& rates)
{
rates.push_back(8000.0);
rates.push_back(22050.0);
rates.push_back(24000.0);
rates.push_back(44100.0);
rates.push_back(48000.0);
rates.push_back(88200.0);
rates.push_back(96000.0);
rates.push_back(176400.0);
rates.push_back(192000.0);
}
int
PortAudioIO::available_sample_rates(int device_id, std::vector<float>& sampleRates)
{
if (!pa_initialize()) return -1;
#ifdef WITH_ASIO
if (get_current_host_api_type() == paASIO) {
get_default_sample_rates(sampleRates);
return 0;
}
#endif
// TODO use separate int device_input, int device_output ?!
if (device_id == DeviceDefault) {
device_id = get_default_input_device ();
}
DEBUG_AUDIO (
string_compose ("Querying Samplerates for device %1\n", device_id));
sampleRates.clear();
const PaDeviceInfo* nfo = Pa_GetDeviceInfo(device_id);
if (nfo) {
PaStreamParameters inputParam;
PaStreamParameters outputParam;
inputParam.device = device_id;
inputParam.channelCount = nfo->maxInputChannels;
inputParam.sampleFormat = paFloat32;
inputParam.suggestedLatency = 0;
inputParam.hostApiSpecificStreamInfo = 0;
outputParam.device = device_id;
outputParam.channelCount = nfo->maxOutputChannels;
outputParam.sampleFormat = paFloat32;
outputParam.suggestedLatency = 0;
outputParam.hostApiSpecificStreamInfo = 0;
std::vector<float> rates;
get_default_sample_rates(rates);
for (std::vector<float>::const_iterator i = rates.begin(); i != rates.end();
++i) {
if (paFormatIsSupported ==
Pa_IsFormatSupported(nfo->maxInputChannels > 0 ? &inputParam : NULL,
nfo->maxOutputChannels > 0 ? &outputParam : NULL,
*i)) {
sampleRates.push_back(*i);
}
}
}
if (sampleRates.empty()) {
// fill in something..
get_default_sample_rates(sampleRates);
}
return 0;
}
#ifdef WITH_ASIO
bool
PortAudioIO::get_asio_buffer_properties (int device_id,
long& min_size_samples,
long& max_size_samples,
long& preferred_size_samples,
long& granularity)
{
// we shouldn't really need all these checks but it shouldn't hurt
const PaDeviceInfo* device_info = Pa_GetDeviceInfo(device_id);
if (!device_info) {
DEBUG_AUDIO (string_compose (
"Unable to get device info from device index %1\n", device_id));
return false;
}
if (get_current_host_api_type() != paASIO) {
DEBUG_AUDIO (string_compose (
"ERROR device_id %1 is not an ASIO device\n", device_id));
return false;
}
PaError err = PaAsio_GetAvailableBufferSizes (device_id,
&min_size_samples,
&max_size_samples,
&preferred_size_samples,
&granularity);
if (err != paNoError) {
DEBUG_AUDIO (string_compose (
"Unable to determine available buffer sizes for device %1\n", device_id));
return false;
}
return true;
}
static
bool
is_power_of_two (uint32_t v)
{
return ((v != 0) && !(v & (v - 1)));
}
bool
PortAudioIO::get_asio_buffer_sizes(int device_id,
std::vector<uint32_t>& buffer_sizes,
bool preferred_only)
{
long min_size_samples = 0;
long max_size_samples = 0;
long preferred_size_samples = 0;
long granularity = 0;
if (!get_asio_buffer_properties (device_id,
min_size_samples,
max_size_samples,
preferred_size_samples,
granularity)) {
DEBUG_AUDIO (string_compose (
"Unable to get device buffer properties from device index %1\n", device_id));
return false;
}
DEBUG_AUDIO (string_compose ("ASIO buffer properties for device %1, "
"min_size_samples: %2, max_size_samples: %3, "
"preferred_size_samples: %4, granularity: %5\n",
device_id,
min_size_samples,
max_size_samples,
preferred_size_samples,
granularity));
bool driver_returns_one_size = (min_size_samples == max_size_samples) &&
(min_size_samples == preferred_size_samples);
if (preferred_only || driver_returns_one_size) {
buffer_sizes.push_back(preferred_size_samples);
return true;
}
long buffer_size = min_size_samples;
// If min size and granularity are power of two then just use values that
// are power of 2 even if the granularity allows for more values
bool use_power_of_two =
is_power_of_two(min_size_samples) && is_power_of_two(granularity);
if (granularity <= 0 || use_power_of_two) {
// driver uses buffer sizes that are power of 2
while (buffer_size <= max_size_samples) {
buffer_sizes.push_back(buffer_size);
buffer_size *= 2;
}
} else {
if (min_size_samples == max_size_samples) {
// The devices I have tested either return the same values for
// min/max/preferred and changing buffer size is intended to only be
// done via the control dialog or they return a range where min != max
// but I guess min == max could happen if a driver only supports a single
// buffer size
buffer_sizes.push_back(min_size_samples);
return true;
}
// If min_size_samples is not power of 2 use at most 8 of the possible
// buffer sizes spread evenly between min and max
long max_values = 8;
while (((max_size_samples - min_size_samples) / granularity) > max_values) {
granularity *= 2;
}
while (buffer_size < max_size_samples) {
buffer_sizes.push_back(buffer_size);
buffer_size += granularity;
}
buffer_sizes.push_back(max_size_samples);
}
return true;
}
#endif
void
PortAudioIO::get_default_buffer_sizes(std::vector<uint32_t>& buffer_sizes)
{
buffer_sizes.push_back(64);
buffer_sizes.push_back(128);
buffer_sizes.push_back(256);
buffer_sizes.push_back(512);
buffer_sizes.push_back(1024);
buffer_sizes.push_back(2048);
buffer_sizes.push_back(4096);
}
int
PortAudioIO::available_buffer_sizes(int device_id, std::vector<uint32_t>& buffer_sizes)
{
#ifdef WITH_ASIO
if (get_current_host_api_type() == paASIO) {
if (get_asio_buffer_sizes (device_id, buffer_sizes, false)) {
return 0;
}
}
#endif
get_default_buffer_sizes (buffer_sizes);
return 0;
}
void
PortAudioIO::input_device_list(std::map<int, std::string> &devices) const
{
for (std::map<int, paDevice*>::const_iterator i = _input_devices.begin ();
i != _input_devices.end ();
++i) {
devices.insert (std::pair<int, std::string>(i->first, Glib::locale_to_utf8(i->second->name)));
}
}
void
PortAudioIO::output_device_list(std::map<int, std::string> &devices) const
{
for (std::map<int, paDevice*>::const_iterator i = _output_devices.begin ();
i != _output_devices.end ();
++i) {
devices.insert (std::pair<int, std::string>(i->first, Glib::locale_to_utf8(i->second->name)));
}
}
bool&
PortAudioIO::pa_initialized()
{
static bool s_initialized = false;
return s_initialized;
}
bool
PortAudioIO::pa_initialize()
{
if (pa_initialized()) return true;
PaError err = Pa_Initialize();
if (err != paNoError) {
return false;
}
pa_initialized() = true;
return true;
}
bool
PortAudioIO::pa_deinitialize()
{
if (!pa_initialized()) return true;
PaError err = Pa_Terminate();
if (err != paNoError) {
return false;
}
pa_initialized() = false;
return true;
}
void
PortAudioIO::host_api_list (std::vector<std::string>& api_list)
{
if (!pa_initialize()) return;
PaHostApiIndex count = Pa_GetHostApiCount();
if (count < 0) return;
for (int i = 0; i < count; ++i) {
const PaHostApiInfo* info = Pa_GetHostApiInfo (i);
if (info->name != NULL) { // possible?
api_list.push_back (info->name);
}
}
}
PaHostApiTypeId
PortAudioIO::get_current_host_api_type () const
{
const PaHostApiInfo* info = Pa_GetHostApiInfo (_host_api_index);
if (info == NULL) {
DEBUG_AUDIO(string_compose(
"Unable to determine Host API type from index %1\n", _host_api_index));
return (PaHostApiTypeId)0;
}
return info->type;
}
std::string
PortAudioIO::get_host_api_name_from_index (PaHostApiIndex index)
{
std::vector<std::string> api_list;
host_api_list(api_list);
return api_list[index];
}
bool
PortAudioIO::set_host_api (const std::string& host_api_name)
{
PaHostApiIndex new_index = get_host_api_index_from_name (host_api_name);
if (new_index < 0) {
DEBUG_AUDIO ("Portaudio: Error setting host API\n");
return false;
}
_host_api_index = new_index;
_host_api_name = host_api_name;
return true;
}
PaHostApiIndex
PortAudioIO::get_host_api_index_from_name (const std::string& name)
{
if (!pa_initialize()) return -1;
PaHostApiIndex count = Pa_GetHostApiCount();
if (count < 0) {
DEBUG_AUDIO ("Host API count < 0\n");
return -1;
}
for (int i = 0; i < count; ++i) {
const PaHostApiInfo* info = Pa_GetHostApiInfo (i);
if (info != NULL && info->name != NULL) { // possible?
if (name == info->name) {
return i;
}
}
}
DEBUG_AUDIO (string_compose ("Unable to get host API from name: %1\n", name));
return -1;
}
PaDeviceIndex
PortAudioIO::get_default_input_device () const
{
const PaHostApiInfo* info = Pa_GetHostApiInfo (_host_api_index);
if (info == NULL) return -1;
return info->defaultInputDevice;
}
PaDeviceIndex
PortAudioIO::get_default_output_device () const
{
const PaHostApiInfo* info = Pa_GetHostApiInfo (_host_api_index);
if (info == NULL) return -1;
return info->defaultOutputDevice;
}
void
PortAudioIO::clear_device_lists ()
{
for (std::map<int, paDevice*>::const_iterator i = _input_devices.begin (); i != _input_devices.end(); ++i) {
delete i->second;
}
_input_devices.clear();
for (std::map<int, paDevice*>::const_iterator i = _output_devices.begin (); i != _output_devices.end(); ++i) {
delete i->second;
}
_output_devices.clear();
}
void
PortAudioIO::add_none_devices ()
{
_input_devices.insert(std::pair<int, paDevice*>(
DeviceNone, new paDevice(AudioBackend::get_standard_device_name(AudioBackend::DeviceNone), 0, 0)));
_output_devices.insert(std::pair<int, paDevice*>(
DeviceNone, new paDevice(AudioBackend::get_standard_device_name(AudioBackend::DeviceNone), 0, 0)));
}
void
PortAudioIO::add_default_devices ()
{
const PaHostApiInfo* info = Pa_GetHostApiInfo (_host_api_index);
if (info == NULL) return;
const PaDeviceInfo* nfo_i = Pa_GetDeviceInfo(get_default_input_device());
const PaDeviceInfo* nfo_o = Pa_GetDeviceInfo(get_default_output_device());
if (nfo_i && nfo_o) {
_input_devices.insert (std::pair<int, paDevice*> (DeviceDefault,
new paDevice(AudioBackend::get_standard_device_name(AudioBackend::DeviceDefault),
nfo_i->maxInputChannels,
nfo_o->maxOutputChannels
)));
_output_devices.insert (std::pair<int, paDevice*> (DeviceDefault,
new paDevice(AudioBackend::get_standard_device_name(AudioBackend::DeviceDefault),
nfo_i->maxInputChannels,
nfo_o->maxOutputChannels
)));
}
}
void
PortAudioIO::add_devices ()
{
const PaHostApiInfo* info = Pa_GetHostApiInfo (_host_api_index);
if (info == NULL) return;
int n_devices = Pa_GetDeviceCount();
DEBUG_AUDIO (string_compose ("PortAudio found %1 devices\n", n_devices));
for (int i = 0 ; i < n_devices; ++i) {
const PaDeviceInfo* nfo = Pa_GetDeviceInfo(i);
if (!nfo) continue;
if (nfo->hostApi != _host_api_index) continue;
DEBUG_AUDIO (string_compose (" (%1) '%2' '%3' in: %4 (lat: %5 .. %6) out: %7 "
"(lat: %8 .. %9) sr:%10\n",
i,
info->name,
nfo->name,
nfo->maxInputChannels,
nfo->defaultLowInputLatency * 1e3,
nfo->defaultHighInputLatency * 1e3,
nfo->maxOutputChannels,
nfo->defaultLowOutputLatency * 1e3,
nfo->defaultHighOutputLatency * 1e3,
nfo->defaultSampleRate));
if ( nfo->maxInputChannels == 0 && nfo->maxOutputChannels == 0) {
continue;
}
if (nfo->maxInputChannels > 0) {
_input_devices.insert (std::pair<int, paDevice*> (i, new paDevice(
nfo->name,
nfo->maxInputChannels,
nfo->maxOutputChannels
)));
}
if (nfo->maxOutputChannels > 0) {
_output_devices.insert (std::pair<int, paDevice*> (i, new paDevice(
nfo->name,
nfo->maxInputChannels,
nfo->maxOutputChannels
)));
}
}
}
bool
PortAudioIO::update_devices()
{
DEBUG_AUDIO ("Update devices\n");
if (_stream != NULL) return false;
pa_deinitialize();
if (!pa_initialize()) return false;
clear_device_lists ();
// ASIO doesn't support separate input/output devices so adding None
// doesn't make sense
if (get_current_host_api_type() != paASIO) {
add_none_devices ();
}
add_devices ();
return true;
}
void
PortAudioIO::reset_stream_dependents ()
{
_capture_channels = 0;
_playback_channels = 0;
_cur_sample_rate = 0;
_cur_input_latency = 0;
_cur_output_latency = 0;
}
PaErrorCode
PortAudioIO::close_stream()
{
if (!_stream) return paNoError;
PaError err = Pa_CloseStream (_stream);
if (err != paNoError) {
return (PaErrorCode)err;
}
_stream = NULL;
reset_stream_dependents();
free (_input_buffer); _input_buffer = NULL;
free (_output_buffer); _output_buffer = NULL;
return paNoError;
}
PaErrorCode
PortAudioIO::start_stream()
{
PaError err = Pa_StartStream (_stream);
if (err != paNoError) {
DEBUG_AUDIO(string_compose("PortAudio failed to start stream %1\n",
Pa_GetErrorText(err)));
return (PaErrorCode)err;
}
return paNoError;
}
bool
PortAudioIO::set_sample_rate_and_latency_from_stream ()
{
const PaStreamInfo* nfo_s = Pa_GetStreamInfo(_stream);
if (nfo_s == NULL) {
return false;
}
_cur_sample_rate = nfo_s->sampleRate;
_cur_input_latency = nfo_s->inputLatency * _cur_sample_rate;
_cur_output_latency = nfo_s->outputLatency * _cur_sample_rate;
DEBUG_AUDIO (string_compose ("PA Sample Rate %1 SPS\n", _cur_sample_rate));
DEBUG_AUDIO (string_compose ("PA Input Latency %1ms, %2 spl\n",
1e3 * nfo_s->inputLatency,
_cur_input_latency));
DEBUG_AUDIO (string_compose ("PA Output Latency %1ms, %2 spl\n",
1e3 * nfo_s->outputLatency,
_cur_output_latency));
return true;
}
bool
PortAudioIO::allocate_buffers_for_blocking_api (uint32_t samples_per_period)
{
if (_capture_channels > 0) {
_input_buffer =
(float*)malloc(samples_per_period * _capture_channels * sizeof(float));
if (!_input_buffer) {
DEBUG_AUDIO("PortAudio failed to allocate input buffer.\n");
return false;
}
}
if (_playback_channels > 0) {
_output_buffer =
(float*)calloc(samples_per_period * _playback_channels, sizeof(float));
if (!_output_buffer) {
DEBUG_AUDIO("PortAudio failed to allocate output buffer.\n");
return false;
}
}
return true;
}
bool
PortAudioIO::get_input_stream_params(int device_input,
PaStreamParameters& inputParam) const
{
const PaDeviceInfo *nfo_in = NULL;
if (device_input == DeviceDefault) {
device_input = get_default_input_device ();
}
if (device_input == DeviceNone) {
return false;
}
nfo_in = Pa_GetDeviceInfo(device_input);
if (nfo_in == NULL) {
DEBUG_AUDIO ("PortAudio Cannot Query Input Device Info\n");
return false;
}
inputParam.device = device_input;
inputParam.channelCount = nfo_in->maxInputChannels;
#ifdef INTERLEAVED_INPUT
inputParam.sampleFormat = paFloat32;
#else
inputParam.sampleFormat = paFloat32 | paNonInterleaved;
#endif
inputParam.suggestedLatency = nfo_in->defaultLowInputLatency;
inputParam.hostApiSpecificStreamInfo = NULL;
return true;
}
bool
PortAudioIO::get_output_stream_params(int device_output,
PaStreamParameters& outputParam) const
{
const PaDeviceInfo *nfo_out = NULL;
if (device_output == DeviceDefault) {
device_output = get_default_output_device ();
}
if (device_output == DeviceNone) {
return false;
}
nfo_out = Pa_GetDeviceInfo(device_output);
if (nfo_out == NULL) {
DEBUG_AUDIO ("PortAudio Cannot Query Output Device Info\n");
return false;
}
outputParam.device = device_output;
outputParam.channelCount = nfo_out->maxOutputChannels;
#ifdef INTERLEAVED_OUTPUT
outputParam.sampleFormat = paFloat32;
#else
outputParam.sampleFormat = paFloat32 | paNonInterleaved;
#endif
outputParam.suggestedLatency = nfo_out->defaultLowOutputLatency;
outputParam.hostApiSpecificStreamInfo = NULL;
return true;
}
PaErrorCode
PortAudioIO::pre_stream_open(int device_input,
PaStreamParameters& inputParam,
int device_output,
PaStreamParameters& outputParam)
{
if (!pa_initialize()) {
DEBUG_AUDIO ("PortAudio Initialization Failed\n");
return paNotInitialized;
}
reset_stream_dependents ();
DEBUG_AUDIO (string_compose (
"PortAudio Device IDs: i:%1 o:%2\n", device_input, device_output));
if (device_input == DeviceNone && device_output == DeviceNone) {
return paBadIODeviceCombination;
}
if (get_input_stream_params(device_input, inputParam)) {
_capture_channels = inputParam.channelCount;
}
if (get_output_stream_params(device_output, outputParam)) {
_playback_channels = outputParam.channelCount;
}
if (_capture_channels == 0 && _playback_channels == 0) {
DEBUG_AUDIO("PortAudio no input or output channels.\n");
return paBadIODeviceCombination;
}
DEBUG_AUDIO (string_compose ("PortAudio Channels: in:%1 out:%2\n",
_capture_channels,
_playback_channels));
return paNoError;
}
PaErrorCode
PortAudioIO::open_callback_stream(int device_input,
int device_output,
double sample_rate,
uint32_t samples_per_period,
PaStreamCallback* callback,
void* data)
{
PaStreamParameters inputParam;
PaStreamParameters outputParam;
PaErrorCode error_code =
pre_stream_open(device_input, inputParam, device_output, outputParam);
if (error_code != paNoError) return error_code;
PaError err = paNoError;
DEBUG_AUDIO ("Open Callback Stream\n");
err = Pa_OpenStream(&_stream,
_capture_channels > 0 ? &inputParam : NULL,
_playback_channels > 0 ? &outputParam : NULL,
sample_rate,
samples_per_period,
paDitherOff,
callback,
data);
if (err != paNoError) {
DEBUG_AUDIO(string_compose("PortAudio failed to open stream %1\n",
Pa_GetErrorText(err)));
return paInternalError;
}
if (!set_sample_rate_and_latency_from_stream()) {
DEBUG_AUDIO ("PortAudio failed to query stream information.\n");
close_stream();
return paInternalError;
}
return paNoError;
}
PaErrorCode
PortAudioIO::open_blocking_stream(int device_input,
int device_output,
double sample_rate,
uint32_t samples_per_period)
{
PaStreamParameters inputParam;
PaStreamParameters outputParam;
PaErrorCode error_code =
pre_stream_open(device_input, inputParam, device_output, outputParam);
if (error_code != paNoError) return error_code;
PaError err = paNoError;
err = Pa_OpenStream (
&_stream,
_capture_channels > 0 ? &inputParam: NULL,
_playback_channels > 0 ? &outputParam: NULL,
sample_rate,
samples_per_period,
paDitherOff,
NULL, NULL);
if (err != paNoError) {
DEBUG_AUDIO(string_compose("PortAudio failed to open stream %1\n",
Pa_GetErrorText(err)));
return (PaErrorCode)err;
}
if (!set_sample_rate_and_latency_from_stream()) {
DEBUG_AUDIO ("PortAudio failed to query stream information.\n");
close_stream();
return paInternalError;
}
if (!allocate_buffers_for_blocking_api(samples_per_period)) {
close_stream();
return paInternalError;
}
return paNoError;
}
int
PortAudioIO::next_cycle (uint32_t n_samples)
{
bool xrun = false;
PaError err;
err = Pa_IsStreamActive (_stream);
if (err != 1) {
// 0: inactive / aborted
// < 0: error
return -1;
}
// TODO, check drift.. process part with larger capacity first.
// Pa_GetStreamReadAvailable(_stream) < Pa_GetStreamWriteAvailable(_stream)
if (_playback_channels > 0) {
err = Pa_WriteStream (_stream, _output_buffer, n_samples);
if (err) xrun = true;
}
if (_capture_channels > 0) {
err = Pa_ReadStream (_stream, _input_buffer, n_samples);
if (err) {
memset (_input_buffer, 0, sizeof(float) * n_samples * _capture_channels);
xrun = true;
}
}
return xrun ? 1 : 0;
}
std::string
PortAudioIO::get_input_channel_name (int device_id, uint32_t channel) const
{
#ifdef WITH_ASIO
const char* channel_name;
// This will return an error for non-ASIO devices so no need to check if
// the device_id corresponds to an ASIO device.
PaError err = PaAsio_GetInputChannelName (device_id, channel, &channel_name);
if (err == paNoError) {
DEBUG_AUDIO (
string_compose ("Input channel name for device %1, channel %2 is %3\n",
device_id,
channel,
channel_name));
return channel_name;
}
#endif
return std::string();
}
std::string
PortAudioIO::get_output_channel_name (int device_id, uint32_t channel) const
{
#ifdef WITH_ASIO
const char* channel_name;
PaError err = PaAsio_GetOutputChannelName (device_id, channel, &channel_name);
if (err == paNoError) {
DEBUG_AUDIO (
string_compose ("Output channel name for device %1, channel %2 is %3\n",
device_id,
channel,
channel_name));
return channel_name;
}
#endif
return std::string();
}
#ifdef INTERLEAVED_INPUT
int
PortAudioIO::get_capture_channel (uint32_t chn, float *input, uint32_t n_samples)
{
assert(chn < _capture_channels);
const uint32_t stride = _capture_channels;
float *ptr = _input_buffer + chn;
while (n_samples-- > 0) {
*input++ = *ptr;
ptr += stride;
}
return 0;
}
#else
int
PortAudioIO::get_capture_channel (uint32_t chn, float *input, uint32_t n_samples)
{
assert(chn < _capture_channels);
memcpy((void*)input, &(_input_buffer[chn * n_samples]), n_samples * sizeof(float));
2015-03-20 11:16:55 -04:00
return 0;
}
#endif
#ifdef INTERLEAVED_OUTPUT
int
PortAudioIO::set_playback_channel (uint32_t chn, const float *output, uint32_t n_samples)
{
assert(chn < _playback_channels);
const uint32_t stride = _playback_channels;
float *ptr = _output_buffer + chn;
while (n_samples-- > 0) {
*ptr = *output++;
ptr += stride;
}
return 0;
}
#else
int
PortAudioIO::set_playback_channel (uint32_t chn, const float *output, uint32_t n_samples)
{
assert(chn < _playback_channels);
memcpy((void*)&(_output_buffer[chn * n_samples]), (void*)output, n_samples * sizeof(float));
return 0;
}
#endif