13
0
livetrax/libs/vamp-plugins/BarBeatTrack.cpp

485 lines
14 KiB
C++
Raw Normal View History

/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
QM Vamp Plugin Set
Centre for Digital Music, Queen Mary, University of London.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "BarBeatTrack.h"
#include <dsp/onsets/DetectionFunction.h>
#include <dsp/onsets/PeakPicking.h>
#include <dsp/tempotracking/TempoTrackV2.h>
#include <dsp/tempotracking/DownBeat.h>
#include <maths/MathUtilities.h>
using std::string;
using std::vector;
using std::cerr;
using std::endl;
#if !defined(__GNUC__) && !defined(_MSC_VER)
#include <alloca.h>
#endif
float BarBeatTracker::m_stepSecs = 0.01161; // 512 samples at 44100
class BarBeatTrackerData
{
public:
BarBeatTrackerData(float rate, const DFConfig &config) : dfConfig(config) {
df = new DetectionFunction(config);
// decimation factor aims at resampling to c. 3KHz; must be power of 2
int factor = MathUtilities::nextPowerOfTwo(rate / 3000);
// std::cerr << "BarBeatTrackerData: factor = " << factor << std::endl;
downBeat = new DownBeat(rate, factor, config.stepSize);
}
~BarBeatTrackerData() {
delete df;
delete downBeat;
}
void reset() {
delete df;
df = new DetectionFunction(dfConfig);
dfOutput.clear();
downBeat->resetAudioBuffer();
origin = Vamp::RealTime::zeroTime;
}
DFConfig dfConfig;
DetectionFunction *df;
DownBeat *downBeat;
vector<double> dfOutput;
Vamp::RealTime origin;
};
BarBeatTracker::BarBeatTracker(float inputSampleRate) :
Vamp::Plugin(inputSampleRate),
m_d(0),
m_bpb(4),
m_alpha(0.9), // changes are as per the BeatTrack.cpp
m_tightness(4.), // changes are as per the BeatTrack.cpp
m_inputtempo(120.), // changes are as per the BeatTrack.cpp
m_constraintempo(false) // changes are as per the BeatTrack.cpp
{
}
BarBeatTracker::~BarBeatTracker()
{
delete m_d;
}
string
BarBeatTracker::getIdentifier() const
{
return "qm-barbeattracker";
}
string
BarBeatTracker::getName() const
{
return "Bar and Beat Tracker";
}
string
BarBeatTracker::getDescription() const
{
return "Estimate bar and beat locations";
}
string
BarBeatTracker::getMaker() const
{
return "Queen Mary, University of London";
}
int
BarBeatTracker::getPluginVersion() const
{
return 3;
}
string
BarBeatTracker::getCopyright() const
{
return "Plugin by Matthew Davies, Christian Landone and Chris Cannam. Copyright (c) 2006-2013 QMUL - All Rights Reserved";
}
BarBeatTracker::ParameterList
BarBeatTracker::getParameterDescriptors() const
{
ParameterList list;
ParameterDescriptor desc;
desc.identifier = "bpb";
desc.name = "Beats per Bar";
desc.description = "The number of beats in each bar";
desc.minValue = 2;
desc.maxValue = 16;
desc.defaultValue = 4;
desc.isQuantized = true;
desc.quantizeStep = 1;
list.push_back(desc);
// changes are as per the BeatTrack.cpp
//Alpha Parameter of Beat Tracker
desc.identifier = "alpha";
desc.name = "Alpha";
desc.description = "Inertia - Flexibility Trade Off";
desc.minValue = 0.1;
desc.maxValue = 0.99;
desc.defaultValue = 0.90;
desc.unit = "";
desc.isQuantized = false;
list.push_back(desc);
// We aren't exposing tightness as a parameter, it's fixed at 4
// changes are as per the BeatTrack.cpp
//User input tempo
desc.identifier = "inputtempo";
desc.name = "Tempo Hint";
desc.description = "User-defined tempo on which to centre the tempo preference function";
desc.minValue = 50;
desc.maxValue = 250;
desc.defaultValue = 120;
desc.unit = "BPM";
desc.isQuantized = true;
list.push_back(desc);
// changes are as per the BeatTrack.cpp
desc.identifier = "constraintempo";
desc.name = "Constrain Tempo";
desc.description = "Constrain more tightly around the tempo hint, using a Gaussian weighting instead of Rayleigh";
desc.minValue = 0;
desc.maxValue = 1;
desc.defaultValue = 0;
desc.isQuantized = true;
desc.quantizeStep = 1;
desc.unit = "";
desc.valueNames.clear();
list.push_back(desc);
return list;
}
float
BarBeatTracker::getParameter(std::string name) const
{
if (name == "bpb") {
return m_bpb;
} else if (name == "alpha") {
return m_alpha;
} else if (name == "inputtempo") {
return m_inputtempo;
} else if (name == "constraintempo") {
return m_constraintempo ? 1.0 : 0.0;
}
return 0.0;
}
void
BarBeatTracker::setParameter(std::string name, float value)
{
if (name == "bpb") {
m_bpb = lrintf(value);
} else if (name == "alpha") {
m_alpha = value;
} else if (name == "inputtempo") {
m_inputtempo = value;
} else if (name == "constraintempo") {
m_constraintempo = (value > 0.5);
}
}
bool
BarBeatTracker::initialise(size_t channels, size_t stepSize, size_t blockSize)
{
if (m_d) {
delete m_d;
m_d = 0;
}
if (channels < getMinChannelCount() ||
channels > getMaxChannelCount()) {
std::cerr << "BarBeatTracker::initialise: Unsupported channel count: "
<< channels << std::endl;
return false;
}
if (stepSize != getPreferredStepSize()) {
std::cerr << "ERROR: BarBeatTracker::initialise: Unsupported step size for this sample rate: "
<< stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
return false;
}
if (blockSize != getPreferredBlockSize()) {
std::cerr << "WARNING: BarBeatTracker::initialise: Sub-optimal block size for this sample rate: "
<< blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
// return false;
}
DFConfig dfConfig;
dfConfig.DFType = DF_COMPLEXSD;
dfConfig.stepSize = stepSize;
dfConfig.frameLength = blockSize;
dfConfig.dbRise = 3;
dfConfig.adaptiveWhitening = false;
dfConfig.whiteningRelaxCoeff = -1;
dfConfig.whiteningFloor = -1;
m_d = new BarBeatTrackerData(m_inputSampleRate, dfConfig);
m_d->downBeat->setBeatsPerBar(m_bpb);
return true;
}
void
BarBeatTracker::reset()
{
if (m_d) m_d->reset();
}
size_t
BarBeatTracker::getPreferredStepSize() const
{
size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
if (step < 1) step = 1;
// std::cerr << "BarBeatTracker::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
return step;
}
size_t
BarBeatTracker::getPreferredBlockSize() const
{
size_t theoretical = getPreferredStepSize() * 2;
// I think this is not necessarily going to be a power of two, and
// the host might have a problem with that, but I'm not sure we
// can do much about it here
return theoretical;
}
BarBeatTracker::OutputList
BarBeatTracker::getOutputDescriptors() const
{
OutputList list;
OutputDescriptor beat;
beat.identifier = "beats";
beat.name = "Beats";
beat.description = "Beat locations labelled with metrical position";
beat.unit = "";
beat.hasFixedBinCount = true;
beat.binCount = 0;
beat.sampleType = OutputDescriptor::VariableSampleRate;
beat.sampleRate = 1.0 / m_stepSecs;
OutputDescriptor bars;
bars.identifier = "bars";
bars.name = "Bars";
bars.description = "Bar locations";
bars.unit = "";
bars.hasFixedBinCount = true;
bars.binCount = 0;
bars.sampleType = OutputDescriptor::VariableSampleRate;
bars.sampleRate = 1.0 / m_stepSecs;
OutputDescriptor beatcounts;
beatcounts.identifier = "beatcounts";
beatcounts.name = "Beat Count";
beatcounts.description = "Beat counter function";
beatcounts.unit = "";
beatcounts.hasFixedBinCount = true;
beatcounts.binCount = 1;
beatcounts.sampleType = OutputDescriptor::VariableSampleRate;
beatcounts.sampleRate = 1.0 / m_stepSecs;
OutputDescriptor beatsd;
beatsd.identifier = "beatsd";
beatsd.name = "Beat Spectral Difference";
beatsd.description = "Beat spectral difference function used for bar-line detection";
beatsd.unit = "";
beatsd.hasFixedBinCount = true;
beatsd.binCount = 1;
beatsd.sampleType = OutputDescriptor::VariableSampleRate;
beatsd.sampleRate = 1.0 / m_stepSecs;
list.push_back(beat);
list.push_back(bars);
list.push_back(beatcounts);
list.push_back(beatsd);
return list;
}
BarBeatTracker::FeatureSet
BarBeatTracker::process(const float *const *inputBuffers,
Vamp::RealTime timestamp)
{
if (!m_d) {
cerr << "ERROR: BarBeatTracker::process: "
<< "BarBeatTracker has not been initialised"
<< endl;
return FeatureSet();
}
// We use time domain input, because DownBeat requires it -- so we
// use the time-domain version of DetectionFunction::process which
// does its own FFT. It requires doubles as input, so we need to
// make a temporary copy
// We only support a single input channel
const int fl = m_d->dfConfig.frameLength;
#ifndef __GNUC__
double *dfinput = (double *)alloca(fl * sizeof(double));
#else
double dfinput[fl];
#endif
for (int i = 0; i < fl; ++i) dfinput[i] = inputBuffers[0][i];
double output = m_d->df->processTimeDomain(dfinput);
if (m_d->dfOutput.empty()) m_d->origin = timestamp;
// std::cerr << "df[" << m_d->dfOutput.size() << "] is " << output << std::endl;
m_d->dfOutput.push_back(output);
// Downsample and store the incoming audio block.
// We have an overlap on the incoming audio stream (step size is
// half block size) -- this function is configured to take only a
// step size's worth, so effectively ignoring the overlap. Note
// however that this means we omit the last blocksize - stepsize
// samples completely for the purposes of barline detection
// (hopefully not a problem)
m_d->downBeat->pushAudioBlock(inputBuffers[0]);
return FeatureSet();
}
BarBeatTracker::FeatureSet
BarBeatTracker::getRemainingFeatures()
{
if (!m_d) {
cerr << "ERROR: BarBeatTracker::getRemainingFeatures: "
<< "BarBeatTracker has not been initialised"
<< endl;
return FeatureSet();
}
return barBeatTrack();
}
BarBeatTracker::FeatureSet
BarBeatTracker::barBeatTrack()
{
vector<double> df;
vector<double> beatPeriod;
vector<double> tempi;
for (size_t i = 2; i < m_d->dfOutput.size(); ++i) { // discard first two elts
df.push_back(m_d->dfOutput[i]);
beatPeriod.push_back(0.0);
}
if (df.empty()) return FeatureSet();
TempoTrackV2 tt(m_inputSampleRate, m_d->dfConfig.stepSize);
// changes are as per the BeatTrack.cpp - allow m_inputtempo and m_constraintempo to be set be the user
tt.calculateBeatPeriod(df, beatPeriod, tempi, m_inputtempo, m_constraintempo);
vector<double> beats;
// changes are as per the BeatTrack.cpp - allow m_alpha and m_tightness to be set be the user
tt.calculateBeats(df, beatPeriod, beats, m_alpha, m_tightness);
// tt.calculateBeatPeriod(df, beatPeriod, tempi, 0., 0); // use default parameters
// vector<double> beats;
// tt.calculateBeats(df, beatPeriod, beats, 0.9, 4.); // use default parameters until i fix this plugin too
vector<int> downbeats;
size_t downLength = 0;
const float *downsampled = m_d->downBeat->getBufferedAudio(downLength);
m_d->downBeat->findDownBeats(downsampled, downLength, beats, downbeats);
vector<double> beatsd;
m_d->downBeat->getBeatSD(beatsd);
// std::cerr << "BarBeatTracker: found downbeats at: ";
// for (int i = 0; i < downbeats.size(); ++i) std::cerr << downbeats[i] << " " << std::endl;
FeatureSet returnFeatures;
char label[20];
int dbi = 0;
int beat = 0;
int bar = 0;
if (!downbeats.empty()) {
// get the right number for the first beat; this will be
// incremented before use (at top of the following loop)
int firstDown = downbeats[0];
beat = m_bpb - firstDown - 1;
if (beat == m_bpb) beat = 0;
}
for (int i = 0; i < int(beats.size()); ++i) {
size_t frame = size_t(beats[i]) * m_d->dfConfig.stepSize;
if (dbi < int(downbeats.size()) && i == downbeats[dbi]) {
beat = 0;
++bar;
++dbi;
} else {
++beat;
}
// outputs are:
//
// 0 -> beats
// 1 -> bars
// 2 -> beat counter function
Feature feature;
feature.hasTimestamp = true;
feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
(frame, lrintf(m_inputSampleRate));
sprintf(label, "%d", beat + 1);
feature.label = label;
returnFeatures[0].push_back(feature); // labelled beats
feature.values.push_back(beat + 1);
returnFeatures[2].push_back(feature); // beat function
if (i > 0 && i <= int(beatsd.size())) {
feature.values.clear();
feature.values.push_back(beatsd[i-1]);
feature.label = "";
returnFeatures[3].push_back(feature); // beat spectral difference
}
if (beat == 0) {
feature.values.clear();
sprintf(label, "%d", bar);
feature.label = label;
returnFeatures[1].push_back(feature); // bars
}
}
return returnFeatures;
}