13
0
livetrax/libs/gtkmm2/gtk/gtkmm/actiongroup.cc

420 lines
12 KiB
C++
Raw Normal View History

// Generated by gtkmmproc -- DO NOT MODIFY!
#include <gtkmm/actiongroup.h>
#include <gtkmm/private/actiongroup_p.h>
// -*- c++ -*-
/* $Id$ */
/* Copyright 2003 The gtkmm Development Team
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <gtk/gtkactiongroup.h>
#include <gtkmm/accelmap.h>
namespace Gtk
{
void ActionGroup::add(const Glib::RefPtr<Action>& action)
{
gtk_action_group_add_action_with_accel(gobj(), Glib::unwrap(action),
0 /* accelerator=0 means use the stock accelerator if this is a stock item */ );
}
void ActionGroup::add(const Glib::RefPtr<Action>& action, const AccelKey& accel_key)
{
// We need to half-duplicate the gtk_action_group_add_action_with_accel() implementation, because we want to
// use AccelKey, not just the accelerator string format that is _one_ of the ways to create an AccelKey. murrayc.
//The AccelKey might have been constructed from key+mod or from an accelerator string,
//but it the end that just produces a key+mod.
guint key = accel_key.get_key();
Gdk::ModifierType mod = accel_key.get_mod();
if(key)
{
// The AccelKey constructor can take an accel path, so I suppose we should not ignore it,
// but I can't imagine how it would be useful with the UIManager. murrayc.
Glib::ustring accel_path = accel_key.get_path();
if(accel_path.empty())
{
//Copied from the gtk_action_group_add_action_with_accel() implementation:
accel_path = "<Actions>/" + get_name() + "/" + action->property_name();
}
AccelMap::add_entry(accel_path, key, mod);
action->set_accel_path(accel_path);
}
gtk_action_group_add_action(gobj(), action->gobj());
}
void ActionGroup::add(const Glib::RefPtr<Action>& action, const Action::SlotActivate& slot)
{
//This is meant to be similar to the gtk_action_group_add_actions() convenience method that is used from C.
//This also does the work of gtk_action_group_add_toggle_actions() and gtk_action_group_add_radio_actions_full(),
//because the extra stuff there is already done when the Action (or a derived type, such as ToggleAction) is create()ed.
action->signal_activate().connect(slot);
//We probably don't need to use translate_string(), because the label and tooltip will be regular translated strings in our C++ application code.
//But C needs it because gtk_action_group_add_actions() takes a static array of GtkActionEntrys whose fields
//can not be translated with gettext macros.
//But we should soon know if menus and toolbars are not translated in non-english locales. murrayc.
add(action);
}
void ActionGroup::add(const Glib::RefPtr<Action>& action, const AccelKey& accel_key, const Action::SlotActivate& slot)
{
//This is meant to be similar to the gtk_action_group_add_actions() convenience method that is used from C.
//This also does the work of gtk_action_group_add_toggle_actions() and gtk_action_group_add_radio_actions_full(),
//because the extra stuff there is already done when the Action (or a derived type, such as ToggleAction) is create()ed.
action->signal_activate().connect(slot);
add(action, accel_key);
/*
//Create the accel path (a kind of unique key):
Glib::ustring accel_path = "<Actions>/" + get_name() + "/" + action->get_name();
//Register the accel path:
Gtk::AccelMap::add_entry(accel_path, accel_key.get_key(), accel_key.get_mod());
//USe the accel path:
action->set_accel_path(accel_path);
*/
}
} // namespace Gtk
namespace
{
void ActionGroup_signal_connect_proxy_callback(GtkActionGroup* self, GtkAction* p0,GtkWidget* p1,void* data)
{
using namespace Gtk;
typedef sigc::slot< void,const Glib::RefPtr<Action>&,Widget* > SlotType;
// Do not try to call a signal on a disassociated wrapper.
if(Glib::ObjectBase::_get_current_wrapper((GObject*) self))
{
try
{
if(sigc::slot_base *const slot = Glib::SignalProxyNormal::data_to_slot(data))
(*static_cast<SlotType*>(slot))(Glib::wrap(p0, true)
, Glib::wrap(p1)
);
}
catch(...)
{
Glib::exception_handlers_invoke();
}
}
}
const Glib::SignalProxyInfo ActionGroup_signal_connect_proxy_info =
{
"connect_proxy",
(GCallback) &ActionGroup_signal_connect_proxy_callback,
(GCallback) &ActionGroup_signal_connect_proxy_callback
};
void ActionGroup_signal_disconnect_proxy_callback(GtkActionGroup* self, GtkAction* p0,GtkWidget* p1,void* data)
{
using namespace Gtk;
typedef sigc::slot< void,const Glib::RefPtr<Action>&,Widget* > SlotType;
// Do not try to call a signal on a disassociated wrapper.
if(Glib::ObjectBase::_get_current_wrapper((GObject*) self))
{
try
{
if(sigc::slot_base *const slot = Glib::SignalProxyNormal::data_to_slot(data))
(*static_cast<SlotType*>(slot))(Glib::wrap(p0, true)
, Glib::wrap(p1)
);
}
catch(...)
{
Glib::exception_handlers_invoke();
}
}
}
const Glib::SignalProxyInfo ActionGroup_signal_disconnect_proxy_info =
{
"disconnect_proxy",
(GCallback) &ActionGroup_signal_disconnect_proxy_callback,
(GCallback) &ActionGroup_signal_disconnect_proxy_callback
};
void ActionGroup_signal_pre_activate_callback(GtkActionGroup* self, GtkAction* p0,void* data)
{
using namespace Gtk;
typedef sigc::slot< void,const Glib::RefPtr<Action>& > SlotType;
// Do not try to call a signal on a disassociated wrapper.
if(Glib::ObjectBase::_get_current_wrapper((GObject*) self))
{
try
{
if(sigc::slot_base *const slot = Glib::SignalProxyNormal::data_to_slot(data))
(*static_cast<SlotType*>(slot))(Glib::wrap(p0, true)
);
}
catch(...)
{
Glib::exception_handlers_invoke();
}
}
}
const Glib::SignalProxyInfo ActionGroup_signal_pre_activate_info =
{
"pre_activate",
(GCallback) &ActionGroup_signal_pre_activate_callback,
(GCallback) &ActionGroup_signal_pre_activate_callback
};
void ActionGroup_signal_post_activate_callback(GtkActionGroup* self, GtkAction* p0,void* data)
{
using namespace Gtk;
typedef sigc::slot< void,const Glib::RefPtr<Action>& > SlotType;
// Do not try to call a signal on a disassociated wrapper.
if(Glib::ObjectBase::_get_current_wrapper((GObject*) self))
{
try
{
if(sigc::slot_base *const slot = Glib::SignalProxyNormal::data_to_slot(data))
(*static_cast<SlotType*>(slot))(Glib::wrap(p0, true)
);
}
catch(...)
{
Glib::exception_handlers_invoke();
}
}
}
const Glib::SignalProxyInfo ActionGroup_signal_post_activate_info =
{
"post_activate",
(GCallback) &ActionGroup_signal_post_activate_callback,
(GCallback) &ActionGroup_signal_post_activate_callback
};
} // anonymous namespace
namespace Glib
{
Glib::RefPtr<Gtk::ActionGroup> wrap(GtkActionGroup* object, bool take_copy)
{
return Glib::RefPtr<Gtk::ActionGroup>( dynamic_cast<Gtk::ActionGroup*> (Glib::wrap_auto ((GObject*)(object), take_copy)) );
//We use dynamic_cast<> in case of multiple inheritance.
}
} /* namespace Glib */
namespace Gtk
{
/* The *_Class implementation: */
const Glib::Class& ActionGroup_Class::init()
{
if(!gtype_) // create the GType if necessary
{
// Glib::Class has to know the class init function to clone custom types.
class_init_func_ = &ActionGroup_Class::class_init_function;
// This is actually just optimized away, apparently with no harm.
// Make sure that the parent type has been created.
//CppClassParent::CppObjectType::get_type();
// Create the wrapper type, with the same class/instance size as the base type.
register_derived_type(gtk_action_group_get_type());
// Add derived versions of interfaces, if the C type implements any interfaces:
}
return *this;
}
void ActionGroup_Class::class_init_function(void* g_class, void* class_data)
{
BaseClassType *const klass = static_cast<BaseClassType*>(g_class);
CppClassParent::class_init_function(klass, class_data);
}
Glib::ObjectBase* ActionGroup_Class::wrap_new(GObject* object)
{
return new ActionGroup((GtkActionGroup*)object);
}
/* The implementation: */
GtkActionGroup* ActionGroup::gobj_copy()
{
reference();
return gobj();
}
ActionGroup::ActionGroup(const Glib::ConstructParams& construct_params)
:
Glib::Object(construct_params)
{}
ActionGroup::ActionGroup(GtkActionGroup* castitem)
:
Glib::Object((GObject*)(castitem))
{}
ActionGroup::~ActionGroup()
{}
ActionGroup::CppClassType ActionGroup::actiongroup_class_; // initialize static member
GType ActionGroup::get_type()
{
return actiongroup_class_.init().get_type();
}
GType ActionGroup::get_base_type()
{
return gtk_action_group_get_type();
}
ActionGroup::ActionGroup(const Glib::ustring& name)
:
Glib::ObjectBase(0), //Mark this class as gtkmmproc-generated, rather than a custom class, to allow vfunc optimisations.
Glib::Object(Glib::ConstructParams(actiongroup_class_.init(), "name", name.c_str(), (char*) 0))
{
}
Glib::RefPtr<ActionGroup> ActionGroup::create(const Glib::ustring& name)
{
return Glib::RefPtr<ActionGroup>( new ActionGroup(name) );
}
Glib::ustring ActionGroup::get_name() const
{
return Glib::convert_const_gchar_ptr_to_ustring(gtk_action_group_get_name(const_cast<GtkActionGroup*>(gobj())));
}
bool ActionGroup::get_sensitive() const
{
return gtk_action_group_get_sensitive(const_cast<GtkActionGroup*>(gobj()));
}
void ActionGroup::set_sensitive(bool sensitive)
{
gtk_action_group_set_sensitive(gobj(), static_cast<int>(sensitive));
}
bool ActionGroup::get_visible() const
{
return gtk_action_group_get_visible(const_cast<GtkActionGroup*>(gobj()));
}
void ActionGroup::set_visible(bool visible)
{
gtk_action_group_set_visible(gobj(), static_cast<int>(visible));
}
Glib::RefPtr<Action> ActionGroup::get_action(const Glib::ustring& action_name)
{
Glib::RefPtr<Action> retvalue = Glib::wrap(gtk_action_group_get_action(gobj(), action_name.c_str()));
if(retvalue)
retvalue->reference(); //The function does not do a ref for us.
return retvalue;
}
Glib::RefPtr<const Action> ActionGroup::get_action(const Glib::ustring& action_name) const
{
Glib::RefPtr<const Action> retvalue = Glib::wrap(gtk_action_group_get_action(const_cast<GtkActionGroup*>(gobj()), action_name.c_str()));
if(retvalue)
retvalue->reference(); //The function does not do a ref for us.
return retvalue;
}
Glib::ListHandle< Glib::RefPtr<Action> > ActionGroup::get_actions()
{
return Glib::ListHandle< Glib::RefPtr<Action> >(gtk_action_group_list_actions(gobj()), Glib::OWNERSHIP_SHALLOW);
}
Glib::ListHandle< Glib::RefPtr<const Action> > ActionGroup::get_actions() const
{
return Glib::ListHandle< Glib::RefPtr<const Action> >(gtk_action_group_list_actions(const_cast<GtkActionGroup*>(gobj())), Glib::OWNERSHIP_SHALLOW);
}
void ActionGroup::remove(const Glib::RefPtr<Action>& action)
{
gtk_action_group_remove_action(gobj(), Glib::unwrap(action));
}
Glib::ustring ActionGroup::translate_string(const Glib::ustring& str) const
{
return Glib::convert_const_gchar_ptr_to_ustring(gtk_action_group_translate_string(const_cast<GtkActionGroup*>(gobj()), str.c_str()));
}
Glib::SignalProxy2< void,const Glib::RefPtr<Action>&,Widget* > ActionGroup::signal_connect_proxy()
{
return Glib::SignalProxy2< void,const Glib::RefPtr<Action>&,Widget* >(this, &ActionGroup_signal_connect_proxy_info);
}
Glib::SignalProxy2< void,const Glib::RefPtr<Action>&,Widget* > ActionGroup::signal_disconnect_proxy()
{
return Glib::SignalProxy2< void,const Glib::RefPtr<Action>&,Widget* >(this, &ActionGroup_signal_disconnect_proxy_info);
}
Glib::SignalProxy1< void,const Glib::RefPtr<Action>& > ActionGroup::signal_pre_activate()
{
return Glib::SignalProxy1< void,const Glib::RefPtr<Action>& >(this, &ActionGroup_signal_pre_activate_info);
}
Glib::SignalProxy1< void,const Glib::RefPtr<Action>& > ActionGroup::signal_post_activate()
{
return Glib::SignalProxy1< void,const Glib::RefPtr<Action>& >(this, &ActionGroup_signal_post_activate_info);
}
} // namespace Gtk