408 lines
10 KiB
C
408 lines
10 KiB
C
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
|||
|
//---------------------------------------------------------------------------
|
|||
|
|
|||
|
#ifndef PolyfitHPP
|
|||
|
#define PolyfitHPP
|
|||
|
//---------------------------------------------------------------------------
|
|||
|
// Least-squares curve fitting class for arbitrary data types
|
|||
|
/*
|
|||
|
|
|||
|
{ ******************************************
|
|||
|
**** Scientific Subroutine Library ****
|
|||
|
**** for C++ Builder ****
|
|||
|
******************************************
|
|||
|
|
|||
|
The following programs were written by Allen Miller and appear in the
|
|||
|
book entitled "Pascal Programs For Scientists And Engineers" which is
|
|||
|
published by Sybex, 1981.
|
|||
|
They were originally typed and submitted to MTPUG in Oct. 1982
|
|||
|
Juergen Loewner
|
|||
|
Hoher Heckenweg 3
|
|||
|
D-4400 Muenster
|
|||
|
They have had minor corrections and adaptations for Turbo Pascal by
|
|||
|
Jeff Weiss
|
|||
|
1572 Peacock Ave.
|
|||
|
Sunnyvale, CA 94087.
|
|||
|
|
|||
|
|
|||
|
2000 Oct 28 Updated for Delphi 4, open array parameters.
|
|||
|
This allows the routine to be generalised so that it is no longer
|
|||
|
hard-coded to make a specific order of best fit or work with a
|
|||
|
specific number of points.
|
|||
|
2001 Jan 07 Update Web site address
|
|||
|
|
|||
|
Copyright <EFBFBD> David J Taylor, Edinburgh and others listed above
|
|||
|
Web site: www.satsignal.net
|
|||
|
E-mail: davidtaylor@writeme.com
|
|||
|
}*/
|
|||
|
|
|||
|
///////////////////////////////////////////////////////////////////////////////
|
|||
|
// Modified by CLandone for VC6 Aug 2004
|
|||
|
///////////////////////////////////////////////////////////////////////////////
|
|||
|
|
|||
|
#include <iostream>
|
|||
|
|
|||
|
using std::vector;
|
|||
|
|
|||
|
class TPolyFit
|
|||
|
{
|
|||
|
typedef vector<vector<double> > Matrix;
|
|||
|
public:
|
|||
|
|
|||
|
static double PolyFit2 (const vector<double> &x, // does the work
|
|||
|
const vector<double> &y,
|
|||
|
vector<double> &coef);
|
|||
|
|
|||
|
|
|||
|
private:
|
|||
|
TPolyFit &operator = (const TPolyFit &); // disable assignment
|
|||
|
TPolyFit(); // and instantiation
|
|||
|
TPolyFit(const TPolyFit&); // and copying
|
|||
|
|
|||
|
|
|||
|
static void Square (const Matrix &x, // Matrix multiplication routine
|
|||
|
const vector<double> &y,
|
|||
|
Matrix &a, // A = transpose X times X
|
|||
|
vector<double> &g, // G = Y times X
|
|||
|
const int nrow, const int ncol);
|
|||
|
// Forms square coefficient matrix
|
|||
|
|
|||
|
static bool GaussJordan (Matrix &b, // square matrix of coefficients
|
|||
|
const vector<double> &y, // constant vector
|
|||
|
vector<double> &coef); // solution vector
|
|||
|
// returns false if matrix singular
|
|||
|
|
|||
|
static bool GaussJordan2(Matrix &b,
|
|||
|
const vector<double> &y,
|
|||
|
Matrix &w,
|
|||
|
vector<vector<int> > &index);
|
|||
|
};
|
|||
|
|
|||
|
// some utility functions
|
|||
|
|
|||
|
namespace NSUtility
|
|||
|
{
|
|||
|
inline void swap(double &a, double &b) {double t = a; a = b; b = t;}
|
|||
|
void zeroise(vector<double> &array, int n);
|
|||
|
void zeroise(vector<int> &array, int n);
|
|||
|
void zeroise(vector<vector<double> > &matrix, int m, int n);
|
|||
|
void zeroise(vector<vector<int> > &matrix, int m, int n);
|
|||
|
inline double sqr(const double &x) {return x * x;}
|
|||
|
};
|
|||
|
|
|||
|
//---------------------------------------------------------------------------
|
|||
|
// Implementation
|
|||
|
//---------------------------------------------------------------------------
|
|||
|
using namespace NSUtility;
|
|||
|
//------------------------------------------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
// main PolyFit routine
|
|||
|
|
|||
|
double TPolyFit::PolyFit2 (const vector<double> &x,
|
|||
|
const vector<double> &y,
|
|||
|
vector<double> &coefs)
|
|||
|
// nterms = coefs.size()
|
|||
|
// npoints = x.size()
|
|||
|
{
|
|||
|
int i, j;
|
|||
|
double xi, yi, yc, srs, sum_y, sum_y2;
|
|||
|
Matrix xmatr; // Data matrix
|
|||
|
Matrix a;
|
|||
|
vector<double> g; // Constant vector
|
|||
|
const int npoints(x.size());
|
|||
|
const int nterms(coefs.size());
|
|||
|
double correl_coef;
|
|||
|
zeroise(g, nterms);
|
|||
|
zeroise(a, nterms, nterms);
|
|||
|
zeroise(xmatr, npoints, nterms);
|
|||
|
if (nterms < 1) {
|
|||
|
std::cerr << "ERROR: PolyFit called with less than one term" << std::endl;
|
|||
|
return 0;
|
|||
|
}
|
|||
|
if(npoints < 2) {
|
|||
|
std::cerr << "ERROR: PolyFit called with less than two points" << std::endl;
|
|||
|
return 0;
|
|||
|
}
|
|||
|
if(npoints != y.size()) {
|
|||
|
std::cerr << "ERROR: PolyFit called with x and y of unequal size" << std::endl;
|
|||
|
return 0;
|
|||
|
}
|
|||
|
for(i = 0; i < npoints; ++i)
|
|||
|
{
|
|||
|
// { setup x matrix }
|
|||
|
xi = x[i];
|
|||
|
xmatr[i][0] = 1.0; // { first column }
|
|||
|
for(j = 1; j < nterms; ++j)
|
|||
|
xmatr[i][j] = xmatr [i][j - 1] * xi;
|
|||
|
}
|
|||
|
Square (xmatr, y, a, g, npoints, nterms);
|
|||
|
if(!GaussJordan (a, g, coefs))
|
|||
|
return -1;
|
|||
|
sum_y = 0.0;
|
|||
|
sum_y2 = 0.0;
|
|||
|
srs = 0.0;
|
|||
|
for(i = 0; i < npoints; ++i)
|
|||
|
{
|
|||
|
yi = y[i];
|
|||
|
yc = 0.0;
|
|||
|
for(j = 0; j < nterms; ++j)
|
|||
|
yc += coefs [j] * xmatr [i][j];
|
|||
|
srs += sqr (yc - yi);
|
|||
|
sum_y += yi;
|
|||
|
sum_y2 += yi * yi;
|
|||
|
}
|
|||
|
|
|||
|
// If all Y values are the same, avoid dividing by zero
|
|||
|
correl_coef = sum_y2 - sqr (sum_y) / npoints;
|
|||
|
// Either return 0 or the correct value of correlation coefficient
|
|||
|
if (correl_coef != 0)
|
|||
|
correl_coef = srs / correl_coef;
|
|||
|
if (correl_coef >= 1)
|
|||
|
correl_coef = 0.0;
|
|||
|
else
|
|||
|
correl_coef = sqrt (1.0 - correl_coef);
|
|||
|
return correl_coef;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
//------------------------------------------------------------------------
|
|||
|
|
|||
|
// Matrix multiplication routine
|
|||
|
// A = transpose X times X
|
|||
|
// G = Y times X
|
|||
|
|
|||
|
// Form square coefficient matrix
|
|||
|
|
|||
|
void TPolyFit::Square (const Matrix &x,
|
|||
|
const vector<double> &y,
|
|||
|
Matrix &a,
|
|||
|
vector<double> &g,
|
|||
|
const int nrow,
|
|||
|
const int ncol)
|
|||
|
{
|
|||
|
int i, k, l;
|
|||
|
for(k = 0; k < ncol; ++k)
|
|||
|
{
|
|||
|
for(l = 0; l < k + 1; ++l)
|
|||
|
{
|
|||
|
a [k][l] = 0.0;
|
|||
|
for(i = 0; i < nrow; ++i)
|
|||
|
{
|
|||
|
a[k][l] += x[i][l] * x [i][k];
|
|||
|
if(k != l)
|
|||
|
a[l][k] = a[k][l];
|
|||
|
}
|
|||
|
}
|
|||
|
g[k] = 0.0;
|
|||
|
for(i = 0; i < nrow; ++i)
|
|||
|
g[k] += y[i] * x[i][k];
|
|||
|
}
|
|||
|
}
|
|||
|
//---------------------------------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
bool TPolyFit::GaussJordan (Matrix &b,
|
|||
|
const vector<double> &y,
|
|||
|
vector<double> &coef)
|
|||
|
//b square matrix of coefficients
|
|||
|
//y constant vector
|
|||
|
//coef solution vector
|
|||
|
//ncol order of matrix got from b.size()
|
|||
|
|
|||
|
|
|||
|
{
|
|||
|
/*
|
|||
|
{ Gauss Jordan matrix inversion and solution }
|
|||
|
|
|||
|
{ B (n, n) coefficient matrix becomes inverse }
|
|||
|
{ Y (n) original constant vector }
|
|||
|
{ W (n, m) constant vector(s) become solution vector }
|
|||
|
{ DETERM is the determinant }
|
|||
|
{ ERROR = 1 if singular }
|
|||
|
{ INDEX (n, 3) }
|
|||
|
{ NV is number of constant vectors }
|
|||
|
*/
|
|||
|
|
|||
|
int ncol(b.size());
|
|||
|
int irow, icol;
|
|||
|
vector<vector<int> >index;
|
|||
|
Matrix w;
|
|||
|
|
|||
|
zeroise(w, ncol, ncol);
|
|||
|
zeroise(index, ncol, 3);
|
|||
|
|
|||
|
if(!GaussJordan2(b, y, w, index))
|
|||
|
return false;
|
|||
|
|
|||
|
// Interchange columns
|
|||
|
int m;
|
|||
|
for (int i = 0; i < ncol; ++i)
|
|||
|
{
|
|||
|
m = ncol - i - 1;
|
|||
|
if(index [m][0] != index [m][1])
|
|||
|
{
|
|||
|
irow = index [m][0];
|
|||
|
icol = index [m][1];
|
|||
|
for(int k = 0; k < ncol; ++k)
|
|||
|
swap (b[k][irow], b[k][icol]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
for(int k = 0; k < ncol; ++k)
|
|||
|
{
|
|||
|
if(index [k][2] != 0)
|
|||
|
{
|
|||
|
std::cerr << "ERROR: Error in PolyFit::GaussJordan: matrix is singular" << std::endl;
|
|||
|
return false;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
for( int i = 0; i < ncol; ++i)
|
|||
|
coef[i] = w[i][0];
|
|||
|
|
|||
|
|
|||
|
return true;
|
|||
|
} // end; { procedure GaussJordan }
|
|||
|
//----------------------------------------------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
bool TPolyFit::GaussJordan2(Matrix &b,
|
|||
|
const vector<double> &y,
|
|||
|
Matrix &w,
|
|||
|
vector<vector<int> > &index)
|
|||
|
{
|
|||
|
//GaussJordan2; // first half of GaussJordan
|
|||
|
// actual start of gaussj
|
|||
|
|
|||
|
double big, t;
|
|||
|
double pivot;
|
|||
|
double determ;
|
|||
|
int irow, icol;
|
|||
|
int ncol(b.size());
|
|||
|
int nv = 1; // single constant vector
|
|||
|
for(int i = 0; i < ncol; ++i)
|
|||
|
{
|
|||
|
w[i][0] = y[i]; // copy constant vector
|
|||
|
index[i][2] = -1;
|
|||
|
}
|
|||
|
determ = 1.0;
|
|||
|
for(int i = 0; i < ncol; ++i)
|
|||
|
{
|
|||
|
// Search for largest element
|
|||
|
big = 0.0;
|
|||
|
for(int j = 0; j < ncol; ++j)
|
|||
|
{
|
|||
|
if(index[j][2] != 0)
|
|||
|
{
|
|||
|
for(int k = 0; k < ncol; ++k)
|
|||
|
{
|
|||
|
if(index[k][2] > 0) {
|
|||
|
std::cerr << "ERROR: Error in PolyFit::GaussJordan2: matrix is singular" << std::endl;
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
if(index[k][2] < 0 && fabs(b[j][k]) > big)
|
|||
|
{
|
|||
|
irow = j;
|
|||
|
icol = k;
|
|||
|
big = fabs(b[j][k]);
|
|||
|
}
|
|||
|
} // { k-loop }
|
|||
|
}
|
|||
|
} // { j-loop }
|
|||
|
index [icol][2] = index [icol][2] + 1;
|
|||
|
index [i][0] = irow;
|
|||
|
index [i][1] = icol;
|
|||
|
|
|||
|
// Interchange rows to put pivot on diagonal
|
|||
|
// GJ3
|
|||
|
if(irow != icol)
|
|||
|
{
|
|||
|
determ = -determ;
|
|||
|
for(int m = 0; m < ncol; ++m)
|
|||
|
swap (b [irow][m], b[icol][m]);
|
|||
|
if (nv > 0)
|
|||
|
for (int m = 0; m < nv; ++m)
|
|||
|
swap (w[irow][m], w[icol][m]);
|
|||
|
} // end GJ3
|
|||
|
|
|||
|
// divide pivot row by pivot column
|
|||
|
pivot = b[icol][icol];
|
|||
|
determ *= pivot;
|
|||
|
b[icol][icol] = 1.0;
|
|||
|
|
|||
|
for(int m = 0; m < ncol; ++m)
|
|||
|
b[icol][m] /= pivot;
|
|||
|
if(nv > 0)
|
|||
|
for(int m = 0; m < nv; ++m)
|
|||
|
w[icol][m] /= pivot;
|
|||
|
|
|||
|
// Reduce nonpivot rows
|
|||
|
for(int n = 0; n < ncol; ++n)
|
|||
|
{
|
|||
|
if(n != icol)
|
|||
|
{
|
|||
|
t = b[n][icol];
|
|||
|
b[n][icol] = 0.0;
|
|||
|
for(int m = 0; m < ncol; ++m)
|
|||
|
b[n][m] -= b[icol][m] * t;
|
|||
|
if(nv > 0)
|
|||
|
for(int m = 0; m < nv; ++m)
|
|||
|
w[n][m] -= w[icol][m] * t;
|
|||
|
}
|
|||
|
}
|
|||
|
} // { i-loop }
|
|||
|
return true;
|
|||
|
}
|
|||
|
//----------------------------------------------------------------------------------------------
|
|||
|
|
|||
|
//------------------------------------------------------------------------------------
|
|||
|
|
|||
|
// Utility functions
|
|||
|
//--------------------------------------------------------------------------
|
|||
|
|
|||
|
// fills a vector with zeros.
|
|||
|
void NSUtility::zeroise(vector<double> &array, int n)
|
|||
|
{
|
|||
|
array.clear();
|
|||
|
for(int j = 0; j < n; ++j)
|
|||
|
array.push_back(0);
|
|||
|
}
|
|||
|
//--------------------------------------------------------------------------
|
|||
|
|
|||
|
// fills a vector with zeros.
|
|||
|
void NSUtility::zeroise(vector<int> &array, int n)
|
|||
|
{
|
|||
|
array.clear();
|
|||
|
for(int j = 0; j < n; ++j)
|
|||
|
array.push_back(0);
|
|||
|
}
|
|||
|
//--------------------------------------------------------------------------
|
|||
|
|
|||
|
// fills a (m by n) matrix with zeros.
|
|||
|
void NSUtility::zeroise(vector<vector<double> > &matrix, int m, int n)
|
|||
|
{
|
|||
|
vector<double> zero;
|
|||
|
zeroise(zero, n);
|
|||
|
matrix.clear();
|
|||
|
for(int j = 0; j < m; ++j)
|
|||
|
matrix.push_back(zero);
|
|||
|
}
|
|||
|
//--------------------------------------------------------------------------
|
|||
|
|
|||
|
// fills a (m by n) matrix with zeros.
|
|||
|
void NSUtility::zeroise(vector<vector<int> > &matrix, int m, int n)
|
|||
|
{
|
|||
|
vector<int> zero;
|
|||
|
zeroise(zero, n);
|
|||
|
matrix.clear();
|
|||
|
for(int j = 0; j < m; ++j)
|
|||
|
matrix.push_back(zero);
|
|||
|
}
|
|||
|
//--------------------------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
#endif
|
|||
|
|