13
0
livetrax/libs/plugins/a-eq.lv2/a-eq.c

651 lines
15 KiB
C
Raw Normal View History

/* a-eq
* Copyright (C) 2016 Damien Zammit <damien@zamaudio.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE // needed for M_PI
#endif
#include <math.h>
#include <complex.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdio.h>
#include "lv2/lv2plug.in/ns/lv2core/lv2.h"
#ifdef LV2_EXTENDED
#include <cairo/cairo.h>
#include "ardour/lv2_extensions.h"
#endif
#define AEQ_URI "urn:ardour:a-eq"
#define BANDS 6
#ifndef MIN
#define MIN(A,B) ((A) < (B)) ? (A) : (B)
#endif
typedef enum {
AEQ_SHELFTOGL = 0,
AEQ_FREQL,
AEQ_GAINL,
AEQ_FREQ1,
AEQ_GAIN1,
AEQ_BW1,
AEQ_FREQ2,
AEQ_GAIN2,
AEQ_BW2,
AEQ_FREQ3,
AEQ_GAIN3,
AEQ_BW3,
AEQ_FREQ4,
AEQ_GAIN4,
AEQ_BW4,
AEQ_SHELFTOGH,
AEQ_FREQH,
AEQ_GAINH,
AEQ_MASTER,
AEQ_FILTOGL,
AEQ_FILTOG1,
AEQ_FILTOG2,
AEQ_FILTOG3,
AEQ_FILTOG4,
AEQ_FILTOGH,
AEQ_INPUT,
AEQ_OUTPUT,
} PortIndex;
static inline float
to_dB(float g) {
return (20.f*log10(g));
}
static inline float
from_dB(float gdb) {
return (exp(gdb/20.f*log(10.f)));
}
struct linear_svf {
double g, k;
double a[3];
double m[3];
double s[2];
};
static void linear_svf_reset(struct linear_svf *self)
{
self->s[0] = self->s[1] = 0.0;
}
typedef struct {
float* shelftogl;
float* shelftogh;
float* f0[BANDS];
float* g[BANDS];
float* bw[BANDS];
float* filtog[BANDS];
float* master;
float srate;
float* input;
float* output;
struct linear_svf v_filter[BANDS];
float v_g[BANDS];
float v_bw[BANDS];
float v_f0[BANDS];
float v_filtog[BANDS];
float v_shelftogl;
float v_shelftogh;
float v_master;
bool need_expose;
#ifdef LV2_EXTENDED
LV2_Inline_Display_Image_Surface surf;
cairo_surface_t* display;
LV2_Inline_Display* queue_draw;
uint32_t w, h;
#endif
} Aeq;
static LV2_Handle
instantiate(const LV2_Descriptor* descriptor,
double rate,
const char* bundle_path,
const LV2_Feature* const* features)
{
Aeq* aeq = (Aeq*)malloc(sizeof(Aeq));
aeq->srate = rate;
#ifdef LV2_EXTENDED
for (int i=0; features[i]; ++i) {
if (!strcmp(features[i]->URI, LV2_INLINEDISPLAY__queue_draw)) {
aeq->queue_draw = (LV2_Inline_Display*) features[i]->data;
}
}
#endif
for (int i = 0; i < BANDS; i++)
linear_svf_reset(&aeq->v_filter[i]);
aeq->need_expose = true;
#ifdef LV2_EXTENDED
aeq->display = NULL;
#endif
return (LV2_Handle)aeq;
}
static void
connect_port(LV2_Handle instance,
uint32_t port,
void* data)
{
Aeq* aeq = (Aeq*)instance;
switch ((PortIndex)port) {
case AEQ_SHELFTOGL:
aeq->shelftogl = (float*)data;
break;
case AEQ_FREQL:
aeq->f0[0] = (float*)data;
break;
case AEQ_GAINL:
aeq->g[0] = (float*)data;
break;
case AEQ_FREQ1:
aeq->f0[1] = (float*)data;
break;
case AEQ_GAIN1:
aeq->g[1] = (float*)data;
break;
case AEQ_BW1:
aeq->bw[1] = (float*)data;
break;
case AEQ_FREQ2:
aeq->f0[2] = (float*)data;
break;
case AEQ_GAIN2:
aeq->g[2] = (float*)data;
break;
case AEQ_BW2:
aeq->bw[2] = (float*)data;
break;
case AEQ_FREQ3:
aeq->f0[3] = (float*)data;
break;
case AEQ_GAIN3:
aeq->g[3] = (float*)data;
break;
case AEQ_BW3:
aeq->bw[3] = (float*)data;
break;
case AEQ_FREQ4:
aeq->f0[4] = (float*)data;
break;
case AEQ_GAIN4:
aeq->g[4] = (float*)data;
break;
case AEQ_BW4:
aeq->bw[4] = (float*)data;
break;
case AEQ_SHELFTOGH:
aeq->shelftogh = (float*)data;
break;
case AEQ_FREQH:
aeq->f0[5] = (float*)data;
break;
case AEQ_GAINH:
aeq->g[5] = (float*)data;
break;
case AEQ_MASTER:
aeq->master = (float*)data;
break;
case AEQ_FILTOGL:
aeq->filtog[0] = (float*)data;
break;
case AEQ_FILTOG1:
aeq->filtog[1] = (float*)data;
break;
case AEQ_FILTOG2:
aeq->filtog[2] = (float*)data;
break;
case AEQ_FILTOG3:
aeq->filtog[3] = (float*)data;
break;
case AEQ_FILTOG4:
aeq->filtog[4] = (float*)data;
break;
case AEQ_FILTOGH:
aeq->filtog[5] = (float*)data;
break;
case AEQ_INPUT:
aeq->input = (float*)data;
break;
case AEQ_OUTPUT:
aeq->output = (float*)data;
break;
}
}
static void
activate(LV2_Handle instance)
{
int i;
Aeq* aeq = (Aeq*)instance;
for (i = 0; i < BANDS; i++)
linear_svf_reset(&aeq->v_filter[i]);
}
// SVF filters
// http://www.cytomic.com/files/dsp/SvfLinearTrapOptimised2.pdf
static void linear_svf_set_hp(struct linear_svf *self, float sample_rate, float cutoff, float resonance)
{
double f0 = (double)cutoff;
double q = (double)resonance;
double sr = (double)sample_rate;
self->g = tan(M_PI * (f0 / sr));
self->k = 1.0 / q;
self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k));
self->a[1] = self->g * self->a[0];
self->a[2] = self->g * self->a[1];
self->m[0] = 1.0;
self->m[1] = -self->k;
self->m[2] = -1.0;
}
static void linear_svf_set_lp(struct linear_svf *self, float sample_rate, float cutoff, float resonance)
{
double f0 = (double)cutoff;
double q = (double)resonance;
double sr = (double)sample_rate;
self->g = tan(M_PI * (f0 / sr));
self->k = 1.0 / q;
self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k));
self->a[1] = self->g * self->a[0];
self->a[2] = self->g * self->a[1];
self->m[0] = 0.0;
self->m[1] = 0.0;
self->m[2] = 1.0;
}
static void linear_svf_set_peq(struct linear_svf *self, float gdb, float sample_rate, float cutoff, float bandwidth)
{
double f0 = (double)cutoff;
double q = (double)pow(2.0, 1.0 / bandwidth) / (pow(2.0, bandwidth) - 1.0);
double sr = (double)sample_rate;
double A = pow(10.0, gdb/40.0);
self->g = tan(M_PI * (f0 / sr));
self->k = 1.0 / (q * A);
self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k));
self->a[1] = self->g * self->a[0];
self->a[2] = self->g * self->a[1];
self->m[0] = 1.0;
self->m[1] = self->k * (A * A - 1.0);
self->m[2] = 0.0;
}
static void linear_svf_set_highshelf(struct linear_svf *self, float gdb, float sample_rate, float cutoff, float resonance)
{
double f0 = (double)cutoff;
double q = (double)resonance;
double sr = (double)sample_rate;
double A = pow(10.0, gdb/40.0);
self->g = tan(M_PI * (f0 / sr));
self->k = 1.0 / q;
self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k));
self->a[1] = self->g * self->a[0];
self->a[2] = self->g * self->a[1];
self->m[0] = A * A;
self->m[1] = self->k * (1.0 - A) * A;
self->m[2] = 1.0 - A * A;
}
static void linear_svf_set_lowshelf(struct linear_svf *self, float gdb, float sample_rate, float cutoff, float resonance)
{
double f0 = (double)cutoff;
double q = (double)resonance;
double sr = (double)sample_rate;
double A = pow(10.0, gdb/40.0);
self->g = tan(M_PI * (f0 / sr));
self->k = 1.0 / q;
self->a[0] = 1.0 / (1.0 + self->g * (self->g + self->k));
self->a[1] = self->g * self->a[0];
self->a[2] = self->g * self->a[1];
self->m[0] = 1.0;
self->m[1] = self->k * (A - 1.0);
self->m[2] = A * A - 1.0;
}
static float run_linear_svf(struct linear_svf *self, float in)
{
double v[3];
double din = (double)in;
double out;
v[2] = din - self->s[1];
v[0] = (self->a[0] * self->s[0]) + (self->a[1] * v[2]);
v[1] = self->s[1] + (self->a[1] * self->s[0]) + (self->a[2] * v[2]);
self->s[0] = (2.0 * v[0]) - self->s[0];
self->s[1] = (2.0 * v[1]) - self->s[1];
out = (self->m[0] * din)
+ (self->m[1] * v[0])
+ (self->m[2] * v[1]);
return (float)out;
}
static void
run(LV2_Handle instance, uint32_t n_samples)
{
Aeq* aeq = (Aeq*)instance;
const float* const input = aeq->input;
float* const output = aeq->output;
float srate = aeq->srate;
float in0, out;
uint32_t i, j;
if (*(aeq->shelftogl) > 0.5) {
linear_svf_set_lowshelf(&aeq->v_filter[0], *(aeq->g[0]), srate, *(aeq->f0[0]), 0.7071068);
} else {
linear_svf_set_hp(&aeq->v_filter[0], srate, *(aeq->f0[0]), 0.7071068);
}
linear_svf_set_peq(&aeq->v_filter[1], *(aeq->g[1]), srate, *(aeq->f0[1]), *(aeq->bw[1]));
linear_svf_set_peq(&aeq->v_filter[2], *(aeq->g[2]), srate, *(aeq->f0[2]), *(aeq->bw[2]));
linear_svf_set_peq(&aeq->v_filter[3], *(aeq->g[3]), srate, *(aeq->f0[3]), *(aeq->bw[3]));
linear_svf_set_peq(&aeq->v_filter[4], *(aeq->g[4]), srate, *(aeq->f0[4]), *(aeq->bw[4]));
if (*(aeq->shelftogh) > 0.5) {
linear_svf_set_highshelf(&aeq->v_filter[5], *(aeq->g[5]), srate, *(aeq->f0[5]), 0.7071068);
} else {
linear_svf_set_lp(&aeq->v_filter[5], srate, *(aeq->f0[5]), 0.7071068);
}
for (i = 0; i < n_samples; i++) {
in0 = input[i];
out = in0;
for (j = 0; j < BANDS; j++) {
if (*(aeq->filtog[j]) > 0.5)
out = run_linear_svf(&aeq->v_filter[j], out);
}
output[i] = out * from_dB(*(aeq->master));
}
for (i = 0; i < BANDS; i++) {
if (aeq->v_f0[i] != *(aeq->f0[i])) {
aeq->v_f0[i] = *(aeq->f0[i]);
aeq->need_expose = true;
}
if (aeq->v_g[i] != *(aeq->g[i])) {
aeq->v_g[i] = *(aeq->g[i]);
aeq->need_expose = true;
}
if (i != 0 && i != 5 && aeq->v_bw[i] != *(aeq->bw[i])) {
aeq->v_bw[i] = *(aeq->bw[i]);
aeq->need_expose = true;
}
if (aeq->v_filtog[i] != *(aeq->filtog[i])) {
aeq->v_filtog[i] = *(aeq->filtog[i]);
aeq->need_expose = true;
}
if (aeq->v_shelftogl != *(aeq->shelftogl)) {
aeq->v_shelftogl = *(aeq->shelftogl);
aeq->need_expose = true;
}
if (aeq->v_shelftogh != *(aeq->shelftogh)) {
aeq->v_shelftogh = *(aeq->shelftogh);
aeq->need_expose = true;
}
if (aeq->v_master != *(aeq->master)) {
aeq->v_master = *(aeq->master);
aeq->need_expose = true;
}
}
#ifdef LV2_EXTENDED
if (aeq->need_expose && aeq->queue_draw) {
aeq->need_expose = false;
aeq->queue_draw->queue_draw (aeq->queue_draw->handle);
}
#endif
}
#ifdef LV2_EXTENDED
static float
eq_curve (Aeq* self, float f) {
float SR = self->srate;
double complex H = 1.0;
double theta = f * 2. * M_PI / SR;
double complex z = cexp(I * theta);
double complex zz = cexp(2 * I * theta);
double complex zm = z - 1.0;
double complex zp = z + 1.0;
double complex zzm = zz - 1.0;
double A;
double m0, m1, m2, g, k;
// low
if (self->v_filtog[0]) {
A = pow(10.0, self->v_g[0]/40.0);
m0 = self->v_filter[0].m[0];
m1 = self->v_filter[0].m[1];
m2 = self->v_filter[0].m[2];
g = self->v_filter[0].g;
k = self->v_filter[0].k;
if (self->v_shelftogl) {
// lowshelf
H *= (A*m0*zm*zm + g*g*(m0+m2)*zp*zp + sqrt(A)*g*(k*m0+m1) * zzm) / (A*zm*zm + g*g*zp*zp + sqrt(A)*g*k*zzm);
} else {
// hp:
H *= zm*zm / (zm*zm + g*g*zp*zp + g*k*zzm);
}
}
// peq1:
if (self->v_filtog[1]) {
A = pow(10.0, self->v_g[1]/40.0);
m1 = self->v_filter[1].m[1] / A;
g = self->v_filter[1].g;
k = self->v_filter[1].k;
H *= (g*k*zzm + A*(g*zp*(m1*zm + g*m2*zp) + (zm*zm + g*g*zp*zp))) / (g*k*zzm + A*(zm*zm + g*g*zp*zp));
}
// peq2:
if (self->v_filtog[2]) {
A = pow(10.0, self->v_g[2]/40.0);
m1 = self->v_filter[2].m[1] / A;
g = self->v_filter[2].g;
k = self->v_filter[2].k;
H *= (g*k*zzm + A*(g*zp*(m1*zm + g*m2*zp) + (zm*zm + g*g*zp*zp))) / (g*k*zzm + A*(zm*zm + g*g*zp*zp));
}
// peq3:
if (self->v_filtog[3]) {
A = pow(10.0, self->v_g[3]/40.0);
m1 = self->v_filter[3].m[1] / A;
g = self->v_filter[3].g;
k = self->v_filter[3].k;
H *= (g*k*zzm + A*(g*zp*(m1*zm + g*m2*zp) + (zm*zm + g*g*zp*zp))) / (g*k*zzm + A*(zm*zm + g*g*zp*zp));
}
// peq4:
if (self->v_filtog[4]) {
A = pow(10.0, self->v_g[4]/40.0);
m1 = self->v_filter[4].m[1] / A;
g = self->v_filter[4].g;
k = self->v_filter[4].k;
H *= (g*k*zzm + A*(g*zp*(m1*zm + g*m2*zp) + (zm*zm + g*g*zp*zp))) / (g*k*zzm + A*(zm*zm + g*g*zp*zp));
}
// high
if (self->v_filtog[5]) {
A = pow(10.0, self->v_g[5]/40.0);
m0 = self->v_filter[5].m[0];
m1 = self->v_filter[5].m[1];
m2 = self->v_filter[5].m[2];
g = self->v_filter[5].g;
k = self->v_filter[5].k;
if (self->v_shelftogh) {
// highshelf:
H *= ( sqrt(A) * g * zp * (m1 * zm + sqrt(A)*g*m2*zp) + m0 * ( zm*zm + A*g*g*zp*zp + sqrt(A)*g*k*zzm)) / (zm*zm + A*g*g*zp*zp + sqrt(A)*g*k*zzm);
} else {
// lp:
H *= (g*g*zp*zp) / (zm*zm + g*g*zp*zp + g*k*zzm);
}
}
return cabs(H);
}
static LV2_Inline_Display_Image_Surface *
render_inline (LV2_Handle instance, uint32_t w, uint32_t max_h)
{
Aeq* self = (Aeq*)instance;
uint32_t h = MIN (w * 9 / 16, max_h);
if (!self->display || self->w != w || self->h != h) {
if (self->display) cairo_surface_destroy(self->display);
self->display = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, w, h);
self->w = w;
self->h = h;
}
cairo_t* cr = cairo_create (self->display);
// clear background
cairo_rectangle (cr, 0, 0, w, h);
cairo_set_source_rgba (cr, .2, .2, .2, 1.0);
cairo_fill (cr);
cairo_set_line_width(cr, 1.0);
// draw grid 5dB steps
const double dash2[] = {1, 3};
cairo_save (cr);
cairo_set_line_cap(cr, CAIRO_LINE_CAP_ROUND);
cairo_set_dash(cr, dash2, 2, 2);
cairo_set_source_rgba (cr, 0.5, 0.5, 0.5, 0.5);
for (uint32_t d = 1; d < 8; ++d) {
const float y = -.5 + floorf (h * (d * 5.f / 40.f));
cairo_move_to (cr, 0, y);
cairo_line_to (cr, w, y);
cairo_stroke (cr);
}
cairo_restore (cr);
// draw curve
cairo_set_source_rgba (cr, .8, .8, .8, 1.0);
cairo_move_to (cr, 0, h);
for (uint32_t x = 0; x < w; ++x) {
// plot 20..20kHz +-20dB
const float x_hz = 20.f * powf (1000.f, (float)x / (float)w);
const float y_db = to_dB(eq_curve(self, x_hz)) + self->v_master;
const float y = h * -y_db / 40.0 + h / 2;
cairo_line_to (cr, x, y);
//printf("(hz,H,db)=(%f, %f, %f)\n", x_hz, from_dB(y_db), y_db);
}
cairo_stroke_preserve (cr);
cairo_line_to (cr, w, h);
cairo_close_path (cr);
cairo_clip (cr);
// create RGBA surface
cairo_destroy (cr);
cairo_surface_flush (self->display);
self->surf.width = cairo_image_surface_get_width (self->display);
self->surf.height = cairo_image_surface_get_height (self->display);
self->surf.stride = cairo_image_surface_get_stride (self->display);
self->surf.data = cairo_image_surface_get_data (self->display);
return &self->surf;
}
#endif
static const void*
extension_data(const char* uri)
{
#ifdef LV2_EXTENDED
static const LV2_Inline_Display_Interface display = { render_inline };
if (!strcmp(uri, LV2_INLINEDISPLAY__interface)) {
return &display;
}
#endif
return NULL;
}
static void
cleanup(LV2_Handle instance)
{
#ifdef LV2_EXTENDED
Aeq* aeq = (Aeq*)instance;
if (aeq->display) {
cairo_surface_destroy (aeq->display);
}
#endif
free(instance);
}
static const LV2_Descriptor descriptor = {
AEQ_URI,
instantiate,
connect_port,
activate,
run,
NULL,
cleanup,
extension_data
};
LV2_SYMBOL_EXPORT
const LV2_Descriptor*
lv2_descriptor(uint32_t index)
{
switch (index) {
case 0:
return &descriptor;
default:
return NULL;
}
}