13
0
livetrax/libs/ptformat/ptformat.cc

1334 lines
33 KiB
C++
Raw Normal View History

/*
* libptformat - a library to read ProTools sessions
*
* Copyright (C) 2015-2019 Damien Zammit
* Copyright (C) 2015-2019 Robin Gareus
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <string.h>
#include <assert.h>
#ifdef HAVE_GLIB
# include <glib/gstdio.h>
# define ptf_open g_fopen
#else
# define ptf_open fopen
#endif
#include "ptformat/ptformat.h"
#define BITCODE "0010111100101011"
#define ZMARK '\x5a'
#define ZERO_TICKS 0xe8d4a51000ULL
#define MAX_CONTENT_TYPE 0x3000
#define MAX_CHANNELS_PER_TRACK 8
#if 0
#define DEBUG
#endif
#ifdef DEBUG
#define verbose_printf(...) printf("XXX PTFORMAT XXX: " __VA_ARGS__)
#else
#define verbose_printf(...)
#endif
using namespace std;
static void
hexdump(uint8_t *data, int length, int level)
{
int i,j,k,end,step=16;
for (i = 0; i < length; i += step) {
end = i + step;
if (end > length) end = length;
for (k = 0; k < level; k++)
printf(" ");
for (j = i; j < end; j++) {
printf("%02X ", data[j]);
}
for (j = i; j < end; j++) {
if (data[j] < 128 && data[j] > 32)
printf("%c", data[j]);
else
printf(".");
}
printf("\n");
}
}
PTFFormat::PTFFormat()
: _ptfunxored(0)
, _len(0)
, _sessionrate(0)
, _version(0)
, _product(NULL)
, _targetrate (0)
, _ratefactor (1.0)
, is_bigendian(false)
{
}
PTFFormat::~PTFFormat() {
cleanup();
}
const std::string
PTFFormat::get_content_description(uint16_t ctype) {
switch(ctype) {
case 0x0030:
return std::string("INFO product and version");
case 0x1001:
return std::string("WAV samplerate, size");
case 0x1003:
return std::string("WAV metadata");
case 0x1004:
return std::string("WAV list full");
case 0x1007:
return std::string("region name, number");
case 0x1008:
return std::string("AUDIO region name, number (v5)");
case 0x100b:
return std::string("AUDIO region list (v5)");
case 0x100f:
return std::string("AUDIO region->track entry");
case 0x1011:
return std::string("AUDIO region->track map entries");
case 0x1012:
return std::string("AUDIO region->track full map");
case 0x1014:
return std::string("AUDIO track name, number");
case 0x1015:
return std::string("AUDIO tracks");
case 0x1017:
return std::string("PLUGIN entry");
case 0x1018:
return std::string("PLUGIN full list");
case 0x1021:
return std::string("I/O channel entry");
case 0x1022:
return std::string("I/O channel list");
case 0x1028:
return std::string("INFO sample rate");
case 0x103a:
return std::string("WAV names");
case 0x104f:
return std::string("AUDIO region->track subentry (v8)");
case 0x1050:
return std::string("AUDIO region->track entry (v8)");
case 0x1052:
return std::string("AUDIO region->track map entries (v8)");
case 0x1054:
return std::string("AUDIO region->track full map (v8)");
case 0x1056:
return std::string("MIDI region->track entry");
case 0x1057:
return std::string("MIDI region->track map entries");
case 0x1058:
return std::string("MIDI region->track full map");
case 0x2000:
return std::string("MIDI events block");
case 0x2001:
return std::string("MIDI region name, number (v5)");
case 0x2002:
return std::string("MIDI regions map (v5)");
case 0x2067:
return std::string("INFO path of session");
case 0x2511:
return std::string("Snaps block");
case 0x2519:
return std::string("MIDI track full list");
case 0x251a:
return std::string("MIDI track name, number");
case 0x2523:
return std::string("COMPOUND region element");
case 0x2602:
return std::string("I/O route");
case 0x2603:
return std::string("I/O routing table");
case 0x2628:
return std::string("COMPOUND region group");
case 0x2629:
return std::string("AUDIO region name, number (v10)");
case 0x262a:
return std::string("AUDIO region list (v10)");
case 0x262c:
return std::string("COMPOUND region full map");
case 0x2633:
return std::string("MIDI regions name, number (v10)");
case 0x2634:
return std::string("MIDI regions map (v10)");
case 0x271a:
return std::string("MARKER list");
default:
return std::string("UNKNOWN content type");
}
}
static uint16_t
u_endian_read2(unsigned char *buf, bool bigendian)
{
if (bigendian) {
return ((uint16_t)(buf[0]) << 8) | (uint16_t)(buf[1]);
} else {
return ((uint16_t)(buf[1]) << 8) | (uint16_t)(buf[0]);
}
}
static uint32_t
u_endian_read3(unsigned char *buf, bool bigendian)
{
if (bigendian) {
return ((uint32_t)(buf[0]) << 16) |
((uint32_t)(buf[1]) << 8) |
(uint32_t)(buf[2]);
} else {
return ((uint32_t)(buf[2]) << 16) |
((uint32_t)(buf[1]) << 8) |
(uint32_t)(buf[0]);
}
}
static uint32_t
u_endian_read4(unsigned char *buf, bool bigendian)
{
if (bigendian) {
return ((uint32_t)(buf[0]) << 24) |
((uint32_t)(buf[1]) << 16) |
((uint32_t)(buf[2]) << 8) |
(uint32_t)(buf[3]);
} else {
return ((uint32_t)(buf[3]) << 24) |
((uint32_t)(buf[2]) << 16) |
((uint32_t)(buf[1]) << 8) |
(uint32_t)(buf[0]);
}
}
static uint64_t
u_endian_read5(unsigned char *buf, bool bigendian)
{
if (bigendian) {
return ((uint64_t)(buf[0]) << 32) |
((uint64_t)(buf[1]) << 24) |
((uint64_t)(buf[2]) << 16) |
((uint64_t)(buf[3]) << 8) |
(uint64_t)(buf[4]);
} else {
return ((uint64_t)(buf[4]) << 32) |
((uint64_t)(buf[3]) << 24) |
((uint64_t)(buf[2]) << 16) |
((uint64_t)(buf[1]) << 8) |
(uint64_t)(buf[0]);
}
}
static uint64_t
u_endian_read8(unsigned char *buf, bool bigendian)
{
if (bigendian) {
return ((uint64_t)(buf[0]) << 56) |
((uint64_t)(buf[1]) << 48) |
((uint64_t)(buf[2]) << 40) |
((uint64_t)(buf[3]) << 32) |
((uint64_t)(buf[4]) << 24) |
((uint64_t)(buf[5]) << 16) |
((uint64_t)(buf[6]) << 8) |
(uint64_t)(buf[7]);
} else {
return ((uint64_t)(buf[7]) << 56) |
((uint64_t)(buf[6]) << 48) |
((uint64_t)(buf[5]) << 40) |
((uint64_t)(buf[4]) << 32) |
((uint64_t)(buf[3]) << 24) |
((uint64_t)(buf[2]) << 16) |
((uint64_t)(buf[1]) << 8) |
(uint64_t)(buf[0]);
}
}
void
PTFFormat::cleanup(void) {
_len = 0;
_sessionrate = 0;
_version = 0;
free(_ptfunxored);
_ptfunxored = NULL;
free (_product);
_product = NULL;
_audiofiles.clear();
_regions.clear();
_midiregions.clear();
_tracks.clear();
_miditracks.clear();
free_all_blocks();
}
int64_t
PTFFormat::foundat(unsigned char *haystack, uint64_t n, const char *needle) {
int64_t found = 0;
uint64_t i, j, needle_n;
needle_n = strlen(needle);
for (i = 0; i < n; i++) {
found = i;
for (j = 0; j < needle_n; j++) {
if (haystack[i+j] != needle[j]) {
found = -1;
break;
}
}
if (found > 0)
return found;
}
return -1;
}
bool
PTFFormat::jumpto(uint32_t *currpos, unsigned char *buf, const uint32_t maxoffset, const unsigned char *needle, const uint32_t needlelen) {
uint64_t i;
uint64_t k = *currpos;
while (k + needlelen < maxoffset) {
bool foundall = true;
for (i = 0; i < needlelen; i++) {
if (buf[k+i] != needle[i]) {
foundall = false;
break;
}
}
if (foundall) {
*currpos = k;
return true;
}
k++;
}
return false;
}
bool
PTFFormat::jumpback(uint32_t *currpos, unsigned char *buf, const uint32_t maxoffset, const unsigned char *needle, const uint32_t needlelen) {
uint64_t i;
uint64_t k = *currpos;
while (k > 0 && k + needlelen < maxoffset) {
bool foundall = true;
for (i = 0; i < needlelen; i++) {
if (buf[k+i] != needle[i]) {
foundall = false;
break;
}
}
if (foundall) {
*currpos = k;
return true;
}
k--;
}
return false;
}
bool
PTFFormat::foundin(std::string const& haystack, std::string const& needle) {
size_t found = haystack.find(needle);
if (found != std::string::npos) {
return true;
} else {
return false;
}
}
/* Return values: 0 success
-1 error decrypting pt session
*/
int
PTFFormat::unxor(std::string const& path) {
FILE *fp;
unsigned char xxor[256];
unsigned char ct;
uint64_t i;
uint8_t xor_type;
uint8_t xor_value;
uint8_t xor_delta;
uint16_t xor_len;
if (! (fp = ptf_open(path.c_str(), "rb"))) {
return -1;
}
fseek(fp, 0, SEEK_END);
_len = ftell(fp);
if (_len < 0x14) {
fclose(fp);
return -1;
}
if (! (_ptfunxored = (unsigned char*) malloc(_len * sizeof(unsigned char)))) {
/* Silently fail -- out of memory*/
fclose(fp);
_ptfunxored = 0;
return -1;
}
/* The first 20 bytes are always unencrypted */
fseek(fp, 0x00, SEEK_SET);
i = fread(_ptfunxored, 1, 0x14, fp);
if (i < 0x14) {
fclose(fp);
return -1;
}
xor_type = _ptfunxored[0x12];
xor_value = _ptfunxored[0x13];
xor_len = 256;
// xor_type 0x01 = ProTools 5, 6, 7, 8 and 9
// xor_type 0x05 = ProTools 10, 11, 12
switch(xor_type) {
case 0x01:
xor_delta = gen_xor_delta(xor_value, 53, false);
break;
case 0x05:
xor_delta = gen_xor_delta(xor_value, 11, true);
break;
default:
fclose(fp);
return -1;
}
/* Generate the xor_key */
for (i=0; i < xor_len; i++)
xxor[i] = (i * xor_delta) & 0xff;
/* hexdump(xxor, xor_len); */
/* Read file and decrypt rest of file */
i = 0x14;
fseek(fp, i, SEEK_SET);
while (fread(&ct, 1, 1, fp) != 0) {
uint8_t xor_index = (xor_type == 0x01) ? i & 0xff : (i >> 12) & 0xff;
_ptfunxored[i++] = ct ^ xxor[xor_index];
}
fclose(fp);
return 0;
}
/* Return values: 0 success
-1 error decrypting pt session
-2 error detecting pt session
-3 incompatible pt version
-4 error parsing pt session
*/
int
PTFFormat::load(std::string const& ptf, int64_t targetsr) {
cleanup();
_path = ptf;
if (unxor(_path))
return -1;
if (parse_version())
return -2;
if (_version < 5 || _version > 12)
return -3;
_targetrate = targetsr;
int err = 0;
if ((err = parse())) {
printf ("PARSE FAILED %d\n", err);
return -4;
}
return 0;
}
bool
PTFFormat::parse_version() {
uint32_t seg_len,str_len;
uint8_t *data = _ptfunxored + 0x14;
uintptr_t data_end = ((uintptr_t)_ptfunxored) + 0x100;
uint8_t seg_type;
bool success = false;
if (_ptfunxored[0] != '\x03' && foundat(_ptfunxored, 0x100, BITCODE) != 1) {
return false;
}
while( ((uintptr_t)data < data_end) && (success == false) ) {
if (data[0] != 0x5a) {
success = false;
break;
}
seg_type = data[1];
/* Skip segment header */
data += 3;
if (data[0] == 0 && data[1] == 0) {
/* BE */
is_bigendian = true;
} else {
/* LE */
is_bigendian = false;
}
seg_len = u_endian_read4(&data[0], is_bigendian);
/* Skip seg_len */
data += 4;
if (!(seg_type == 0x04 || seg_type == 0x03) || data[0] != 0x03) {
/* Go to next segment */
data += seg_len;
continue;
}
/* Skip 0x03 0x00 0x00 */
data += 3;
seg_len -= 3;
str_len = (*(uint8_t *)data);
if (! (_product = (uint8_t *)malloc((str_len+1) * sizeof(uint8_t)))) {
success = false;
break;
}
/* Skip str_len */
data += 4;
seg_len -= 4;
memcpy(_product, data, str_len);
_product[str_len] = 0;
data += str_len;
seg_len -= str_len;
/* Skip 0x03 0x00 0x00 0x00 */
data += 4;
seg_len -= 4;
_version = data[0];
if (_version == 0) {
_version = data[3];
}
data += seg_len;
success = true;
}
/* If the above does not work, try other heuristics */
if ((uintptr_t)data >= data_end - seg_len) {
_version = _ptfunxored[0x40];
if (_version == 0) {
_version = _ptfunxored[0x3d];
}
if (_version == 0) {
_version = _ptfunxored[0x3a] + 2;
}
if (_version != 0) {
success = true;
}
}
return (!success);
}
uint8_t
PTFFormat::gen_xor_delta(uint8_t xor_value, uint8_t mul, bool negative) {
uint16_t i;
for (i = 0; i < 256; i++) {
if (((i * mul) & 0xff) == xor_value) {
return (negative) ? i * (-1) : i;
}
}
// Should not occur
return 0;
}
void
PTFFormat::setrates(void) {
_ratefactor = 1.f;
if (_sessionrate != 0) {
_ratefactor = (float)_targetrate / _sessionrate;
}
}
bool
PTFFormat::parse_block_at(uint32_t pos, struct block_t *block, struct block_t *parent, int level) {
struct block_t b;
int childjump = 0;
uint32_t i;
uint32_t max = _len;
if (_ptfunxored[pos] != ZMARK)
return false;
if (parent)
max = parent->block_size + parent->offset;
b.zmark = ZMARK;
b.block_type = u_endian_read2(&_ptfunxored[pos+1], is_bigendian);
b.block_size = u_endian_read4(&_ptfunxored[pos+3], is_bigendian);
b.content_type = u_endian_read2(&_ptfunxored[pos+7], is_bigendian);
b.offset = pos + 7;
if (b.block_size + b.offset > max)
return false;
if (b.block_type & 0xff00)
return false;
block->zmark = b.zmark;
block->block_type = b.block_type;
block->block_size = b.block_size;
block->content_type = b.content_type;
block->offset = b.offset;
block->child.clear();
for (i = 1; (i < block->block_size) && (pos + i + childjump < max); i += childjump ? childjump : 1) {
int p = pos + i;
struct block_t bchild;
childjump = 0;
if (parse_block_at(p, &bchild, block, level+1)) {
block->child.push_back(bchild);
childjump = bchild.block_size + 7;
}
}
return true;
}
void
PTFFormat::dump_block(struct block_t& b, int level)
{
int i;
for (i = 0; i < level; i++) {
printf(" ");
}
printf("%s(0x%04x)\n", get_content_description(b.content_type).c_str(), b.content_type);
hexdump(&_ptfunxored[b.offset], b.block_size, level);
for (vector<PTFFormat::block_t>::iterator c = b.child.begin();
c != b.child.end(); ++c) {
dump_block(*c, level + 1);
}
}
void
PTFFormat::free_block(struct block_t& b)
{
for (vector<PTFFormat::block_t>::iterator c = b.child.begin();
c != b.child.end(); ++c) {
free_block(*c);
}
b.child.clear();
}
void
PTFFormat::free_all_blocks(void)
{
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
free_block(*b);
}
blocks.clear();
}
void
PTFFormat::dump(void) {
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
dump_block(*b, 0);
}
}
void
PTFFormat::parseblocks(void) {
uint32_t i = 20;
while (i < _len) {
struct block_t b;
if (parse_block_at(i, &b, NULL, 0)) {
blocks.push_back(b);
}
i += b.block_size ? b.block_size + 7 : 1;
}
}
int
PTFFormat::parse(void) {
parseblocks();
#ifdef DEBUG
dump();
#endif
if (!parseheader())
return -1;
setrates();
if (_sessionrate < 44100 || _sessionrate > 192000)
return -2;
if (!parseaudio())
return -3;
if (!parserest())
return -4;
if (!parsemidi())
return -5;
return 0;
}
bool
PTFFormat::parseheader(void) {
bool found = false;
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
if (b->content_type == 0x1028) {
_sessionrate = u_endian_read4(&_ptfunxored[b->offset+4], is_bigendian);
found = true;
}
}
return found;
}
std::string
PTFFormat::parsestring (uint32_t pos) {
uint32_t length = u_endian_read4(&_ptfunxored[pos], is_bigendian);
pos += 4;
return std::string((const char *)&_ptfunxored[pos], length);
}
bool
PTFFormat::parseaudio(void) {
bool found = false;
uint32_t nwavs, i, n;
uint32_t pos = 0;
std::string wavtype;
std::string wavname;
// Parse wav names
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
if (b->content_type == 0x1004) {
nwavs = u_endian_read4(&_ptfunxored[b->offset+2], is_bigendian);
for (vector<PTFFormat::block_t>::iterator c = b->child.begin();
c != b->child.end(); ++c) {
if (c->content_type == 0x103a) {
found = true;
//nstrings = u_endian_read4(&_ptfunxored[c->offset+1], is_bigendian);
pos = c->offset + 11;
// Found wav list
for (i = n = 0; (pos < c->offset + c->block_size) && (n < nwavs); i++) {
wavname = parsestring(pos);
pos += wavname.size() + 4;
wavtype = std::string((const char*)&_ptfunxored[pos], 4);
pos += 9;
if (foundin(wavname, std::string(".grp")))
continue;
if (foundin(wavname, std::string("Audio Files"))) {
continue;
}
if (foundin(wavname, std::string("Fade Files"))) {
continue;
}
if (_version < 10) {
if (!(foundin(wavtype, std::string("WAVE")) ||
foundin(wavtype, std::string("EVAW")) ||
foundin(wavtype, std::string("AIFF")) ||
foundin(wavtype, std::string("FFIA"))) ) {
continue;
}
} else {
if (wavtype.size() != 0) {
if (!(foundin(wavtype, std::string("WAVE")) ||
foundin(wavtype, std::string("EVAW")) ||
foundin(wavtype, std::string("AIFF")) ||
foundin(wavtype, std::string("FFIA"))) ) {
continue;
}
} else if (!(foundin(wavname, std::string(".wav")) ||
foundin(wavname, std::string(".aif"))) ) {
continue;
}
}
wav_t f (n);
f.filename = wavname;
n++;
_audiofiles.push_back(f);
}
}
}
}
}
// Add wav length information
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
if (b->content_type == 0x1004) {
vector<PTFFormat::wav_t>::iterator wav = _audiofiles.begin();
for (vector<PTFFormat::block_t>::iterator c = b->child.begin();
c != b->child.end(); ++c) {
if (c->content_type == 0x1003) {
for (vector<PTFFormat::block_t>::iterator d = c->child.begin();
d != c->child.end(); ++d) {
if (d->content_type == 0x1001) {
(*wav).length = u_endian_read8(&_ptfunxored[d->offset+8], is_bigendian);
wav++;
}
}
}
}
}
}
return found;
}
void
PTFFormat::parse_three_point(uint32_t j, uint64_t& start, uint64_t& offset, uint64_t& length) {
uint8_t offsetbytes, lengthbytes, startbytes;
if (is_bigendian) {
offsetbytes = (_ptfunxored[j+4] & 0xf0) >> 4;
lengthbytes = (_ptfunxored[j+3] & 0xf0) >> 4;
startbytes = (_ptfunxored[j+2] & 0xf0) >> 4;
//somethingbytes = (_ptfunxored[j+2] & 0xf);
//skipbytes = _ptfunxored[j+1];
} else {
offsetbytes = (_ptfunxored[j+1] & 0xf0) >> 4; //3
lengthbytes = (_ptfunxored[j+2] & 0xf0) >> 4;
startbytes = (_ptfunxored[j+3] & 0xf0) >> 4; //1
//somethingbytes = (_ptfunxored[j+3] & 0xf);
//skipbytes = _ptfunxored[j+4];
}
switch (offsetbytes) {
case 5:
offset = u_endian_read5(&_ptfunxored[j+5], false);
break;
case 4:
offset = (uint64_t)u_endian_read4(&_ptfunxored[j+5], false);
break;
case 3:
offset = (uint64_t)u_endian_read3(&_ptfunxored[j+5], false);
break;
case 2:
offset = (uint64_t)u_endian_read2(&_ptfunxored[j+5], false);
break;
case 1:
offset = (uint64_t)(_ptfunxored[j+5]);
break;
default:
offset = 0;
break;
}
j+=offsetbytes;
switch (lengthbytes) {
case 5:
length = u_endian_read5(&_ptfunxored[j+5], false);
break;
case 4:
length = (uint64_t)u_endian_read4(&_ptfunxored[j+5], false);
break;
case 3:
length = (uint64_t)u_endian_read3(&_ptfunxored[j+5], false);
break;
case 2:
length = (uint64_t)u_endian_read2(&_ptfunxored[j+5], false);
break;
case 1:
length = (uint64_t)(_ptfunxored[j+5]);
break;
default:
length = 0;
break;
}
j+=lengthbytes;
switch (startbytes) {
case 5:
start = u_endian_read5(&_ptfunxored[j+5], false);
break;
case 4:
start = (uint64_t)u_endian_read4(&_ptfunxored[j+5], false);
break;
case 3:
start = (uint64_t)u_endian_read3(&_ptfunxored[j+5], false);
break;
case 2:
start = (uint64_t)u_endian_read2(&_ptfunxored[j+5], false);
break;
case 1:
start = (uint64_t)(_ptfunxored[j+5]);
break;
default:
start = 0;
break;
}
}
void
PTFFormat::parse_region_info(uint32_t j, block_t& blk, region_t& r) {
uint64_t findex, start, sampleoffset, length;
parse_three_point(j, start, sampleoffset, length);
findex = u_endian_read4(&_ptfunxored[blk.offset + blk.block_size], is_bigendian);
wav_t f (findex);
f.posabsolute = start * _ratefactor;
f.length = length * _ratefactor;
wav_t found;
if (find_wav(findex, found)) {
f.filename = found.filename;
}
std::vector<midi_ev_t> m;
r.startpos = (int64_t)(start*_ratefactor);
r.sampleoffset = (int64_t)(sampleoffset*_ratefactor);
r.length = (int64_t)(length*_ratefactor);
r.wave = f;
r.midi = m;
}
bool
PTFFormat::parserest(void) {
uint32_t i, j, count;
uint64_t start;
uint16_t rindex, rawindex, tindex, mindex;
uint32_t nch;
uint16_t ch_map[MAX_CHANNELS_PER_TRACK];
bool found = false;
bool region_is_fade = false;
std::string regionname, trackname, midiregionname;
rindex = 0;
// Parse sources->regions
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
if (b->content_type == 0x100b || b->content_type == 0x262a) {
//nregions = u_endian_read4(&_ptfunxored[b->offset+2], is_bigendian);
for (vector<PTFFormat::block_t>::iterator c = b->child.begin();
c != b->child.end(); ++c) {
if (c->content_type == 0x1008 || c->content_type == 0x2629) {
vector<PTFFormat::block_t>::iterator d = c->child.begin();
region_t r;
found = true;
j = c->offset + 11;
regionname = parsestring(j);
j += regionname.size() + 4;
r.name = regionname;
r.index = rindex;
parse_region_info(j, *d, r);
_regions.push_back(r);
rindex++;
}
}
found = true;
}
}
// Parse tracks
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
if (b->content_type == 0x1015) {
//ntracks = u_endian_read4(&_ptfunxored[b->offset+2], is_bigendian);
for (vector<PTFFormat::block_t>::iterator c = b->child.begin();
c != b->child.end(); ++c) {
if (c->content_type == 0x1014) {
j = c->offset + 2;
trackname = parsestring(j);
j += trackname.size() + 5;
nch = u_endian_read4(&_ptfunxored[j], is_bigendian);
j += 4;
for (i = 0; i < nch; i++) {
ch_map[i] = u_endian_read2(&_ptfunxored[j], is_bigendian);
track_t ti;
if (!find_track(ch_map[i], ti)) {
// Add a dummy region for now
region_t r (65535);
track_t t (ch_map[i]);
t.name = trackname;
t.reg = r;
_tracks.push_back(t);
}
//verbose_printf("%s : %d(%d)\n", reg, nch, ch_map[0]);
j += 2;
}
}
}
}
}
// Reparse from scratch to exclude audio tracks from all tracks to get midi tracks
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
if (b->content_type == 0x2519) {
tindex = 0;
mindex = 0;
//ntracks = u_endian_read4(&_ptfunxored[b->offset+2], is_bigendian);
for (vector<PTFFormat::block_t>::iterator c = b->child.begin();
c != b->child.end(); ++c) {
if (c->content_type == 0x251a) {
j = c->offset + 4;
trackname = parsestring(j);
j += trackname.size() + 4 + 18;
//tindex = u_endian_read4(&_ptfunxored[j], is_bigendian);
// Add a dummy region for now
region_t r (65535);
track_t t (mindex);
t.name = trackname;
t.reg = r;
track_t ti;
// If the current track is not an audio track, insert as midi track
if (!(find_track(tindex, ti) && foundin(trackname, ti.name))) {
_miditracks.push_back(t);
mindex++;
}
tindex++;
}
}
}
}
// Parse regions->tracks
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
tindex = 0;
if (b->content_type == 0x1012) {
//nregions = u_endian_read4(&_ptfunxored[b->offset+2], is_bigendian);
count = 0;
for (vector<PTFFormat::block_t>::iterator c = b->child.begin();
c != b->child.end(); ++c) {
if (c->content_type == 0x1011) {
regionname = parsestring(c->offset + 2);
for (vector<PTFFormat::block_t>::iterator d = c->child.begin();
d != c->child.end(); ++d) {
if (d->content_type == 0x100f) {
for (vector<PTFFormat::block_t>::iterator e = d->child.begin();
e != d->child.end(); ++e) {
if (e->content_type == 0x100e) {
// Region->track
track_t ti;
j = e->offset + 4;
rawindex = u_endian_read4(&_ptfunxored[j], is_bigendian);
if (!find_track(count, ti))
continue;
if (!find_region(rawindex, ti.reg))
continue;
if (ti.reg.index != 65535) {
_tracks.push_back(ti);
}
}
}
}
}
found = true;
count++;
}
}
} else if (b->content_type == 0x1054) {
//nregions = u_endian_read4(&_ptfunxored[b->offset+2], is_bigendian);
count = 0;
for (vector<PTFFormat::block_t>::iterator c = b->child.begin();
c != b->child.end(); ++c) {
if (c->content_type == 0x1052) {
trackname = parsestring(c->offset + 2);
for (vector<PTFFormat::block_t>::iterator d = c->child.begin();
d != c->child.end(); ++d) {
if (d->content_type == 0x1050) {
region_is_fade = (_ptfunxored[d->offset + 46] == 0x01);
if (region_is_fade) {
verbose_printf("dropped fade region\n");
continue;
}
for (vector<PTFFormat::block_t>::iterator e = d->child.begin();
e != d->child.end(); ++e) {
if (e->content_type == 0x104f) {
// Region->track
j = e->offset + 4;
rawindex = u_endian_read4(&_ptfunxored[j], is_bigendian);
j += 4 + 1;
start = u_endian_read4(&_ptfunxored[j], is_bigendian);
tindex = count;
track_t ti;
if (!find_track(tindex, ti)) {
verbose_printf("dropped track %d\n", tindex);
continue;
}
if (!find_region(rawindex, ti.reg)) {
verbose_printf("dropped region %d\n", rawindex);
continue;
}
ti.reg.startpos = start * _ratefactor;
if (ti.reg.index != 65535) {
_tracks.push_back(ti);
}
}
}
}
}
found = true;
count++;
}
}
}
}
for (std::vector<track_t>::iterator tr = _tracks.begin();
tr != _tracks.end(); /* noop */) {
if ((*tr).reg.index == 65535) {
tr = _tracks.erase(tr);
} else {
tr++;
}
}
return found;
}
struct mchunk {
mchunk (uint64_t zt, uint64_t ml, std::vector<PTFFormat::midi_ev_t> const& c)
: zero (zt)
, maxlen (ml)
, chunk (c)
{}
uint64_t zero;
uint64_t maxlen;
std::vector<PTFFormat::midi_ev_t> chunk;
};
bool
PTFFormat::parsemidi(void) {
uint32_t i, j, k, n, rindex, tindex, mindex, count, rawindex;
uint64_t n_midi_events, zero_ticks, start, offset, length, start2, stop2;
uint64_t midi_pos, midi_len, max_pos, region_pos;
uint8_t midi_velocity, midi_note;
uint16_t regionnumber = 0;
std::string midiregionname;
std::vector<mchunk> midichunks;
midi_ev_t m;
std::string regionname, trackname;
rindex = 0;
// Parse MIDI events
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
if (b->content_type == 0x2000) {
k = b->offset;
// Parse all midi chunks, not 1:1 mapping to regions yet
while (k + 35 < b->block_size + b->offset) {
max_pos = 0;
std::vector<midi_ev_t> midi;
if (!jumpto(&k, _ptfunxored, _len, (const unsigned char *)"MdNLB", 5)) {
break;
}
k += 11;
n_midi_events = u_endian_read4(&_ptfunxored[k], is_bigendian);
k += 4;
zero_ticks = u_endian_read5(&_ptfunxored[k], is_bigendian);
for (i = 0; i < n_midi_events && k < _len; i++, k += 35) {
midi_pos = u_endian_read5(&_ptfunxored[k], is_bigendian);
midi_pos -= zero_ticks;
midi_note = _ptfunxored[k+8];
midi_len = u_endian_read5(&_ptfunxored[k+9], is_bigendian);
midi_velocity = _ptfunxored[k+17];
if (midi_pos + midi_len > max_pos) {
max_pos = midi_pos + midi_len;
}
m.pos = midi_pos;
m.length = midi_len;
m.note = midi_note;
m.velocity = midi_velocity;
midi.push_back(m);
}
midichunks.push_back(mchunk (zero_ticks, max_pos, midi));
}
// Put chunks onto regions
} else if ((b->content_type == 0x2002) || (b->content_type == 0x2634)) {
for (vector<PTFFormat::block_t>::iterator c = b->child.begin();
c != b->child.end(); ++c) {
if ((c->content_type == 0x2001) || (c->content_type == 0x2633)) {
for (vector<PTFFormat::block_t>::iterator d = c->child.begin();
d != c->child.end(); ++d) {
if ((d->content_type == 0x1007) || (d->content_type == 0x2628)) {
j = d->offset + 2;
midiregionname = parsestring(j);
j += 4 + midiregionname.size();
parse_three_point(j, region_pos, zero_ticks, midi_len);
j = d->offset + d->block_size;
rindex = u_endian_read4(&_ptfunxored[j], is_bigendian);
struct mchunk mc = *(midichunks.begin()+rindex);
region_t r (regionnumber++);
r.name = midiregionname;
r.startpos = (int64_t)0xe8d4a51000ULL;
r.sampleoffset = 0;
r.length = mc.maxlen;
r.midi = mc.chunk;
_midiregions.push_back(r);
//verbose_printf("MIDI %s : r(%d) (%llu, %llu, %llu)\n", str, rindex, zero_ticks, region_pos, midi_len);
//dump_block(*d, 1);
}
}
}
}
}
}
// COMPOUND MIDI regions
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
if (b->content_type == 0x262c) {
mindex = 0;
for (vector<PTFFormat::block_t>::iterator c = b->child.begin();
c != b->child.end(); ++c) {
if (c->content_type == 0x262b) {
for (vector<PTFFormat::block_t>::iterator d = c->child.begin();
d != c->child.end(); ++d) {
if (d->content_type == 0x2628) {
count = 0;
j = d->offset + 2;
regionname = parsestring(j);
j += 4 + regionname.size();
parse_three_point(j, start, offset, length);
j = d->offset + d->block_size + 2;
n = u_endian_read2(&_ptfunxored[j], is_bigendian);
for (vector<PTFFormat::block_t>::iterator e = d->child.begin();
e != d->child.end(); ++e) {
if (e->content_type == 0x2523) {
// FIXME Compound MIDI region
j = e->offset + 39;
rawindex = u_endian_read4(&_ptfunxored[j], is_bigendian);
j += 12;
start2 = u_endian_read5(&_ptfunxored[j], is_bigendian);
int64_t signedval = (int64_t)start2;
signedval -= ZERO_TICKS;
if (signedval < 0) {
signedval = -signedval;
}
start2 = signedval;
j += 8;
stop2 = u_endian_read5(&_ptfunxored[j], is_bigendian);
signedval = (int64_t)stop2;
signedval -= ZERO_TICKS;
if (signedval < 0) {
signedval = -signedval;
}
stop2 = signedval;
j += 16;
//nn = u_endian_read4(&_ptfunxored[j], is_bigendian);
//verbose_printf("COMPOUND %s : c(%d) r(%d) ?(%d) ?(%d) (%llu %llu)(%llu %llu %llu)\n", str, mindex, rawindex, n, nn, start2, stop2, start, offset, length);
count++;
}
}
if (!count) {
// Plain MIDI region
struct mchunk mc = *(midichunks.begin()+n);
region_t r (n);
r.name = midiregionname;
r.startpos = (int64_t)0xe8d4a51000ULL;
r.length = mc.maxlen;
r.midi = mc.chunk;
_midiregions.push_back(r);
verbose_printf("%s : MIDI region mr(%d) ?(%d) (%lu %lu %lu)\n", regionname.c_str(), mindex, n, start, offset, length);
mindex++;
}
}
}
}
}
}
}
// Put midi regions onto midi tracks
for (vector<PTFFormat::block_t>::iterator b = blocks.begin();
b != blocks.end(); ++b) {
if (b->content_type == 0x1058) {
//nregions = u_endian_read4(&_ptfunxored[b->offset+2], is_bigendian);
count = 0;
for (vector<PTFFormat::block_t>::iterator c = b->child.begin();
c != b->child.end(); ++c) {
if (c->content_type == 0x1057) {
regionname = parsestring(c->offset + 2);
for (vector<PTFFormat::block_t>::iterator d = c->child.begin();
d != c->child.end(); ++d) {
if (d->content_type == 0x1056) {
for (vector<PTFFormat::block_t>::iterator e = d->child.begin();
e != d->child.end(); ++e) {
if (e->content_type == 0x104f) {
// MIDI region->MIDI track
track_t ti;
j = e->offset + 4;
rawindex = u_endian_read4(&_ptfunxored[j], is_bigendian);
j += 4 + 1;
start = u_endian_read5(&_ptfunxored[j], is_bigendian);
tindex = count;
if (!find_miditrack(tindex, ti)) {
verbose_printf("dropped midi t(%d) r(%d)\n", tindex, rawindex);
continue;
}
if (!find_midiregion(rawindex, ti.reg)) {
verbose_printf("dropped midiregion\n");
continue;
}
//verbose_printf("MIDI : %s : t(%d) r(%d) %llu(%llu)\n", ti.name.c_str(), tindex, rawindex, start, ti.reg.startpos);
int64_t signedstart = (int64_t)(start - ZERO_TICKS);
if (signedstart < 0)
signedstart = -signedstart;
ti.reg.startpos = (uint64_t)(signedstart * _ratefactor);
if (ti.reg.index != 65535) {
_miditracks.push_back(ti);
}
}
}
}
}
count++;
}
}
}
}
for (std::vector<track_t>::iterator tr = _miditracks.begin();
tr != _miditracks.end(); /* noop */) {
if ((*tr).reg.index == 65535) {
tr = _miditracks.erase(tr);
} else {
tr++;
}
}
return true;
}