13
0
livetrax/libs/glibmm2/examples/thread/dispatcher2.cc

233 lines
5.6 KiB
C++
Raw Normal View History

/*
* original Glib::Dispatcher example -- cross thread signalling
* by Daniel Elstner <daniel.elstner@gmx.net>
*
* Modified by Stephan Puchegger <stephan.puchegger@ap.univie.ac.at>
* to contain 2 mainloops in 2 different threads, that communicate
* via cross thread signalling in both directions. The timer thread
* sends the UI thread a cross thread signal every second, which in turn
* updates the label stating how many seconds have passed since the start
* of the program.
*
* Modified by J. Abelardo Gutierrez <jabelardo@cantv.net>
* to cast all gtkmm out and make it glimm only
*
* Note: This example is special stuff that's seldomly needed by the
* vast majority of applications. Don't bother working out what this
* code does unless you know for sure you need 2 main loops running in
* 2 distinct main contexts.
*
* Copyright (c) 2002-2003 Free Software Foundation
*/
#include <glibmm.h>
#include <sstream>
#include <iostream>
namespace
{
Glib::RefPtr<Glib::MainLoop> main_loop;
class ThreadTimer : public sigc::trackable
{
public:
ThreadTimer();
~ThreadTimer();
void launch();
void signal_finished_emit();
void print() const;
typedef sigc::signal<void> type_signal_end;
static type_signal_end& signal_end();
private:
unsigned int time_;
Glib::Dispatcher signal_increment_;
Glib::Dispatcher* signal_finished_ptr_;
Glib::Mutex startup_mutex_;
Glib::Cond startup_cond_;
Glib::Thread* thread_;
static type_signal_end signal_end_;
void timer_increment();
bool timeout_handler();
static void finished_handler(Glib::RefPtr<Glib::MainLoop> mainloop);
void thread_function();
};
//TODO: Rename to avoid confusion with Glib::Dispatcher. murrayc
class Dispatcher : public sigc::trackable
{
public:
Dispatcher();
void launch_thread();
void end();
private:
ThreadTimer* timer_;
};
ThreadTimer::ThreadTimer()
:
time_ (0),
// Create a new dispatcher that is attached to the default main context,
signal_increment_ (),
// This pointer will be initialized later by the 2nd thread.
signal_finished_ptr_ (NULL)
{
// Connect the cross-thread signal.
signal_increment_.connect(sigc::mem_fun(*this, &ThreadTimer::timer_increment));
}
ThreadTimer::~ThreadTimer()
{}
void ThreadTimer::launch()
{
// Unfortunately, the thread creation has to be fully synchronized in
// order to access the Dispatcher object instantiated by the 2nd thread.
// So, let's do some kind of hand-shake using a mutex and a condition
// variable.
Glib::Mutex::Lock lock (startup_mutex_);
// Create a joinable thread -- it needs to be joined, otherwise it's a memory leak.
thread_ = Glib::Thread::create(
sigc::mem_fun(*this, &ThreadTimer::thread_function), true);
// Wait for the 2nd thread's startup notification.
while(signal_finished_ptr_ == NULL)
startup_cond_.wait(startup_mutex_);
}
void ThreadTimer::signal_finished_emit()
{
// Cause the 2nd thread's main loop to quit.
signal_finished_ptr_->emit();
// wait for the thread to join
if(thread_ != NULL)
thread_->join();
signal_finished_ptr_ = NULL;
}
void ThreadTimer::print() const
{
std::cout << time_ << " seconds since start" << std::endl;
}
sigc::signal< void >& ThreadTimer::signal_end()
{
return signal_end_;
}
void ThreadTimer::timer_increment()
{
// another second has passed since the start of the program
++time_;
print();
if(time_ >= 10)
signal_finished_emit();
}
// static
void ThreadTimer::finished_handler(Glib::RefPtr<Glib::MainLoop> mainloop)
{
// quit the timer thread mainloop
mainloop->quit();
std::cout << "timer thread mainloop finished" << std::endl;
ThreadTimer::signal_end().emit();
}
bool ThreadTimer::timeout_handler()
{
// inform the printing thread that another second has passed
signal_increment_();
// this timer should stay alive
return true;
}
void ThreadTimer::thread_function()
{
// create a new Main Context
Glib::RefPtr<Glib::MainContext> context = Glib::MainContext::create();
// create a new Main Loop
Glib::RefPtr<Glib::MainLoop> mainloop = Glib::MainLoop::create(context, true);
// attach a timeout handler, that is called every second, to the
// newly created MainContext
context->signal_timeout().connect(sigc::mem_fun(*this, &ThreadTimer::timeout_handler), 1000);
// We need to lock while creating the Dispatcher instance,
// in order to ensure memory visibility.
Glib::Mutex::Lock lock (startup_mutex_);
// create a new dispatcher, that is connected to the newly
// created MainContext
Glib::Dispatcher signal_finished (context);
signal_finished.connect(sigc::bind(sigc::ptr_fun(&ThreadTimer::finished_handler), mainloop));
signal_finished_ptr_ = &signal_finished;
// Tell the launcher thread that everything is in place now.
startup_cond_.signal();
lock.release();
// start the mainloop
mainloop->run();
}
// initialize static member:
ThreadTimer::type_signal_end ThreadTimer::signal_end_;
Dispatcher::Dispatcher()
:
timer_ (NULL)
{
std::cout << "Thread Dispatcher Example #2" << std::endl;
timer_ = new ThreadTimer();
timer_->signal_end().connect(sigc::mem_fun(*this, &Dispatcher::end));
timer_->print();
}
void Dispatcher::launch_thread()
{
// launch the timer thread
timer_->launch();
}
void Dispatcher::end()
{
// quit the main mainloop
main_loop->quit();
}
} // anonymous namespace
int main(int, char**)
{
Glib::thread_init();
main_loop = Glib::MainLoop::create();
Dispatcher dispatcher;
// Install a one-shot idle handler to launch the threads
Glib::signal_idle().connect(
sigc::bind_return(sigc::mem_fun(dispatcher, &Dispatcher::launch_thread), false));
main_loop->run();
return 0;
}