13
0
livetrax/libs/canvas/utils.cc

223 lines
6.5 KiB
C++
Raw Normal View History

/*
Copyright (C) 2011-2013 Paul Davis
Author: Carl Hetherington <cth@carlh.net>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <algorithm>
#include <cmath>
#include <stdint.h>
#include <cairomm/context.h>
#include "canvas/utils.h"
using std::max;
using std::min;
void
ArdourCanvas::color_to_hsv (Color color, double& h, double& s, double& v)
{
double r, g, b, a;
double cmax;
double cmin;
double delta;
color_to_rgba (color, r, g, b, a);
if (r > g) {
cmax = max (r, b);
} else {
cmax = max (g, b);
}
if (r < g) {
cmin = min (r, b);
} else {
cmin = min (g, b);
}
v = cmax;
delta = cmax - cmin;
if (cmax == 0) {
// r = g = b == 0 ... v is undefined, s = 0
s = 0.0;
h = -1.0;
}
if (delta != 0.0) {
if (cmax == r) {
h = fmod ((g - b)/delta, 6.0);
} else if (cmax == g) {
h = ((b - r)/delta) + 2;
} else {
h = ((r - g)/delta) + 4;
}
h *= 60.0;
}
if (delta == 0 || cmax == 0) {
s = 0;
} else {
s = delta / cmax;
}
}
ArdourCanvas::Color
ArdourCanvas::hsv_to_color (double h, double s, double v, double a)
{
s = min (1.0, max (0.0, s));
v = min (1.0, max (0.0, v));
if (s == 0) {
// achromatic (grey)
return rgba_to_color (v, v, v, a);
}
h = min (360.0, max (0.0, h));
double c = v * s;
double x = c * (1.0 - fabs(fmod(h / 60.0, 2) - 1.0));
double m = v - c;
if (h >= 0.0 && h < 60.0) {
return rgba_to_color (c + m, x + m, m, a);
} else if (h >= 60.0 && h < 120.0) {
return rgba_to_color (x + m, c + m, m, a);
} else if (h >= 120.0 && h < 180.0) {
return rgba_to_color (m, c + m, x + m, a);
} else if (h >= 180.0 && h < 240.0) {
return rgba_to_color (m, x + m, c + m, a);
} else if (h >= 240.0 && h < 300.0) {
return rgba_to_color (x + m, m, c + m, a);
} else if (h >= 300.0 && h < 360.0) {
return rgba_to_color (c + m, m, x + m, a);
}
return rgba_to_color (m, m, m, a);
}
void
ArdourCanvas::color_to_rgba (Color color, double& r, double& g, double& b, double& a)
{
r = ((color >> 24) & 0xff) / 255.0;
g = ((color >> 16) & 0xff) / 255.0;
b = ((color >> 8) & 0xff) / 255.0;
a = ((color >> 0) & 0xff) / 255.0;
}
ArdourCanvas::Color
ArdourCanvas::rgba_to_color (double r, double g, double b, double a)
{
/* clamp to [0 .. 1] range */
r = min (1.0, max (0.0, r));
g = min (1.0, max (0.0, g));
b = min (1.0, max (0.0, b));
a = min (1.0, max (0.0, a));
/* convert to [0..255] range */
unsigned int rc, gc, bc, ac;
rc = rint (r * 255.0);
gc = rint (g * 255.0);
bc = rint (b * 255.0);
ac = rint (a * 255.0);
/* build-an-integer */
return (rc << 24) | (gc << 16) | (bc << 8) | ac;
}
void
ArdourCanvas::set_source_rgba (Cairo::RefPtr<Cairo::Context> context, Color color)
{
context->set_source_rgba (
((color >> 24) & 0xff) / 255.0,
((color >> 16) & 0xff) / 255.0,
((color >> 8) & 0xff) / 255.0,
((color >> 0) & 0xff) / 255.0
);
}
ArdourCanvas::Distance
ArdourCanvas::distance_to_segment_squared (Duple const & p, Duple const & p1, Duple const & p2, double& t, Duple& at)
{
static const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f
static const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f
double dx = p2.x - p1.x;
double dy = p2.y - p1.y;
double dp1x = p.x - p1.x;
double dp1y = p.y - p1.y;
const double segLenSquared = (dx * dx) + (dy * dy);
if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared) {
// segment is a point.
at = p1;
t = 0.0;
return ((dp1x * dp1x) + (dp1y * dp1y));
}
// Project a line from p to the segment [p1,p2]. By considering the line
// extending the segment, parameterized as p1 + (t * (p2 - p1)),
// we find projection of point p onto the line.
// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;
if (t < kEpsilon) {
// intersects at or to the "left" of first segment vertex (p1.x, p1.y). If t is approximately 0.0, then
// intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t > -kEpsilon) {
// intersects at 1st segment vertex
t = 0.0;
}
// set our 'intersection' point to p1.
at = p1;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1.x + (t * dx)) and qy would be (p1.y + (t * dy)).
} else if (t > (1.0 - kEpsilon)) {
// intersects at or to the "right" of second segment vertex (p2.x, p2.y). If t is approximately 1.0, then
// intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t < (1.0 + kEpsilon)) {
// intersects at 2nd segment vertex
t = 1.0;
}
// set our 'intersection' point to p2.
at = p2;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1.x + (t * dx)) and qy would be (p1.y + (t * dy)).
} else {
// The projection of the point to the point on the segment that is perpendicular succeeded and the point
// is 'within' the bounds of the segment. Set the intersection point as that projected point.
at = Duple (p1.x + (t * dx), p1.y + (t * dy));
}
// return the squared distance from p to the intersection point. Note that we return the squared distance
// as an optimization because many times you just need to compare relative distances and the squared values
// works fine for that. If you want the ACTUAL distance, just take the square root of this value.
double dpqx = p.x - at.x;
double dpqy = p.y - at.y;
return ((dpqx * dpqx) + (dpqy * dpqy));
}