112 lines
5.3 KiB
Plaintext
112 lines
5.3 KiB
Plaintext
|
\documentclass{article}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\title{Some image transform math}
|
||
|
\author{Owen Taylor}
|
||
|
\date{18 February 2003}
|
||
|
\maketitle
|
||
|
|
||
|
\section{Basics}
|
||
|
|
||
|
The transform process is composed of three steps;
|
||
|
first we reconstruct a continuous image from the
|
||
|
source data \(A_{i,j}\):
|
||
|
\[a(u,v) = \sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j}F\left( {u - i \atop v - j} \right) \]
|
||
|
Then we transform from destination coordinates to source coordinates:
|
||
|
\[b(x,y) = a\left(u(x,y) \atop v(x,y)\right)
|
||
|
= a\left(t_{00}x + t_{01}y + t_{02} \atop t_{10}x + t_{11}y + t_{12} \right)\]
|
||
|
Finally, we resample using a sampling function \(G\):
|
||
|
\[B_{x_0,y_0} = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} b(x,y)G\left( {x - x_0 \atop y - y_0} \right) dxdy\]
|
||
|
Putting all of these together:
|
||
|
\[B_{x_0,y_0} =
|
||
|
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}
|
||
|
\sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j}
|
||
|
F\left( {u(x,y) - i \atop v(x,y) - j} \right)
|
||
|
G\left( {x - x_0 \atop y - y_0} \right) dxdy\]
|
||
|
We can reverse the order of the integrals and the sums:
|
||
|
\[B_{x_0,y_0} =
|
||
|
\sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j}
|
||
|
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}
|
||
|
F\left( {u(x,y) - i \atop v(x,y) - j} \right)
|
||
|
G\left( {x - x_0 \atop y - y_0} \right) dxdy\]
|
||
|
Which shows that the destination pixel values are a linear combination of the
|
||
|
source pixel values. But the coefficents depend on \(x_0\) and \(y_0\).
|
||
|
To simplify this a bit, define:
|
||
|
\[i_0 = \lfloor u(x_0,y_0) \rfloor = \lfloor {t_{00}x_0 + t_{01}y_0 + t_{02}} \rfloor \]
|
||
|
\[j_0 = \lfloor v(x_0,y_0) \rfloor = \lfloor {t_{10}x_0 + t_{11}y_0 + t_{12}} \rfloor \]
|
||
|
\[\Delta_u = u(x_0,y_0) - i_0 = t_{00}x_0 + t_{01}y_0 + t_{02} - \lfloor {t_{00}x_0 + t_{01}y_0 + t_{02}} \rfloor \]
|
||
|
\[\Delta_v = v(x_0,y_0) - j_0 = t_{10}x_0 + t_{11}y_0 + t_{12} - \lfloor {t_{10}x_0 + t_{11}y_0 + t_{12}} \rfloor \]
|
||
|
Then making the transforms \(x' = x - x_0\), \(y' = y - x_0\), \(i' = i - i_0\), \(j' = j - x_0\)
|
||
|
\begin{eqnarray*}
|
||
|
F(u,v) & = & F\left( {t_{00}x + t_{01}y + t_{02} - i \atop t_{10}x + t_{11}y + t_{12} - j} \right)\\
|
||
|
& = & F\left( {t_{00}(x'+x_0) + t_{01}(y'+y_0) + t_{02} - (i'+i_0) \atop
|
||
|
t_{10}(x'+x_0) + t_{11}(y'+y_0) + t_{12} - (j'+j_0)} \right) \\
|
||
|
& = & F\left( {\Delta_u + t_{00}x' + t_{01}y' - i' \atop
|
||
|
\Delta_v + t_{10}x' + t_{11}y' - j'} \right)
|
||
|
\end{eqnarray*}
|
||
|
Using that, we can then reparameterize the sums and integrals and
|
||
|
define coefficients that depend only on \((\Delta_u,\Delta_v)\),
|
||
|
which we'll call the \emph{phase} at the point \((x_0,y_0)\):
|
||
|
\[
|
||
|
B_{x_0,y_0} =
|
||
|
\sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i_0+i,j_0+j} C_{i,j}(\Delta_u,\Delta_v)
|
||
|
\]
|
||
|
\[
|
||
|
C_{i,j}(\Delta_u,\Delta_v) =
|
||
|
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}
|
||
|
F\left( {\Delta_u + t_{00}x + t_{01}y - i \atop
|
||
|
\Delta_v + t_{10}x + t_{11}y - j} \right)
|
||
|
G\left( {x \atop y} \right) dxdy
|
||
|
\]
|
||
|
\section{Separability}
|
||
|
A frequent special case is when the reconstruction and sampling functions
|
||
|
are of the form:
|
||
|
\[F(u,v) = f(u)f(v)\]
|
||
|
\[G(x,y) = g(x)g(y)\]
|
||
|
If we also have a transform that is purely a scale and translation;
|
||
|
(\(t_{10} = 0\), \(t_{01} = 0\)), then we can separate
|
||
|
\(C_{i,j}(\Delta_u,\Delta_v)\) into the product of a \(x\) portion
|
||
|
and a \(y\) portion:
|
||
|
\[C_{i,j}(\Delta_u,\Delta_v) = c_{i}(\Delta_u) c_{j}(\Delta_v)\]
|
||
|
\[c_{i}(\Delta_u) = \int_{-\infty}^{\infty} f(\Delta_u + t_{00}x - i)g(x)dx\]
|
||
|
\[c_{j}(\Delta_v) = \int_{-\infty}^{\infty} f(\Delta_v + t_{11}y - j)g(y)dy\]
|
||
|
|
||
|
\section{Some filters}
|
||
|
gdk-pixbuf provides 4 standard filters for scaling, under the names ``NEAREST'',
|
||
|
``TILES'', ``BILINEAR'', and ``HYPER''. All of turn out to be separable
|
||
|
as discussed in the previous section.
|
||
|
For ``NEAREST'' filter, the reconstruction function is simple replication
|
||
|
and the sampling function is a delta function\footnote{A delta function is an infinitely narrow spike, such that:
|
||
|
\[\int_{-\infty}^{\infty}\delta(x)f(x) = f(0)\]}:
|
||
|
\[f(t) = \cases{1, & if \(0 \le t \le 1\); \cr
|
||
|
0, & otherwise}\]
|
||
|
\[g(t) = \delta(t - 0.5)\]
|
||
|
For ``TILES'', the reconstruction function is again replication, but we
|
||
|
replace the delta-function for sampling with a box filter:
|
||
|
\[f(t) = \cases{1, & if \(0 \le t \le 1\); \cr
|
||
|
0, & otherwise}\]
|
||
|
\[g(t) = \cases{1, & if \(0 \le t \le 1\); \cr
|
||
|
0, & otherwise}\]
|
||
|
The ``HYPER'' filter (in practice, it was originally intended to be
|
||
|
something else) uses bilinear interpolation for reconstruction and
|
||
|
a box filter for sampling:
|
||
|
\[f(t) = \cases{1 - |t - 0.5|, & if \(-0.5 \le t \le 1.5\); \cr
|
||
|
0, & otherwise}\]
|
||
|
\[g(t) = \cases{1, & if \(0 \le t \le 1\); \cr
|
||
|
0, & otherwise}\]
|
||
|
The ``BILINEAR'' filter is defined in a somewhat more complicated way;
|
||
|
the definition depends on the scale factor in the transform (\(t_{00}\)
|
||
|
or \(t_{01}]\). In the \(x\) direction, for \(t_{00} < 1\), it is
|
||
|
the same as for ``TILES'':
|
||
|
\[f_u(t) = \cases{1, & if \(0 \le t \le 1\); \cr
|
||
|
0, & otherwise}\]
|
||
|
\[g_u(t) = \cases{1, & if \(0 \le t \le 1\); \cr
|
||
|
0, & otherwise}\]
|
||
|
but for \(t_{10} > 1\), we use bilinear reconstruction and delta-function
|
||
|
sampling:
|
||
|
\[f_u(t) = \cases{1 - |t - 0.5|, & if \(-0.5 \le t \le 1.5\); \cr
|
||
|
0, & otherwise}\]
|
||
|
\[g_u(t) = \delta(t - 0.5)\]
|
||
|
The behavior in the \(y\) direction depends in the same way on \(t_{11}\).
|
||
|
\end{document}
|