13
0
livetrax/libs/surfaces/generic_midi/midicontrollable.cc

418 lines
9.8 KiB
C++
Raw Normal View History

/*
Copyright (C) 1998-2006 Paul Davis
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <cstdio> /* for sprintf, sigh */
#include <climits>
#include <pbd/error.h>
#include <pbd/xml++.h>
#include <midi++/port.h>
#include <midi++/channel.h>
#include <ardour/automation_control.h>
#include "midicontrollable.h"
using namespace sigc;
using namespace MIDI;
using namespace PBD;
using namespace ARDOUR;
MIDIControllable::MIDIControllable (Port& p, Controllable& c, bool is_bistate)
: controllable (c), _port (p), bistate (is_bistate)
{
setting = false;
last_value = 0; // got a better idea ?
control_type = none;
_control_description = "MIDI Control: none";
control_additional = (byte) -1;
connections = 0;
feedback = true; // for now
/* use channel 0 ("1") as the initial channel */
midi_rebind (0);
}
MIDIControllable::~MIDIControllable ()
{
drop_external_control ();
}
void
MIDIControllable::midi_forget ()
{
/* stop listening for incoming messages, but retain
our existing event + type information.
*/
if (connections > 0) {
midi_sense_connection[0].disconnect ();
}
if (connections > 1) {
midi_sense_connection[1].disconnect ();
}
connections = 0;
midi_learn_connection.disconnect ();
}
void
MIDIControllable::midi_rebind (channel_t c)
{
if (c >= 0) {
bind_midi (c, control_type, control_additional);
} else {
midi_forget ();
}
}
void
MIDIControllable::learn_about_external_control ()
{
drop_external_control ();
midi_learn_connection = _port.input()->any.connect (mem_fun (*this, &MIDIControllable::midi_receiver));
}
void
MIDIControllable::stop_learning ()
{
midi_learn_connection.disconnect ();
}
void
MIDIControllable::drop_external_control ()
{
if (connections > 0) {
midi_sense_connection[0].disconnect ();
}
if (connections > 1) {
midi_sense_connection[1].disconnect ();
}
connections = 0;
midi_learn_connection.disconnect ();
control_type = none;
control_additional = (byte) -1;
}
float
MIDIControllable::control_to_midi(float val)
{
float control_min = 0.0f;
float control_max = 1.0f;
ARDOUR::AutomationControl* ac = dynamic_cast<ARDOUR::AutomationControl*>(&controllable);
if (ac) {
control_min = ac->parameter().min();
control_max = ac->parameter().max();
}
const float control_range = control_max - control_min;
const float midi_range = 127.0f; // TODO: NRPN etc.
return (val - control_min) / control_range * midi_range;
}
float
MIDIControllable::midi_to_control(float val)
{
float control_min = 0.0f;
float control_max = 1.0f;
ARDOUR::AutomationControl* ac = dynamic_cast<ARDOUR::AutomationControl*>(&controllable);
if (ac) {
control_min = ac->parameter().min();
control_max = ac->parameter().max();
}
const float control_range = control_max - control_min;
const float midi_range = 127.0f; // TODO: NRPN etc.
return val / midi_range * control_range + control_min;
}
void
MIDIControllable::midi_sense_note_on (Parser &p, EventTwoBytes *tb)
{
midi_sense_note (p, tb, true);
}
void
MIDIControllable::midi_sense_note_off (Parser &p, EventTwoBytes *tb)
{
midi_sense_note (p, tb, false);
}
void
MIDIControllable::midi_sense_note (Parser &, EventTwoBytes *msg, bool is_on)
{
if (!bistate) {
controllable.set_value (msg->note_number/127.0);
} else {
/* Note: parser handles the use of zero velocity to
mean note off. if we get called with is_on=true, then we
got a *real* note on.
*/
if (msg->note_number == control_additional) {
controllable.set_value (is_on ? 1 : 0);
}
}
last_value = (MIDI::byte) (controllable.get_value() * 127.0); // to prevent feedback fights
}
void
MIDIControllable::midi_sense_controller (Parser &, EventTwoBytes *msg)
{
if (controllable.touching()) {
return; // to prevent feedback fights when e.g. dragging a UI slider
}
if (control_additional == msg->controller_number) {
if (!bistate) {
controllable.set_value (midi_to_control(msg->value));
} else {
if (msg->value > 64.0) {
controllable.set_value (1);
} else {
controllable.set_value (0);
}
}
last_value = (MIDI::byte) (control_to_midi(controllable.get_value())); // to prevent feedback fights
}
}
void
MIDIControllable::midi_sense_program_change (Parser &, byte msg)
{
/* XXX program change messages make no sense for bistates */
if (!bistate) {
controllable.set_value (msg/127.0);
last_value = (MIDI::byte) (controllable.get_value() * 127.0); // to prevent feedback fights
}
}
void
MIDIControllable::midi_sense_pitchbend (Parser &, pitchbend_t pb)
{
/* pitchbend messages make no sense for bistates */
/* XXX gack - get rid of assumption about typeof pitchbend_t */
controllable.set_value ((pb/(float) SHRT_MAX));
last_value = (MIDI::byte) (controllable.get_value() * 127.0); // to prevent feedback fights
}
void
MIDIControllable::midi_receiver (Parser &, byte *msg, size_t /*len*/)
{
/* we only respond to channel messages */
if ((msg[0] & 0xF0) < 0x80 || (msg[0] & 0xF0) > 0xE0) {
return;
}
/* if the our port doesn't do input anymore, forget it ... */
if (!_port.input()) {
return;
}
bind_midi ((channel_t) (msg[0] & 0xf), eventType (msg[0] & 0xF0), msg[1]);
controllable.LearningFinished ();
}
void
MIDIControllable::bind_midi (channel_t chn, eventType ev, MIDI::byte additional)
{
char buf[64];
drop_external_control ();
control_type = ev;
control_channel = chn;
control_additional = additional;
if (_port.input() == 0) {
return;
}
Parser& p = *_port.input();
int chn_i = chn;
switch (ev) {
case MIDI::off:
midi_sense_connection[0] = p.channel_note_off[chn_i].connect
(mem_fun (*this, &MIDIControllable::midi_sense_note_off));
/* if this is a bistate, connect to noteOn as well,
and we'll toggle back and forth between the two.
*/
if (bistate) {
midi_sense_connection[1] = p.channel_note_on[chn_i].connect
(mem_fun (*this, &MIDIControllable::midi_sense_note_on));
connections = 2;
} else {
connections = 1;
}
_control_description = "MIDI control: NoteOff";
break;
case MIDI::on:
midi_sense_connection[0] = p.channel_note_on[chn_i].connect
(mem_fun (*this, &MIDIControllable::midi_sense_note_on));
if (bistate) {
midi_sense_connection[1] = p.channel_note_off[chn_i].connect
(mem_fun (*this, &MIDIControllable::midi_sense_note_off));
connections = 2;
} else {
connections = 1;
}
_control_description = "MIDI control: NoteOn";
break;
case MIDI::controller:
midi_sense_connection[0] = p.channel_controller[chn_i].connect
(mem_fun (*this, &MIDIControllable::midi_sense_controller));
connections = 1;
snprintf (buf, sizeof (buf), "MIDI control: Controller %d", control_additional);
_control_description = buf;
break;
case MIDI::program:
if (!bistate) {
midi_sense_connection[0] = p.channel_program_change[chn_i].connect
(mem_fun (*this,
&MIDIControllable::midi_sense_program_change));
connections = 1;
_control_description = "MIDI control: ProgramChange";
}
break;
case MIDI::pitchbend:
if (!bistate) {
midi_sense_connection[0] = p.channel_pitchbend[chn_i].connect
(mem_fun (*this, &MIDIControllable::midi_sense_pitchbend));
connections = 1;
_control_description = "MIDI control: Pitchbend";
}
break;
default:
break;
}
}
void
MIDIControllable::send_feedback ()
{
byte msg[3];
if (setting || !feedback || control_type == none) {
return;
}
msg[0] = (control_type & 0xF0) | (control_channel & 0xF);
msg[1] = control_additional;
msg[2] = (byte) (control_to_midi(controllable.get_value()));
_port.write (msg, 3, 0);
}
MIDI::byte*
MIDIControllable::write_feedback (MIDI::byte* buf, int32_t& bufsize, bool /*force*/)
{
if (control_type != none && feedback && bufsize > 2) {
MIDI::byte gm = (MIDI::byte) (control_to_midi(controllable.get_value()));
if (gm != last_value) {
*buf++ = (0xF0 & control_type) | (0xF & control_channel);
*buf++ = control_additional; /* controller number */
*buf++ = gm;
last_value = gm;
bufsize -= 3;
}
}
return buf;
}
int
MIDIControllable::set_state (const XMLNode& node)
{
const XMLProperty* prop;
int xx;
if ((prop = node.property ("event")) != 0) {
sscanf (prop->value().c_str(), "0x%x", &xx);
control_type = (MIDI::eventType) xx;
} else {
return -1;
}
if ((prop = node.property ("channel")) != 0) {
sscanf (prop->value().c_str(), "%d", &xx);
control_channel = (MIDI::channel_t) xx;
} else {
return -1;
}
if ((prop = node.property ("additional")) != 0) {
sscanf (prop->value().c_str(), "0x%x", &xx);
control_additional = (MIDI::byte) xx;
} else {
return -1;
}
if ((prop = node.property ("feedback")) != 0) {
feedback = (prop->value() == "yes");
} else {
feedback = true; // default
}
bind_midi (control_channel, control_type, control_additional);
return 0;
}
XMLNode&
MIDIControllable::get_state ()
{
char buf[32];
XMLNode& node (controllable.get_state ());
snprintf (buf, sizeof(buf), "0x%x", (int) control_type);
node.add_property ("event", buf);
snprintf (buf, sizeof(buf), "%d", (int) control_channel);
node.add_property ("channel", buf);
snprintf (buf, sizeof(buf), "0x%x", (int) control_additional);
node.add_property ("additional", buf);
node.add_property ("feedback", (feedback ? "yes" : "no"));
return node;
}