13
0
livetrax/tools/sanity_check/systemtest.cpp

335 lines
8.0 KiB
C++
Raw Normal View History

/**
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Set of functions to gather system information for the jack setup wizard.
*
* TODO: Test for rt prio availability
*
* @author Florian Faber, faber@faberman.de
*
**/
/** maximum number of groups a user can be a member of **/
#define MAX_GROUPS 100
#include <fcntl.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <sched.h>
#include <string.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <stdio.h>
#include <errno.h>
#include "systemtest.h"
/**
* This function checks for the existence of known frequency scaling mechanisms
* in this system by testing for the availability of scaling governors/
*
* @returns 0 if the system has no frequency scaling capabilities non-0 otherwise.
**/
int system_has_frequencyscaling() {
int fd;
fd = open("/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors", O_RDONLY);
if (-1==fd) {
return 0;
}
(void) close(fd);
return 1;
}
static int read_string(char* filename, char* buf, size_t buflen) {
int fd;
ssize_t r=-1;
memset (buf, 0, buflen);
fd = open (filename, O_RDONLY);
if (-1<fd) {
r = read (fd, buf, buflen-1);
(void) close(fd);
if (-1==r) {
fprintf(stderr, "Error while reading \"%s\": %s\n", filename, strerror(errno));
exit(EXIT_FAILURE);
}
}
return (int) r;
}
static int read_int(char* filename, int* value) {
char buf[20];
if (0<read_string(filename, buf, 20)) {
return (1==sscanf(buf, "%d", value));
}
return 0;
}
/**
* This function determines whether any CPU core uses a variable clock speed if frequency
* scaling is available. If the governor for all cores is either "powersave" or
* "performance", the CPU frequency can be assumed to be static. This is also the case
* if scaling_min_freq and scaling_max_freq are set to the same value.
*
* @returns 0 if system doesn't use frequency scaling at the moment, non-0 otherwise
**/
int system_uses_frequencyscaling() {
int cpu=0, done=0, min, max;
char filename[256], buf[256];
while (!done) {
(void) snprintf(filename, 256, "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_governor", cpu);
if (0<read_string(filename, buf, 256)) {
if ((0!=strncmp("performance", buf, 11)) &&
(0!=strncmp("powersafe", buf, 9))) {
// So it's neither the "performance" nor the "powersafe" governor
(void) snprintf(filename, 256, "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_min_freq", cpu);
if (read_int(filename, &min)) {
(void) snprintf(filename, 256, "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_max_freq", cpu);
if (read_int(filename, &max)) {
if (min!=max) {
// wrong governor AND different frequency limits -> scaling
return 1;
}
}
}
}
} else {
// couldn't open file -> no more cores
done = 1;
}
cpu++;
}
// couldn't find anything that points to scaling
return 0;
}
static gid_t get_group_by_name(const char* name) {
struct group* grp;
gid_t res = 0;
while ((0==res) && (NULL != (grp = getgrent()))) {
if (0==strcmp(name, grp->gr_name)) {
res = grp->gr_gid;
}
}
endgrent();
return res;
}
/**
* Tests whether the owner of this process is in the group 'name'.
*
* @returns 0 if the owner of this process is not in the group, non-0 otherwise
**/
int system_user_in_group(const char *name) {
gid_t* list = (gid_t*) malloc(MAX_GROUPS * sizeof(gid_t));
int num_groups, i=0, found=0;
unsigned int gid;
if (NULL==list) {
perror("Cannot allocate group list structure");
exit(EXIT_FAILURE);
}
gid = get_group_by_name(name);
if (0==gid) {
fprintf(stderr, "No %s group found\n", name);
2014-11-13 14:45:39 -05:00
free(list);
return 0;
}
num_groups = getgroups(MAX_GROUPS, list);
while (i<num_groups) {
if (list[i]==gid) {
found = 1;
i = num_groups;
}
i++;
}
free(list);
return found;
}
/***
* Checks for a definition in /etc/security/limits.conf that looks
* as if it allows RT scheduling priority.
*
* @returns 1 if there appears to be such a line
**/
int system_has_rtprio_limits_conf ()
{
const char* limits = "/etc/security/limits.conf";
char cmd[100];
snprintf (cmd, sizeof (cmd), "grep -q 'rtprio *[0-9][0-9]*' %s", limits);
if (system (cmd) == 0) {
return 1;
}
return 0;
}
/**
* Checks for the existence of the 'audio' group on this system
*
* @returns 0 if there is no 'audio' group, the group id otherwise
**/
int system_has_audiogroup() {
return get_group_by_name("audio") || get_group_by_name ("jackuser");
}
/**
* Checks for the existence of 'groupname' on this system
*
* @returns 0 if there is no group, the group id otherwise
**/
int system_has_group(const char * name) {
return get_group_by_name(name);
}
/**
* Tests whether the owner of this process is in the 'audio' group.
*
* @returns 0 if the owner of this process is not in the audio group, non-0 otherwise
**/
int system_user_in_audiogroup() {
return system_user_in_group("audio") || system_user_in_group("jackuser");
}
/**
* Determines whether the owner of this process can enable rt priority.
*
* @returns 0 if this process can not be switched to rt prio, non-0 otherwise
**/
int system_user_can_rtprio() {
int min_prio;
struct sched_param schparam;
memset(&schparam, 0, sizeof(struct sched_param));
if (-1 == (min_prio = sched_get_priority_min(SCHED_FIFO))) {
perror("sched_get_priority");
exit(EXIT_FAILURE);
}
schparam.sched_priority = min_prio;
if (0 == sched_setscheduler(0, SCHED_FIFO, &schparam)) {
// TODO: restore previous state
schparam.sched_priority = 0;
if (0 != sched_setscheduler(0, SCHED_OTHER, &schparam)) {
perror("sched_setscheduler");
exit(EXIT_FAILURE);
}
return 1;
}
return 0;
}
long long unsigned int system_memlock_amount() {
struct rlimit limits;
if (-1==getrlimit(RLIMIT_MEMLOCK, &limits)) {
perror("getrlimit on RLIMIT_MEMLOCK");
exit(EXIT_FAILURE);
}
return limits.rlim_max;
}
/**
* Checks whether the memlock limit is unlimited
*
* @returns - 0 if the memlock limit is limited, non-0 otherwise
**/
int system_memlock_is_unlimited() {
return ((RLIM_INFINITY==system_memlock_amount())?1:0);
}
long long unsigned int system_available_physical_mem() {
char buf[256];
long long unsigned int res = 0;
if (0<read_string(const_cast<char*>("/proc/meminfo"), buf, sizeof (buf))) {
if (strncmp (buf, "MemTotal:", 9) == 0) {
if (sscanf (buf, "%*s %llu", &res) != 1) {
perror ("parse error in /proc/meminfo");
}
}
} else {
perror("read from /proc/meminfo");
}
return res*1024;
}
/**
* Gets the version of the currently running kernel. The string
* returned has to be freed by the caller.
*
* @returns String with the full version of the kernel
**/
char* system_kernel_version() {
return NULL;
}
char* system_get_username() {
char* res = NULL;
char* name = NULL;
if ((name = getlogin())) {
res = strdup(name);
}
return res;
}